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ABSTRACT

The authors study the action flux associated with three-dimensional wave–wave interactions of ocean
surface waves. Over deep water, two-dimensional wave–wave interactions are dominant: the three-dimen-
sional five-wave interactions are two orders of magnitude smaller than the two-dimensional four-wave
interactions. However, the five-wave interactions become increasingly important as the water depth de-
creases. Because of the effects of finite depth, three-dimensional five-wave interactions, involving steep
finite-amplitude waves, dominate over two-dimensional four-wave interactions. Specifically, when the water
depth h is less than 10 m, or nondimensionalizing with the spectral peak wavenumber Kp when Kp h # 3.6
and nonlinearity, e 5 Ka(3 1 tanh2Kh)/4 tanh3Kh $ 0.3, the five-wave interactions completely dominate.
Results are consistent with the instability study by McLean.

1. Introduction

The study of weak nonlinear wave–wave interac-
tions was initiated by Phillips (1960) in a seminal
paper showing that four gravity waves in deep water
could interact resonantly. His idea was extended the-
oretically by Hasselmann (1962) to the spectral for-
mulation for a random wave field and confirmed ex-
perimentally by Longuet-Higgins and Smith (1966)
and McGoldrick et al. (1966). As a result, resonant
wave–wave interactions have become the centerpiece
of modern wave dynamics theory and applied wave
prediction modeling.

Both Phillips (1960) and Hasselmann (1962) used
perturbation analysis to investigate wave–wave in-
teractions. In order to simulate the wave energy evo-
lution to the third order, the perturbation expansions
had to be carried to the fifth order, as shown by Has-
selmann (1962). This high order of perturbation ex-
pansion severely limited the range of validity of the
expansion. To alleviate this limitation, Zakharov
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(1968, 1991) proposed a Hamiltonian approach,
which resulted in an expression for the nonlinear
wave–wave interactions similar to that of Hasselmann
(1962), although simpler, with a higher degree of sym-
metry and a wider range of validity. In fact, Crawford
et al. (1981) showed quantitatively that, for deep wa-
ter waves, the discrepancy between exact solutions, as
obtained by Longuet-Higgins (1978), and the Zakharov
(1968) expression, is within 10% for a wave steepness
of 0.3. The Hasselmann (1962) expansion would give
a similar discrepancy for a wave steepness of only 0.06.
However, there were shortcomings in the Hamiltonian
structure derived by Zakharov (1968) and Crawford et
al. (1980). These were resolved by Krasitskii (1994),
who used canonical transformations to generalize the
continuous case from discrete mechanics, automatically
leading to reduced equations with Hamiltonian structure
and with nonresonant terms eliminated.

Four-wave interactions are primarily unidirectional.
That is, the nonlinear transfer is confined mostly to the
direction of the mean wave propagation. However, as
demonstrated by Martin and Yuen (1980), the interac-
tion equation allows leakage of energy to higher modes
outside its range of validity. It thus becomes inconsis-
tent. Moreover, Crawford et al. (1981) pointed out that
if one compares the experimental data (Lake et al. 1977)
and theory, one can see the need for a higher-order
approximation to study finite-amplitude wave–wave in-
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teractions in deep water. They also pointed out that in-
stability, for a three-dimensional disturbance on a uni-
form wave train, does not possess a high wavenumber
cutoff. Finally, in addition to four-wave interactions, Su
(1982a,b) showed observationally that there are three-
dimensional instabilities in deep water wave trains.

Inspired by Su’s (1982a,b) observations, McLean
(1982) studied the instabilities of finite-amplitude grav-
ity waves in both deep water and water of finite depth.
He used a global method to study the instabilities, with
variables extending over a set of orthogonal functions,
which include the higher-order modes. McLean’s (1982)
deep water results showed that the three-dimensional
instabilities were a consequence of five-wave interac-
tions. In shallow water, he found that when the wave
steepness Ka exceeded 0.29, the growth rate for the five-
wave interactions was higher than that of four-wave
interactions. The existence of three-dimensional insta-
bilities, dominating over four-wave interactions in shal-
low water, is consistent with field observations by Su
et al. (1982a,b) for the formation of three-dimensional
crescent-shaped breakers under growing seas.

The study by McLean (1982) represents a pioneering
investigation in water wave instability. However, it gives
only a qualitative understanding of nonlinear, steep, finite-
amplitude wave–wave interactions. A quantitative un-
derstanding of these interactions requires an investi-
gation of higher modes. Recently Dyachenko et al.
(1995) conducted an analytic study of the five-wave
interactions confined to one direction over deep water.
They found that there was a tendency for wave energy
to undergo wide angular spreading with respect to the
wave spectral propagation direction.

The primary goal of this paper is to evaluate the non-
linear spectral transfer due to five-wave interactions. We
are concerned with angular wave energy spreading in
deep and shallow water. We give the explicit formulas
for three-dimensional five-wave interactions. We also
numerically compute the nonlinear transfer due to five-
wave interactions and compare it with the corresponding
four-wave interactions. Our results indicate that the five-
wave interactions contribute strongly in shallow water,
enhancing the angular spreading of spectral energy, par-
ticularly when the wave amplitude is large.

The ultimate goal of this paper is to investigate new
mechanics: the three-dimensional wave–wave interac-
tions. However, in the course of this investigation, when
the five-wave interactions are shown to be important,
one also needs to consider six-wave, seven-wave, . . .
interactions to obtain the completely accurate solution.
Unfortunately, there is no analytical method that can
include all this series of interactions. Therefore, for a
qualitative analytical study of three-dimensional wave–
wave interactions, we only study five-wave interactions.
In the next paper, we will use a numerical global method
that will include all the four-wave, five-wave, six-wave,
. . . interactions. However, the disadvantage of this nu-
merical method is that one cannot separate each wave–

wave interaction. One only can obtain the sum total. It
is therefore difficult to use this numerical solution to
discuss the new mechanics, for example, from the role
of four-wave and five-wave interactions individually.

Compared to Krasitskii (1994), we use the so-called
classical method in this study, following Zauderer
(1983), Lin (1990), and Lin et al. (1988). This involves
the application of a solvability condition and an adjoint
operator, mapping the n-dimensional system into an (n
2 1)-dimensional system in order to eliminate nonre-
sonant terms. We use the classical method because the
adjoint operator is easy to find and avoids truncation
errors. Thus, the procedure may be simpler than that of
Krasitskii (1994). Of course, our final results should be
equivalent to those obtained by Krasitskii (1994).

