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Abstract: A bipartite grabp G is said to be uniquely bipancyclic { G is called " UB-graph” for
short) if G contains exactly one cycle of every even lengthf . 4<] /< v, where v is the order of G.
We prove that there exist exactly six UB-grapbs with v 4 4 edges.
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1 Introducticn and Notation

In 1973, ENTRINGER R C raised the problem of determining which graph G is uniquely
pancyclict!), that is, G contains exactly one cycle of each length¢ , 3¢ < |V(G) |. In 1583,
YAP H P and TEO S K generalized the notion of a uniguely pancyclic graph and defined a
notion of a uniquely #- pancyclic graph!™. A graph G of order v is said to be uniquely r-
pancyclic if & contains exactly one cycle of length £ for each r << ¢ << v, and & contains no cycle
of length less than r. In [2] and [4]. several important results of uniquely r- pancycle graphs
have been obtained. In 1991, SHI Yong-bing and SUN Jia-shu considered analogous questions

U1, A bipartite graph G of order » {(where v is even) is said to be

relating to bipartite graphs
uniquely 7- bipancyclic (We call G #*#- UB-graph” for short, where r 2= 4 is even) if {7 contains
exactly one cycle of every even length ¢, r <C £ <C v, and G contains no cycle of length less than
r. We usually abbreviate "4-UB-graph” to "UB-graph”.

In (3], the class of - UB-graphs with v + m edges for m <C 3 is completely determined.
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In this paper, we determine the class of UB-graphs with v + 4 edges.

All definitions and notation used in this paper, but not defined in the foliowing. can be
found in £3].

Let C* be a cycle of graph G. If there exists another cycle in G wihich contains all bridges
contained in C*, we call this cycle the dual of C* and express it by D{C").

A graph G is said to be 2 skew[1] graph if the number of the skew bridges of G is 2.

In [5]. we have the following result.

Result 1.1 LetG be a skew[1] graph. Then G is an UB-graph if and only if G € {Hig |
=1,2,"-.6}.

2 UB-graph with 4 bridges

Lemma 2.1 If Gis a 4-skew UB-graph, then G contains one 4-bridge.

Proof By contradiction, Suppose that G contains no 4-bridge. Then G must contain one
4-inner cycle, say C,. We consider the number of the bridges contained in C,. There are three
possible cases only.

Case 1 (', contains exacity two brnidges. say £, and B,. Clearly B, and B; are not skew
(for otherwise, (= has two Hamulton cycles. A contradiction). By Lemma 3.4 in[3]. we only
need to consider the case that the other bridges B, and B, do not skew to both B, and B,. In this

case, B, and B, are skew. Since (5 contains no 4-bridge. the {v — 2)-cycle of G must be a skew

cycle. We may assume that B, = w v, and there are no bridges in int{ Cv,.v,] U vy ). Let
G =G — Clv,»m)dand v = |V{G")|. Then &° contains one 4-bridge and one {v° —
2)-skew cyecle, That is to say, & contains twoe (v° — 2)- cycle. A contradition.

Case 2 C, contains exactly three bridges, say B, B, and B,. Clearly there do not exist
two skew bridges in {B,.8..8;}. Otherwise, suppose B, and B; are skew, See Glo v, 17
;). LetG =G — Cly.ey)andv® = |V(G")|. Then G~ contains twe v" - cycles. A
contradiction. See G (w1, 1v00,.v:7, ). It is easily seen that there exists B € {B,,8,,B,} such
that it does not skew to B;.say B = B, LetG" = G — C{v,.v;). Then & similar to 10
Lemma 3.4 in [3]. In a similar way. we can prove that G" contains two cycles whicl have the
same length, Again a contradiction.

Case 3 (, contains exactly four bridges, say B,, B., B; and B,. Since G is a skew
graph, there are two skew bridges in {5, . BB B}, see G(uovw,v.th.0e0,). Let
G =G —(Cly.v) U Cleyured) and v° = |V G )|, Then G contains two v° - cycles,
Omnee more a contradiction.

From the above proof. we can conclude that every 4-skew UB-graph bas a 4-bndge.

Lemma 2.2 If G 1s a {-skew UB-graph. then (r contains one f-bridge.

Proot By contradiction. Suppose that & contamns no 6-bridge. Then (7 contains one 6-



http://www.cqvip.com

£ OO0 http://www.cqvip.com|

25 LT A B AR R 2000 $E

inner cycle, say C;. and the (zr — 4)- ¢cycle contained in G, say C’, is a skew cycle. Clearly, ¥
does not contain 4-bridges in G (for otherwise. G contains two (v — 2} -cycles. A
contradiction}. We now consider the number of the bridges contained in C;. There are three
possible cases only.