2. Mathematical model

The basic equations, boundary conditions and the per-
turbation analysis are presented in this section. This
approach follows similar analyses in Lin and Perrie
(1997).

a. Basic equations

1) CONTINUITY EQUATION

2] F
2¹ F 1 5 0, for 2h # Z # h, (1)H 2]Z

where
] ]

= 5 i 1 j .H ]x ]y

2) BOUNDARY CONDITIONS

(i) At the free surface: Z 5 h

a) Kinematics:

]h ]F
1 = F ·= h 5 , (2)H H]t ]Z

b) Dynamics:

2
]F 1 1 ]F

21 (= F) 1 1 gh 5 0. (3)H 1 2]t 2 2 ]Z

(ii) At the bottom: Z 5 2h

]F
5 0. (4)

]Z

Variables denoted as t, H, h, g, h, and F are time, the
horizontal coordinate, the local depth of the ocean,
the gravity acceleration, the free surface elevation,
and the potential function.

b. Small perturbation analysis

Expanding all functions as power series in e, which
is a small parameter, we obtain
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2F 5 eF 1 e F 1 · · ·1 2

2h 5 eh 1 e h 1 · · ·1 2

2v 5 ev 1 e v 1 · · · , (5a)1 2

where v is the frequency, and the upper subscript
number is the order of the small parameter. Based on
first- and second-order analyses, which are not pre-
sented here, Lin and Perrie (1997) suggested that the
perturbation expansion parameter should be given by

e 5 aK(3 1 tanh2Kh)/4 tanh3(Kh),

where K and a are the wavenumber and (first order)
wave amplitude. This is a natural choice because, in
the first- and second-order analysis, aK(3 1
tanh2(Kh))/4 tanh3(Kh) was found to equal the ratio
of the second-order wave amplitude to the first-order
wave amplitude a2/a1.

As mentioned in the introduction, Hasselmann
(1962) obtained the nonlinear energy transfer rate for
finite depth by using a perturbation method. Zakharov
(1968, 1991) obtained the nonlinear energy transfer
rate for deep water by using a Hamiltonian represen-
tation. Both methods only considered linear disper-
sion. We use Zakharov’s approach because it is al-
gebraically simpler, it lends itself to computation that
is orders of magnitude faster, and it can be considered
accurate for steeper waves (aK # 0.3) compared to
Hasselmann’s (1962) approach.

To apply Zakharov’s (1968, 1991) analysis, we
must extend it to finite water depth and include con-
sideration of the nonlinear dispersion relationship.
Following Lin and Perrie (1997), we substitute the
expansions of Eq. (5a) into Eqs. (2) and (3) at z 5
h. After some rearranging, we obtain the usual first-
and second-order analyses, as well as the more general
relations,

]hn 1 = F ·= h 1 · · · 1 = F ·= h 5 0,H n21 H 1 H 1 H n21]t
(5b)

]F 1n 1 (= F ·= F 1 · · · 1 = F ·= F )H n21 H 1 H 1 H n21]t 2
1 gh 5 0,n

(5c)

where n 5 3, 4, · · · . To obtain the nonlinear dispersion
term, we assume the free surface elevation has the fol-
lowing form:

F 5 A coshnKh{exp[in(vt 1 K ·r)]n n

2 exp[2in(vt 1 K ·r)]}

h 5 a {exp[in(vt 1 K ·r)] 2 exp[2in(vt 1 K ·r)]}.n n

(5d)

Using the first- and second-order analysis, we then sub-
stitute expressions for F1, h1, F2, h2, Fn, hn, and the
corresponding dispersion relations at z 5 h, following
Whitham (1974), we obtain dispersion term:

2 49 2 10 tanh Kh 1 9 tanh Kh
2 2v 5 v K a ,3 1 48 tanh Kh

v 5 0. (5e)4

The linear first-order dispersion relation is, of course,

5 gK tanh(Kh).2v1 (5f)

Equation (5e) is derived in detail in Lin and Perrie
(1997).

Following Zakharov (1968, 1991) and Lin and Perrie
(1997), we introduce the transformation

c(r, t) 5 F(r, z, t)|z5h

]c ]F ]h ]F
5 1 . (5g))]t ]t ]t ]z z5h

Assuming a gently varying bottom, such that in one
wavelength, h(x,y) 5 h0 1 dh(x,y) and Kh0 is approxi-
mately constant, where dh , e3h0, it follows from Eq.
(5f ) that v1 as a function only of wavenumber K and
water depth h. If we also assume that the wave am-
plitude a is constant over one wavelength, then from
Eq. (5e) it follows that vn is a function of K and h.
Therefore, to third-order approximation the frequency
should also be truncated at third order. With these
general assumptions we can make the Fourier repre-
sentation:

` 1/21 |K|
h 5 {b exp[i(K ·r)] 1 b*(r, t) E (K, t) (K, t)1/2v2pÏ2 (K)2`

3 exp[2i(K ·r)]} dK (5h)
` 1/22i v (K)c 5 {b exp[i(K ·r)] 2 b*(r, t) E (K, t) (K, t)1/2|K|2pÏ2 2`

3 exp[2i(K ·r)]} dK. (5i)

Following Zakharov (1968) and Yuen and Lake (1982),
we define a complex variable,

1/2 1/2
v |K| ˆb(K, t) 5 ĥ(K, t) 1 i F(K, t),1 2 1 22|K| 2v

where and are the Fourier coefficients of K for h(r,ˆĥ F
t) and F(r, z 5 h, t), respectively. Expanding b as power
series in e, we obtain

b 5 eB 1 e2B(2) 1 · · · . (5j)

Substituting the expansions of Eqs. (5a) and (5j) into
Eqs. (1)–(4), we arrive at the second-order equations,
as in Lin and Perrie (1997). Fourier transforming and
integrating these equations, we obtain
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` exp[i(v 2 v 2 v )t](K ) (K ) (K )i 1 2(2) (2)B 5 2 V B B d(K 2 K 2 K )(K , t) EE (K ,K ,K ) (K ) (K ) i 1 2i i 1 2 1 25 v 2 v 2 v(K ) (K ) (K )2` i 1 2

exp[i(v 1 v 2 v )t](K ) (K ) (K )i 1 2(2)1 2V B* B d(K 1 K 2 K )(K ,K ,K ) (K ) (K ) i 1 21 i 2 1 2 v 1 v 2 v(K ) (K ) (K )i 1 2

exp[i(v 1 v 1 v )t](K ) (K ) (K )i 1 2(1)1 V B* B* d(K 1 K 1 K ) dK dK , (6)(K ,K ,K ) (K ) (K ) i 1 2 1 2i 1 2 1 2 6v 1 v 1 v(K ) (K ) (K )i 1 2

where V(2) and V(1) are functions of wave amplitude,
wavenumber, and water depth, as described in the ap-
pendix. These expressions differ from Zakharov (1968)
and Crawford et al. (1980) because of the finite depth
assumption and the nonlinear dispersion relationship.
For the remainder of the paper, we abbreviate wave-

number dependence by subscripts, for example, 5(2)B(K ,t)i

or 5 .(2) (2) (2)B V Vi (K ,K ,K ) i,1,2i 1 2

c. Third-order equations and analysis

Substituting the expansions of Eqs. (5i) and (5j) into
Eq. (1)–(4), we obtain the third-order equations

2 (3)] F
2 (3)¹ F 1 5 0, 2h , z , 0H 2]z

(3) (3)]h ]F
(1) (2) (2) (1)2 5 2= F ·= h 2 = F ·= h , at z 5 hH H H H]t ]z

(3) (1) (2)]F ]F ]F
(3) (1) (2)gh 1 5 2 = F ·= F 1 , at z 5 hH H 1 21 2[ ]]t ]z ]z

(3)F
5 0, at z 5 2h. (7)

]z

Fourier transforming and integrating as in the previous section, we arrive at the third-order representation for ,(3)B(K ,t)i

` exp[i(v 2 v 2 v 2 v )t]i 1 2 3(3) (1)B 5 T B B B d(K 2 K 2 K 2 K )i EEE i,1,2,3 1 2 3 i 1 2 35 v 2 v 2 v 2 vi 1 2 32`

exp[i(v 1 v 2 v 2 v )t]i 1 2 3(2)1 T B*B B d(K 1 K 2 K 2 K )i,1,2,3 1 2 3 i 1 2 3 v 1 v 2 v 2 vi 1 2 3

exp[i(v 1 v 1 v 2 v )t]i 1 2 3(3)1 T B*B*B d(K 1 K 1 K 2 K )i,1,2,3 1 2 3 i 1 2 3 v 1 v 1 v 2 vi 1 2 3

exp[i(v 1 v 1 v 1 v )t]i 1 2 3(4)1 T B*B*B*d(K 1 K 1 K 1 K ) dK dK dK , (8)i,1,2,3 1 2 3 i 1 2 3 1 2 36v 1 v 1 v 1 vi 1 2 3
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where , , , and are given in(1) (2) (3) (4)T T T Ti,1,2,3,4 i,1,2,3,4 i,1,2,3,4 i,1,2,3,4

the appendix.

d. Fourth-order equations and analysis

To eliminate the nonresonant terms in our model at
this level, we must invoke the solvability condition
(Zauderer 1983)

F* F F F*
xL 2 xL* 5 0, (9)1 2 1 2 1 2 1 27 8h* h h h*

where the L operator is

2¹ 0
] ]

2
]z ]t

L 5 (10)]
gh

]t1 2
]

0
]z

and its adjoint is

2¹ 0
] ]

2 2
]z ]t

L* 5 . (11)]
2 gh

]t1 2
]

0
]z

Therefore, the solvability condition, in this case, is
(1) (1)]F ]h

f*, 1 h*,7 8 7 8]t ]t

(3) (1)]F ]F
(3) (1)5 F*, 2(= F ) · (= F ) 2H H 1 21 27 8[ ]]z ]z

(2) (2)1 ]F ]F
* (2) (2)1 F , 2(= F ) · (= F ) 2H H 1 21 27 8[ ]2 ]z ]z

(3) (1) (1) (3)1 ^h*, [2= F ·= h 2 = F ·= hH H H H

(2) (2)2 = F ·= h ]&.H H (12)

Once more, we Fourier transform, following Eqs. (5.8)–
(5.9), and obtain

`]Bi (2) (2) (2) (3) (3)i 5 2 {V (B B 1 B B 1 B B )d(K 2 K 2 K ) exp[i(v 2 v 2 v )t]EE i,1,2 1 2 1 2 1 2 i 1 2 i 1 2]t
2`

(2) (2) (2) (3) (3)1 2V (B *B 1 B*B 1 B *B )d(K 1 K 2 K ) exp[i(v 1 v 2 v )t]1,i,2 1 2 1 2 1 2 1 i 2 1 i 2

(1) (2) (2) (3) (3)1 V (B *B * 1 B*B * 1 B *B*)d(K 1 K 1 K ) exp[i(v 1 v 1 v )t]} dK dKi,1,2 1 2 1 2 1 2 i 1 2 i 1 2 1 2

`

(1) (2) (2) (2)1 {W (B B B 1 B B B 1 B B B )d(K 2 K 2 K 2 K )EEE i,1,2,3 1 2 3 1 2 3 1 2 3 i 1 2 3

2`

3 exp[i(v 2 v 2 v 2 v )t]i 1 2 2

(2) (2) (2) (2)1 W (B *B B 1 B*B B 1 B*B B )d(K 1 K 2 K 2 K )i,1,2,3 1 2 3 1 2 3 1 2 3 i 1 2 3

3 exp[i(v 1 v 2 v 2 v )t]i 1 2 2

(3) (2) (2) (2)1 W (B *B*B 1 B*B *B 1 B*B*B )d(K 1 K 1 K 2 K )i,1,2,3 1 2 3 1 2 3 1 2 3 i 1 2 3

3 exp[i(v 1 v 1 v 2 v )t]i 1 2 2

(4) (2) (2) (2)1 W (B *B*B* 1 B*B *B* 1 B*B*B *)d(K 1 K 1 K 1 K )i,1,2,3 1 2 3 1 2 3 1 2 3 i 1 2 3

3 exp[i(v 1 v 1 v 1 v )t]} dK dK dKi 1 2 2 1 2 3

`

(2)1 {R B*B B B d(K 1 K 2 K 2 K 2 K ) exp[i(v 1 v 2 v 2 v 2 v )t]EEEE i,1,2,3,4 1 2 3 4 i 1 2 3 4 i 1 2 3 4

2`

(3)1 R B*B*B B d(K 1 K 1 K 2 K 2 K )i,1,2,3,4 1 2 3 4 i 1 2 3 4

3 exp[i(v 1 v 1 v 2 v 2 v )t]} dK dK dK dK ,i 1 2 3 4 1 2 3 4 (13)
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FIG. 1. The reference JONSWAP gravity wave spectrum (a) with Hasselmann–Mistsuyasu di-
rectional speading, where lines A, B, C, . . . , G represent the angles 08, 308, 608, . . . , 1808, with
08 toward east and (b) in terms of frequency and direction. In (b) the resolution angle du is indicated
by DTHETA, the maximum is 0.22, and the contour interval is 0.01.
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FIG. 2. The resonant orbits of four-wave, five-wave, and six-wave
interactions (a) over deep water with Kh $ 1 and (b) over shallow
water with Kh 5 0.5. Wave steepness Ka is assumed to be 0.1. The
tick marks represent solutions. When the wave steepness increases,
the orbits become thicker and thicker, and the 4-wave resonant orbit
will come closer and closer to the 5-wave resonant orbit until they
may actually touch.

FIG. 3. Total nonlinear transfer (four-wave interactions plus five-
wave interactions) when strong nonlinearity, e 5 0.3, in terms of
frequency and direction (a) over deep water with h 5 1000 m and
(b) in shallow water with h 5 10 m. Local maxima are represented
by H and local minima by L. Positive contours are represented by
solid lines, negative contours by dashed lines. In (a), the global max-
imum is 18.5 3 1026, the global minimum is 218.0 3 1026, and the
contour interval is 2.0 3 1026. In (b) the global maximum is 8.0 3
1026, global minimum is 28.2 3 1026, and the contour interval is
1.0 3 1026.

where , , , , , and(1) (2) (3) (4) (2) (3)W W W W R Ri,1,2,3 i,1,2,3 i,1,2,3 i,1,2,3 i,1,2,3,4 i,1,2,3,4

are functions of amplitude, wavenumber, and water
depth as given in the appendix.

Their forms differ from analogous expressions giv-
en by Zakharov (1968) and Crawford et al. (1980).
This is because, although we use solvability condition
and adjoint operator to eliminate the resonant terms
instead of multiple timescales, and both methods seem
to yield consistent expansion terms at each order, the
shortcomings of the Zakharov–Crawford approach are
due to their derivation, which is not continuous. In
this regard their approach is not Hamiltonian, despite
the Hamiltonian structure of exact water wave equa-
tions. This was realized by Krasitskii (1994), who
used a classical method of canonical transformations,
generalized to the continuous case. We use solvability
conditions to map the three dimensions to two di-

mensions, to eliminate the nonresonant terms, and
avoid the Zakharov–Crawford shortcomings. There-
fore, our derivation is continuous and should obtain
the same solution as Krasitskii (1994). However, our
method is simpler than Krasitskii (1994). Moreover,
in our calculation we consider the finite depth as-
sumption and nonlinear dispersion whereby v 5 ev1

1 e3v3 1 e5v5 1 · · · from Eqs. (5a), (5e), and (5f),
whereas Krasitskii (1994) uses only v 5 v1, which
is Eq. (5f), as the dispersion term. These are the dif-
ferences between this present study and that of Kras-
itskii (1994).
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Substituting Eqs. (6) and (8) into Eq. (12) and fol-
lowing Crawford et al. (1980), we obtain fourth-order
amplitude B(4) in terms of B, which is a Zakharov-

type equation. Multiplying Eq. (13) by B(4) we obtain
the fourth-order action transfer equation for a ho-
mogeneous wave field as

`]A 4p(K )i (2)5 Q d(K 1 K 2 K 2 K 2 K )d[v 1 v 2 v 2 v 2 v ]EEEE i,1,2,3,4 i 1 2 3 4 (K ) (K ) (K ) (K ) (K )i 1 2 3 4]t 3
2`

3 {A A A [A 1 A ](K ) (K ) (K ) (K ) (K )2 3 4 i 1

2 A A [A A 1 A A 1 A A ]} dK dK dK dK(K ) (K ) (K ) (K ) (K ) (K ) (K ) (K ) 1 2 3 4i 1 2 3 2 4 3 4

`4p
(3)2 Q d(K 1 K 1 K 2 K 2 K )d[v 1 v 1 v 2 v 2 v ]EEEE i,1,2,3,4 i 1 2 3 4 (K ) (K ) (K ) (K ) (K )i 1 2 3 42

2`

3 {A A A [A 1 A ](K ) (K ) (K ) (K ) (K )i 1 2 4 3

2 A A [A A 1 A A 1 A A ]} dK dK dK dK , (14)(K ) (K ) (K ) (K ) (K ) (K ) (K ) (K ) 1 2 3 43 4 2 1 i 1 i 2

where is the action energy spectrum. Kernels forA(K )i

the integrals are and , as given in the(2) (3)Q Qi,1,2,3,4 i,1,2,3,4

appendix. Equation (14) is the kinetic transfer equa-
tion for the spectrum. It should be equivalent to the
results obtained by the canonical transformation
method of Krasitskii (1994). However, the nonlinear
dispersion relation of this study, v 5 ev1 1 e3v3 1
e5v5 1 · · · , may give rise to slightly different results
from those obtained by Krasitskii’s (1994) dispersion,
v 5 v1.

3. Action transfer rate

As noted earlier, McLean (1982) pointed out that
the three-dimensional wave–wave interactions dom-
inate in shallow water when wave amplitude is large
and waves are steep. Moreover, Crawford et al. (1981)
suggested that three-dimensional wave–wave inter-
actions on a uniform wave train do not possess a high
wavenumber cutoff. To study the nonlinear source
function quantitatively, for finite-amplitude steep
waves, we have to estimate the action transfer rate
due to four-wave (Lin and Perrie 1997a) and five-
wave interactions, as given in Eq. (14). For simula-
tion, we use the standard JONSWAP directional spec-
trum as our initial energy spectrum, as shown in Figs.
1a,b. Frequency and direction are denoted by lines A,
B, . . . , G, representing angles 08, 308, . . . , 1808
(where 08 is pointing to the east, which is the main
wave propagation direction).

a. The effects on resonance conditions

The pioneering study of Phillips (1960) suggested
that narrowband instability (four equivalent wave in-
teractions) dominates in deep water. Our results ba-
sically support this conclusion even with the nonlinear

dispersion relationship and the effects of finite water
depth. However, nonlinearity in combination with fi-
nite water depth does result in new effects, which are
similar to results obtained by McLean (1982).

The famous figure-eight diagram by Phillips
(1960), for the trajectory of wavenumbers satisfying
the resonance condition for the third-order, binary,
four-wave interactions, is given by the innermost orbit
of Fig. 2a. This is for deep water, with Kh 5 1.0.
Wavenumber one, K1, and wavenumber two, K2, are
both set to 1 and are assumed to propagate in the x
direction. The horizontal and vertical coordinates rep-
resent the x and y components of wavenumber three
(Kx3, Ky3), respectively. The corresponding trajecto-
ries of the wavenumbers satisfying the resonance con-
ditions for five-wave and six-wave interactions are
the middle and outer orbits, respectively. The wavenum-
ber trajectory for seven-wave interactions, which is not
shown, would be outside the six-wave interaction orbit.

As water depth decreases, the orbits become smaller.
This is shown in Fig. 2b with Kh 5 0.5. Moreover, as
the wave amplitude become larger, the orbits change
from being merely a thin line to becoming an orbital
band. As the wave amplitude become larger and larger,
the band will become wider and wider and eventually
the orbits for the four-wave, five-wave, and even the
six-wave interactions will overlap.

b. Four-wave and five-wave transfers

The total nonlinear action transfer, including four-
wave and five-wave interactions is shown in Figs. 3a, b
for strong nonlinearity [steep waves with aK(3 1
tanh2Kh)/4 tanh3(Kh) 5 0.3]. Figure 3a is for deep water
with depth h 5 1000 m (Kph → `). Figure 3b is for
shallow water with h 5 10 m (Kph 5 3.6). Figures 3a
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FIG. 4. Nonlinear transfer due to four-wave interactions in terms of
frequency and direction: (a) assuming strong nonlinearity with e 5
0.3, in deep water, h 5 1000 m; (b) assuming strong nonlinearity, e
5 0.3, in shallow water, h 5 10 m; and (c) assuming linear dispersion,
in shallow water, h 5 10 m. As in Figs. 3a,b, positive contours are
represented by solid lines and negative contours by dashed lines. In
Fig. 4a, the global maximum, global minimum, and contour interval
are, respectively, 18.8 3 1026, 218.0 3 1026, and 2.0 3 1026; in (b)
8.0 3 1026, 28.2 3 1026, and 1.0 3 1026; and finally, in (c) 10.0
3 1026, 28.2 3 1026, and 1.0 3 1026.

and 3b both show that positive nonlinear action transfer
occurs toward the lower frequency, while negative trans-
fer occurs toward the higher frequency portion of the
spectrum, as usual.

However, Figs. 3a and 3b have differences. Figure 3a
shows that the dominant positive action flux is along
the original spectral propagation direction. The maxi-
mum positive nonlinear transfer is along the 08 direction.
The nonlinear transfer remains positive 6608 directions.
In contrast, Fig. 3b shows that the positive nonlinear
transfer is more widely spread in shallow water. Positive
maxima in the nonlinear transfer occur in the 6158 di-
rections. The positive nonlinear transfer extends direc-
tionally to between 61058. Therefore, Fig. 3b shows
that the three-dimensional wave–wave interactions are
dominant over shallow water for steep finite-amplitude
waves (e 5 0.3). In deep water, strongly nonlinear steep
waves (e 5 0.3) correspond to wave–wave interactions,
which may be characterized as two-dimensional, as in
Fig. 3a. The latter are not distinctively the three-di-
mensional crescent-shaped breakers under growing seas,
observed by Su et al. (1982a,b).

Five-wave interactions are fundamentally different
from four-wave interactions, although both are resonant
interactions. In four-wave interactions, the strongest in-
teractions occur when all four interacting components
are of comparable lengths, as pointed out by Longuet-
Higgins (1976) and Phillips (1977). Consequently, the
four-wave interactions can only show shallow water ef-
fects when Kph is small. However, for five-wave inter-
actions, shallow water effects are clear, even when Kph
is still quite high. This is because the interaction com-
ponents are no longer required to have comparable
lengths, confined to the neighborhood of the spectral
peak. As shown in the interaction locus (Figs. 2a,b), the
distribution of the participating components is global.
Therefore, even if Kph is high, some interacting quintets
are in shallow water, which makes the shallow water
effect obvious. This new feature is central to the way
in which five-wave and four-wave interactions differ
drastically.

In order to examine the details of the three-dimen-
sional wave–wave interactions we are going to present
finite-amplitude four-wave and five-wave interactions
separately. Figure 4a shows the nonlinear transfer for
steep finite-amplitude waves due to four-wave interac-
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FIG. 5. Nonlinear transfer due to five-wave interactions assuming strong nonlinearity with
e 5 0.3, as a function of frequency, where lines A, B, C, D, E, F, and G represent the angles
08, 308, 608, 908, 1208, 1508, and 1808 as in Fig. 2a: (a) in deep water with h 5 1000 m, (b)
intermediate depth water with h 5 20 m, and (c) shallow water with h 5 10 m.

tions over deep water, h 5 1000 m (Kph → `), with
strong nonlinearity, e 5 0.3. This differs from Fig. 3a,
which showed both four-wave and five-wave interac-
tions, denoted ‘‘total nonlinear transfer.’’ However, non-
linear transfer maximum is still toward lower frequency
along the original propagation direction and the positive
nonlinear transfer remains between 6608 as in Fig. 3a
and Lin and Perrie (1997a, 1997b, manuscript submitted
to J. Geophys. Res.). Although secondary peaks may
occur in the high-frequency range at about 6308, the
high-frequency positive action flux is not important, be-
cause it is significantly smaller than the nonlinear trans-
fer occurring at lower frequency. Moreover, the domi-
nant characteristic of the four-wave interactions in Fig.
4a is two-dimensional (in the sense of three-dimensional
crescent-shaped breakers in growing seas).

The corresponding nonlinear action transfer in shal-
low water, assuming strong nonlinearity (e 5 0.3), is
shown in Fig. 4b. The positive nonlinear action transfer
is toward lower frequency with the maxima in positive
nonlinear transfer occurring at 6158, relative to the
spectral propagation direction. Moreover, the positive
action transfer extends over a wider directional span on

both sides of the spectral propagation direction, as
shown in Fig. 4b for shallow water, than for deep water
shown in Fig. 4a. Neglecting nonlinear dispersion, Fig.
4c presents the nonlinear transfer for shallow water, as
in Fig. 4b, when linear dispersion is assumed. This is
again two-dimensional about the central propagation di-
rection, as in Fig. 4a. Therefore, it follows that three-
dimensional wave–wave interactions in shallow water
are caused by four-wave interactions involving finite-
amplitude steep waves.

The nonlinear transfer due to five-wave interactions
in deep water, assuming steep finite-amplitude waves is
shown in Fig. 5a. As in Figs. 3–4, this assumes e 5
0.3 and for deep water, h 5 1000 m, implying that Kph
→ `. Figure 5b assumes intermediate shallow depth,
with h 5 20 m and Kph 5 7.2, and Fig. 5c assumes
shallow water with h 5 10 m and Kph 5 3.6. Figures
5a, 5b, and 5c show that lower frequencies receive pos-
itive action flux and higher frequencies lose action flux
as we obtained for four-wave interactions. Moreover, at
h 5 10 m with Kph 5 3.6, the nonlinear transfer due
to five-wave interactions is of the same order of mag-
nitude as that due to four-wave interactions (the latter
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FIG. 5. (Continued)
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FIG. 6. Nonlinear transfer due to five-wave interactions assuming
strong nonlinearity with e 5 0.3, in terms of frequency and direction
domain, (a) in deep water with h 5 1000 m, (b) intermediate depth
water with h 5 20 m, and (c) shallow water with h 5 10 m. As in
Figs. 3a,b, positive contours are represented by solid lines and neg-
ative contours by dashed lines. In (a) the global maximum, global
minimum, and contour interval are, respectively, 40.7 3 1028, 227.4
3 1028, and 4.0 3 1028; in (b) 13.3 3 1027, 211.0 3 1027, and 1.0
3 1027; and finally, in (c) 37.3 3 1027, 231.3 3 1027, and 4.0 3
1027.

are reported by Lin and Perrie 1997a). However, if we
compare Figs. 5a–c, we find that the nonlinear transfer
increases as water depth decreases and nonlinearity in-
creases. This is opposite to the accepted behavior for
four-wave interactions, as reported by Lin and Perrie
(1997). Furthermore, Figs. 5a–c show that the maximum
positive nonlinear transfers are along the 608 direction
(line C has the greatest value).

The exact distribution of the spread of the positive
action fluxes due to five-wave interactions is given in
Figs. 6a–c using frequency–direction coordinates to
present the results of Fig. 5a–c, respectively. This shows
that the maxima positive nonlinear transfers are located
at 6608 directions, whereas for four-wave interactions,
the maximum positive nonlinear transfer occurred in the
08 direction. Moreover, unlike four-wave interactions,
the original propagation direction of the wave spectrum
(08) experiences no nonlinear transfer due to five-wave
interactions. Five-wave interactions, in all depths of wa-
ter, involving strongly nonlinear steep waves, are dis-
tinctively three-dimensional. In shallow water, they are
comparable in magnitude to four-wave interactions,
which can also be characterized as being three-dimen-
sional, as shown in Fig. 4b.

4. Conclusions

We have obtained the nonlinear transfer due to four-
wave and five-wave interactions. Our results are con-
sistent with the instability study by McLean (1982),
which showed that three-dimensional wave–wave in-
teractions involving steep finite-amplitude waves
(strong nonlinearity) are dominant in shallow water and
two-dimensional wave–wave interactions are dominant
in deep water. We note that when wave–wave interac-
tions are referred to as three-dimensional in this dis-
cussion, as in the previous section, it is a reference to
their association with three-dimensional crescent-
shaped breakers in growing seas. In contrast, when we
refer to wave–wave interactions as being two-dimen-
sional, for example, in deep water, they are associated
with two-dimensional propagating wave structures, not
crescent-shaped breakers.

In deep water, the nonlinear transfer due to two-di-
mensional four-wave interactions is about two-orders
greater than that due to five-wave interactions, whereas
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in shallow water, the nonlinear transfers due to four-
wave or five-wave interactions are comparable. Assum-
ing steep finite-amplitude waves, we showed that five-
wave interactions create three-dimensional wave–wave
interactions in shallow water also in deep water. More-
over, although four-wave interactions involving strongly
nonlinear waves cause two-dimensional wave–wave in-
teractions in the deep water, we showed that they cause
three-dimensional wave–wave interactions in shallow
water.

When the water depth is shallow, for example be-
tween 10 m with Kph 5 3.6 and 50 m with Kph 5 18.1,
the maximum of the positive nonlinear transfer by four-
wave interactions may be greater than that due to five-
wave interactions. However, the maximum positive non-
linear transfer due to five-wave interactions results in a
much larger angular spreading of energy, with respect
to the original wave spectral propagation direction, than
results from four-wave interactions. Unlike four-wave
interactions, the maxima positive nonlinear transfer due
to five-wave interactions do not occur along the original
wave spectral propagation direction.

The nonlinear transfer due to five-wave interactions
increases as water depth decreases and nonlinearity in-
creases. When the water depth is less than about 10 m
or Kph 5 3.6, and nonlinearity e $ 0.3, five-wave in-
teractions dominate over four-wave interactions. How-
ever, four-wave interactions experience exactly the op-
posite trend. As water depth decreases and nonlinearity
e increases, the nonlinear transfer due to four-wave in-
teractions decreases also. Therefore, for extremely shal-
low water, as in nearshore coastal regions, five-wave
interactions is the most important mechanism for the
modeling and estimation of spectral wave evolution.
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APPENDIX

The Interaction Coefficients

The third-order interaction coefficients, V(6) and W of Eqs. (6) and (13), for example, are given as follows:
1/2

1 v v K tanh(K h)(K ) (K ) 2 2i 1(6)V 5 [K ·K 6 K K tanh(K h) tanh(K h)](K ,K ,K ) i 1 i 1 i 1i 1 2 5 [ ]v K K tanh(K h) tanh(K h)8pÏ2 (K ) i 1 i 12

1/2
v v K tanh(K h)(K ) (K ) 1 1i 21 [K ·K 6 K K tanh(K h) tanh(K h)]i 2 i 2 i 2 [ ]v K K tanh(K h) tanh(K h)(K ) i 2 i 21

1/2
v v K tanh(K h)(K ) (K ) i i1 21 [K ·K 1 K K tanh(K h) tanh(K h)] , (A1)1 2 1 2 1 2 6[ ]v K K tanh(K h) tanh(K h)(K ) 1 2 1 2i

(1)W 5 W 2 W , (A2a)(K ,K ,K ,K ) (2K ,K ,2K ,K ) (2K ,K ,K ,K )i 1 2 3 1 2 i 3 i 1 2 3

(2)W 5 W 1 W 2 W 2 W(K ,K ,K ,K ) (2K ,2K ,K ,K ) (K ,K ,2K ,2K ) (K ,2K ,2K ,K ) (2K ,K ,2K ,K )i 1 2 3 i 1 2 3 2 3 i 1 2 1 i 3 i 2 1 3

2 W 2 W , (A2b)(2K ,K ,K ,2K ) (K ,2K ,K ,2K )i 3 2 1 3 1 2 i

(3)W 5 2W 2 W 1 W 2 2W , (A2c)(K ,K ,K ,K ) (2K ,2K ,2K ,K ) (2K ,K ,2K ,2K ) (2K ,2K ,2K ,K ) (2K ,K ,2K ,2K )i 1 2 3 i 1 2 3 i 3 1 2 1 2 i 3 1 3 i 2

(4)W 5 W 1 W , (A2d)(K ,K ,K ,K ) (K ,K ,K ,K ) (K ,K ,K ,K )i 1 2 3 i 1 2 3 1 2 i 3

where
1/2

1 v v K K K K tanh(K h) tanh(K h) tanh(K h) tanh(K h)(K ) (K ) i 1 2 3 i 1 2 3i 1W 5(K ,K ,K ,K )i 1 2 3 2 [ ]64p v v(K ) (K )2 3

K Ki 13 2 1 2 |K 1 K | tanh(|K 1 K |h)1 3 1 35 1 2tanh(K h) tanh(K h)i 1

2 |K 1 K | tanh(|K 1 K |h) 2 |K 1 K | tanh(|K 1 K |h)1 2 1 2 i 3 i 3

2 |K 1 K | tanh(|K 1 K |h) . (A3)i 2 i 2 6
The coupling coefficients T from Eq. (8) are given by
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(2) (2) (2) (2)V V V V(K ,K ,K 1K ) (K 1K ,K ,K ) (K ,K 1K ,K ) (K 1K ,K ,K )i 1 i 1 2 3 3 2 i i 2 2 1 3 3 1(1) (1) (1)T 5 2 2 2 V Vi,1,2,3 (K ,2K 2K ,K ) (2K 2K ,K ,K )i i 2 2 1 3 3 1v 2 v 2 v v 2 v 2 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K )2 3 2 3 1 3 3 1

1 1
(1)3 1 1 W , (A4a)(K ,K ,K ,K )i 1 2 35 6v 1 v 1 v v 1 v 1 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K )1 3 1 3 i 2 i 2

1 1
(2) (2) (2)T 5 2V V 1i,1,2,3 (K ,K ,K 2K ) (K ,K ,K 2K )3 1 3 1 i 2 i 2 5 6v 2 v 1 v v 1 v 2 v(K 2K ) (K ) (K ) (K ) (K 2K ) (K )1 3 3 1 2 i 2 i

1 1
(2) (2)2 V V 1(K ,K ,K 2K ) (K ,K ,K 2K )2 i 2 i 1 3 1 3 5 6v 2 v 1 v v 1 v 2 v(K 2K ) (K ) (K ) (K ) (K 2K ) (K )1 3 1 3 i 2 i 2

1 1
(2) (2)1 V V 1(K ,K ,K 2K ) (K ,K ,K 2K )2 1 2 1 i 3 i 3 5 6v 2 v 1 v v 1 v 2 v(K 2K ) (K ) (K ) (K ) (K 2K ) (K )1 2 2 1 3 3 i i

1 1
(2) (2)1 V V 1 , (A4b)(K ,K ,K 2K ) (K ,K ,K 2K )3 i 3 i 1 2 1 2 5 6v 2 v 1 v v 1 v 2 v(K 2K ) (K ) (K ) (K ) (K 2K ) (K )1 2 1 2 i 3 i 3

1 1
(3) (2) (2)T 5 2V V 1i,1,2,3 (K ,K 1K ,K ) (K 1K ,K ,K )i i 3 3 1 2 2 1 5 6v 2 v 2 v v 2 v 2 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K )i 3 i 3 1 2 1 2

1 1
(2) (2)2 V V 1(K ,K ,2K 1K ) (2K 1K ,K ,K )i 1 i 1 2 3 2 3 5 6v 1 v 2 v v 1 v 2 v(K 2K ) (K ) (K ) (K 2K ) (K ) (K )2 3 2 3 i 1 i 1

1 1
(2) (2)2 V V 1(K ,K ,K 2K ) (K 2K ,K ,K )i 1 i 1 2 3 3 2 5 6v 1 v 2 v v 1 v 2 v(K 2K ) (K ) (K ) (K 2K ) (K ) (K )2 3 3 2 i 1 1 i

1 1
(2) (2)2 V V 1(K 2K ,K ,K ) (K ,K ,K 2K )1 3 1 3 2 i i 2 5 6v 1 v 2 v v 1 v 2 v(K 2K ) (K ) (K ) (K 2K ) (K ) (K )1 3 1 3 i 2 i 2

1 1
(2) (2)2 V V 1(K ,K 2K ,K ) (K 2K ,K ,K )i i 2 2 1 3 3 1 5 6v 1 v 2 v v 1 v 2 v(K 2K ) (K ) (K ) (K 2K ) (K ) (K )1 3 3 1 i 2 2 i

1 1
(1) (1)2 V V 1(K ,K ,2K 2K ) (2K 2K ,K ,K )i 3 i 3 1 2 1 2 5 6v 1 v 1 v v 1 v 1 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K )1 2 1 2 i 3 i 3

(3)1 W , (A4c)(K ,K ,K ,K )i 1 2 3

and

(2) (2) (2) (2)V V V V(K ,K ,K 1K ) (K 1K ,K ,K ) (K ,K 1K ,K ) (K 1K ,K ,K )i 1 i 1 2 3 2 3 i i 2 2 1 3 3 1(4)T 5 2 2i,1,2,3 v 2 v 2 v v 2 v 2 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K )2 3 2 3 1 3 1 3

1 1
(1) (1)2 V V 1(K ,K ,2K 2K ) (2K 2K ,K ,K )i 1 i 1 2 3 3 2 5 6v 1 v 1 v v 1 v 1 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K )2 3 2 3 i 1 i 1

(4)1 W . (A4d)(K ,K ,K ,K )i 1 2 3

The coupling coefficients R of Eq. (13) are defined in terms of functionals E,

(2) (1) (1) (2) (1)R 5 E 1 E 1 E 2 E , (A5a)i,1,2,3,4 i,4,2,3,21 i,3,2,21,4 i,2,21,3,4 i,21,2,3,4

(3) (1) (1) (1) (2) (2) (2)R 5 E 2 E 2 E 1 E 1 E 2 E , (A5b)i,1,2,3,4 i,3,4,21,22 i,21,3,22,4 i,21,4,3,22 i,3,22,21,4 i,4,22,3,21 i21,22,3,4

which in turn are specified in terms of coefficients F and J,
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1/4[K K tanh|K h| tanh|K h|]3 4 3 4(1)E 5 2i,1,2,3,4
332Ï2 p

1/2
v (K )23 [F 2 K (K ·K )(|K 1 K | tanh(|K 1 K |h) 2 K )]i,1,2,3,4 1 2 3 1 4 1 4 151 2v v(K ) (K )i 1

1/2
v K ·K(K ) 2 4i1 [K tanh(K h)J 1 (K K tanh(K h) tanh(K h))1 1 i21,2,3,4 1 2 1 21 2 1 2v v 2(K ) (K )1 2

K K1 22 (|K 1 K | tanh(|K 1 K |h) tanh(K h) 2 K )1 4 1 4 1 12

3 (|K 1 K | tanh(|K 1 K |h) tanh(K h) 2 K )] , (A6a)2 3 2 3 2 2 6
1/4[K K tanh|K h| tanh|K h|]3 4 3 4(2)E 5 2i,1,2,3,4

332Ï2 p

1/2
v (K )23 [F 2 K (K ·K )(|K 1 K | tanh(|K 1 K |h) 2 K )]i,1,2,3,4 1 2 3 1 4 1 4 151 2v v(K ) (K )i 1

1/2
v K ·K(K ) 2 4i2 [K tanh(K h)J 1 (K K tanh(K h) tanh(K h))1 1 i21,2,3,4 1 2 1 21 2 1 2v v 2(K ) (K )1 2

K K1 22 (|K 1 K | tanh(|K 1 K |h) tanh(K h) 2 K )1 4 1 4 1 12

3 (|K 1 K | tanh(|K 1 K |h) tanh(K h) 2 K )] . (A6b)2 3 2 3 2 2 6
Coefficients Fand J are defined in terms of functions P and O, as

1
4 2F 5 2 K 1 K tanh(K h)O 1 |K 1 K | Pi,1,2,3,4 1 i i i,1,2,3,4 i 2 i22,1,3,46

2|K 1 K |1 21 (K |K 1 K | tanh|K h| tanh(|K 1 K |h)), (A7)1 1 2 1 1 22

and

K tanh(K h) 11 1 2 2 2 2 2J 5 K tanh(K h)P 2 K 2 (|K 2 K | 1 |K 2 K | 1 |K 1 K | 1 |K 1 K | ) . (A8)i,1,2,3 i i i,1,2,3 1 i 2 i 3 1 2 1 3[ ]2 2

Finally, functions P and O may be expressed as

|K |1P 5 [2K 2 tanh|K h|(|K 2 K | tanh(|K 2 K |h) 1 |K 2 K | tanh(|K 2 K |h)i,1,2,3 1 1 i 2 i 2 i 3 i 34

1 |K 1 K | tanh(|K 1 K |h) 1 |K 1 K | tanh(|K 1 K |h))], (A9)1 2 1 2 1 3 1 3

and

3K K1 1 2O 5 tanh|K h| 2 tanh|K h| |K 1 K | 2 |K 2 K | tanh(|K 2 K |h)P . (A10)i,1,2,3,4 1 1 1 2 i 2 i 2 i22,1,3,46 2
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To complete a definition of the analysis of this study, we give the kernels and in the integrals in(2) (3)Q Qi,1,2,3,4 i,1,2,3,4

Eq. (14),

(2) (2) (2)V V V 1 1i,314,221 314,3,4 221,1,2(2)Q 5 1i,1,2,3,4 5 6v 2 v 2 v v 1 v 2 v v 1 v 2 v(K 1K ) (K ) (K ) (K 2K ) (K ) (K ) (K 2K ) (K 1K ) (K )3 4 3 4 2 1 1 2 2 1 3 4 i

(2) (2) (2)V V V 1 1i,421,213 421,1,4 213,2,31 15 6v 2 v 2 v v 1 v 2 v v 1 v 2 v(K 1K ) (K ) (K ) (K 2K ) (K ) (K ) (K 1K ) (K 2K ) (K )2 3 2 3 4 1 1 4 2 3 4 1 i

(2) (2) (2)2V V V 1 1i,123,214 123,3,1 214,2,41 15 6v 2 v 2 v v 1 v 2 v v 1 v 2 v(K 1K ) (K ) (K ) (K 2K ) (K ) (K ) (K 1K ) (K 2K ) (K )2 4 2 4 1 3 3 1 2 4 1 3 i

(2) (1) (2)2V V V 1 1i,2324,221 2324,3,4 221,1,21 15 6v 1 v 1 v v 1 v 2 v v 1 v 2 v(K 1K ) (K ) (K ) (K 2K ) (K ) (K ) (K 2K ) (K 1K ) (K )3 4 3 4 2 1 1 2 2 1 3 4 i

(1) (1) (2)V V V 1 1i,123,2224 2224,4,2 123,3,11 15 6v 1 v 1 v v 1 v 2 v v 1 v 2 v(K 1K ) (K ) (K ) (K 2K ) (K ) (K ) (2K 2K ) (K 2K ) (K )2 4 2 4 1 3 3 1 2 4 1 3 i

(1) (1) (2)V V V 1 1i,2324,122 2324,3,4 122,2,11 15 6v 1 v 1 v v 1 v 2 v v 1 v 2 v(K 1K ) (K ) (K ) (K 2K ) (K ) (K ) (K 2K ) (K 1K ) (K )3 4 3 4 1 2 2 1 1 2 3 4 i

(2) (2) (2) (1)V T 2V Ti,2,31421 31421,1,4,3 i,1,21314 21314,3,4,22 2
v 1 v 2 v 2 v v 2 v 2 v 2 v(K 1K 2K ) (K ) (K ) (K ) (K 1K 1K ) (K ) (K ) (K )3 4 1 1 3 4 2 3 4 2 3 4

(2) (3) (1) (4)2V T V Ti,12324,2 12324,3,4,1 i,222324,1 222324,3,4,22 2
v 1 v 1 v 2 v v 1 v 1 v 1 v(K 2K 2K ) (K ) (K ) (K ) (K 1K 1K ) (K ) (K ) (K )1 3 4 3 4 1 2 3 4 2 3 4

(2) (1) (2) (1) (2) (1)2V W 2V W 2V W421,1,4 i,421,2,3 421,1,4 i,2,421,3 321,1,3 i,4,2,3212 2 2
v 1 v 2 v v 1 v 2 v v 1 v 2 v(K 2K ) (K ) (K ) (K 2K ) (K ) (K ) (K 2K ) (K ) (K )4 1 1 4 4 1 1 4 3 1 1 3

(2) (2) (2) (2) (2) (2)2V W V W V W124,4,1 i,124,2,3 214,4,2 i,1,214,3 314,4,3 i,1,2,3142 2 2
v 1 v 2 v v 2 v 2 v v 2 v 2 v(K 2K ) (K ) (K ) (K 1K ) (K ) (K ) (K 1K ) (K ) (K )1 4 4 1 2 4 2 4 3 4 3 4

(1) (3) (1) (3)V W V W2224,4,2 i,2224,1,3 2224,4,2 i,1,2224,3 (2)2 2 1 R (A11a)i,1,2,3,4v 1 v 1 v v 1 v 1 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K )2 4 2 4 2 4 2 4

and

(2) (2) (1) (2) (2) (2)V V V 2V V Vi,314,2221 314,3,4 2221,1,2 i,421,2213 421,1,4 2213,2,3(3)Q 5 1i,1,2,3,4 (v 2 v 2 v )(v 1 v 1 v ) v 1 v 2 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K ) (K 2K ) (K ) (K )3 4 3 4 2 1 1 2 4 1 1 4

1 1
3 15 6v 1 v 2 v v 1 v 2 v(K 2K ) (K ) (K ) (2K 1K ) (K 2K ) (K )3 2 2 3 2 3 4 1 i

(2) (2) (1)V V Vi,2122,314 314,3,4 2122,1,21
(v 1 v 1 v )(v 2 v 2 v )(K 1K ) (K ) (K ) (K 1K ) (K ) (K )1 2 1 2 3 4 3 4

(2) (2) (2)V V V 1 1i,112,314 112,1,2 314,3,41 15 6v 2 v 2 v v 2 v 2 v v 2 v 2 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K ) (K ) (K 1K ) (K 1K )3 4 3 4 2 1 1 2 i 1 2 3 4

(2) (2) (2)2V V V 1 1i,123,422 123,3,1 422,2,4
1 15 6v 1 v 2 v v 1 v 2 v v 1 v 2 v(K 2K ) (K ) (K ) (K 2K ) (K ) (K ) (K 2K ) (K 2K ) (K )1 3 3 1 4 2 2 4 4 2 1 3 i
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(2) (1) (1)2V V Vi,2324,2122 2324,3,4 2122,1,21
(v 1 v 1 v )(v 1 v 1 v )(K 1K ) (K ) (K ) (K 1K ) (K ) (K )3 4 3 4 1 2 2 1

(1) (2) (1)V V Vi,112,2324 112,1,2 2324,3,41
(v 1 v 1 v )(v 2 v 2 v )(K 1K ) (K ) (K ) (K 1K ) (K ) (K )3 4 3 4 2 1 1 2

(1) (2) (2)2V V V 1 1i,123,224 123,3,1 224,4,21 15 6v 1 v 2 v v 1 v 2 v v 1 v 2 v(K 2K ) (K ) (K ) (K 2K ) (K ) (K ) (K 2K ) (K 2K ) (K )1 3 3 1 2 4 4 2 2 4 1 3 i

(1) (1) (2) (2) (3)V V V V Ti,2324,112 2324,3,4 112,1,2 i,3,42122 42122,1,2,41 2
(v 1 v 1 v )(v 2 v 2 v ) v 1 v 1 v 2 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K ) (K 2K 2K ) (K ) (K ) (K )3 4 3 4 1 2 2 1 4 1 2 1 2 4

(2) (2) (2) (2)2V T 2V Ti,1,41322 41322,2,4,3 i,11223,4 11223,3,1,22 2
v 1 v 2 v 2 v v 1 v 2 v 2 v(K 1K 1K ) (K ) (K ) (K ) (K 1K 2K ) (K ) (K ) (K )2 3 4 2 3 4 1 2 3 3 2 1

(1) (3) (1) (3)V T V Ti,1,22324 22324,3,4,2 i,12324,2 12324,3,4,12 2
v 1 v 1 v 2 v v 1 v 1 v 2 v(K 2K 2K ) (K ) (K ) (K ) (K 2K 2K ) (K ) (K ) (K )2 3 4 3 4 2 1 3 4 3 4 1

(1) (1) (1) (1) (1) (1)V W V W V W2122,1,2 i,2122,4,3 2122,1,2 i,4,2122,3 2122,1,2 i,3,4,21222 2 2
v 1 v 1 v v 1 v 1 v v 1 v 1 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K ) (K 1K ) (K ) (K )1 2 1 2 1 2 1 2 1 2 1 2

(2) (2) (2) (2) (2) (2)V W 2V W 2V W112,1,2 i,112,4,3 422,2,4 i,1,422,3 422,2,4 i,1,3,4222 2 2
v 2 v 2 v v 1 v 2 v v 1 v 2 v(K 1K ) (K ) (K ) (K 2K ) (K ) (K ) (K 2K ) (K ) (K )1 2 1 2 4 2 2 4 4 2 2 4

(2) (3) (1) (3) (2) (3)2V W 2V W V W124,4,1 i,124,2,3 224,4,2 i,1,224,3 314,4,3 i,1,2,3142 2 2
v 1 v 2 v v 2 v 1 v v 2 v 2 v(K 2K ) (K ) (K ) (K 2K ) (K ) (K ) (K 1K ) (K ) (K )1 4 4 1 2 4 2 4 4 3 3 4

(1) (4) (1) (4) (1) (4)V W V W V W2423,4,3 i,2423,2,1 2423,4,3 i,12423,2 2324,4,3 i,1,2,2324 (3)2 2 2 1 R . (A11b)i,1,2,3,4v 1 v 1 v v 1 v 1 v v 1 v 1 v(K 1K ) (K ) (K ) (K 1K ) (K ) (K ) (K 1K ) (K ) (K )4 3 3 4 3 4 4 3 3 4 3 4
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