Case 1 C;contains exactly two bridges, say 5, and 8B,. If one of the bridges 8, and &, i
a ¢-bridge. say &, . then &, and rthe other two bridges &, and &, do not skew to ;. Clearly. 5,
< extC” (if B, € intC' , then & contains two (v — 6) -cyeles, rhat is, I2(C{8,}3) and (C" —
C(B,Y M (CY U B,. A contradiction). and there are three bridges contained in C' (for
otherwise, C' contains exactly two skew bridges and G contains two 8-cycles, i e. C(&,) and
D{C" ). A contradiction}. It is easily seen that these three bridges contained in C7 skew 1o each
other (for otherwise, there exists one bridge in €’ . say 8. which does not skew to the other
two bridges in ', Then B = H,. This contradicts that B, € extC’), then {7 contains two 8-
cycles (One is C(8;), and the other is the cycle which contains four bridges). A
contradiction. Therefore neither B, nor B;is a 4-bridge. We may assume that B, is a 4-bridge.
Clearly C; is not a skew cycle (for otherwise, G contains two {v — 2)- cycles, i.e. D(C(H,))
and IHC.). A contradiction) . then B, and X, are not skew. We have two subcases.

Case 1.1 One of the bridges B; and K, skews to H,. We may assume that B, skews to £,.
Since G does not contain 6-bridge. |C(&,)| = 8and K, € int(’. Let B, = v,v; and neither B,
nor 8, be contained in int¢ Clv;.v: ] U vy1,). Furthermore, let G* = G — C{w,.v,) and v* =
|V(G*3|. Then G* contains one 6-bridge and one (v — 4)- skew cycle. Now G* contains
two (v° — 4) cycles, A contradiction,

Case 1.2 Both 8, and B, skew to B;. see G0 21T 2 TsTs » T, T ) Clearly {7 does not
contain B,. If B, € extC’, then C’ conrains exactly three bridges (for otherwise, (- contains
two 6-cycles, i.e. Coand (D(C') — C(K,) N C) IJ B,. A contradiction. Specifically C7 is the
eycle Clve.v: ] U vy | Clogao ] U v, U Cla »v,] I 7. Now we consider the number of
the vertices contained in C{w, 1, ]. ) Clearly, m,, £ 4. Thenm,, € {0,1.2.3}. Table 1 give all

the four cases and the causes of impossibility of each rase,

Table 1 The four cases of my,

m gy Cause (the cyclefs) contained tn €5 )

] one 11-cycle: Cloyarg | vy

1 two 10-cyele: Clzaive] U vewy and CLwaawg] U ey U €lea2] U wivs U Clay vl U ween
2 twa B-cyele: Clvg,o ] U wiws U Closare] (U 2owe and Ce

K| two B-cyele, Clwa ze] U vy and Oy

Therefore, B, € intC'. We now consider the number of the bridges contained in (™,
There are two possible subcases only.

Case 1. 2.1 (" contains exactly two bridges of {5, +8:,8;}. We consider m,,. Clearly
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my € {0.1,2,3,4} and m,; 7 2 (for otherwise . G contains two eyeles CLey vy ] U vazy |J CLen,
vl U vos and Cloavy] U vas | Clwa.ve] U w;ve which have rhe same length. A
confradiction), If m,, = O, then €' conrains exactly 8, and B, tfor otherwise, ' contains
exactly 8, and B,. Then the length of the cycle which contains exactly B, and B; is 4. A
contradiction). In this case. G contains one §-skew cycle, i e. D{C' ), and one 12-skew cycle,
say C,;, which contains exactly B, and By, and 8, € extC,,. Thus, B, € extCy, {the I0-cycle
contained in ). Furthermore, (' contains only one bridge. It leads to that G contains two (v
— 8) —cycles, i e. D{Cyy) and D(Cy;) . A contradiction. Ifm; = 1, rhen C’ conrains exactly
B, and B, {for otherwise, C' contains exactly 8; and £;. The length of the cycle which contains
exactly B, and B;is 6. a contradiction). Thus. (~ rontains two (v — 6)-cycls, that 15, C[og .1, ]
U voe U Cles.ze] U oy and Clog.e, ] U vevs 1) Clvsere] 1) vy U Clogsvy] U e, A

contradiction. It is analogous to prove that m,; & {4,3).

Table 2 The five cases of my

iz & (o' — & — 11 eycle (ut — E)- cycle

1 4 Clerav ] U s Clesere ] U overy U ClLug.en] U wpws

2 4 Clwgm U v U Clees] U vize Cles .1 U vy

3 5 Clee I U oy U Clvvees] U mgee Cleeora ] U wers U Clog o] U wyze

4 ] Clesam 1 U romy Clew.w:] U e U Closuey] U v U Cleawe] U vaee
3 7 Cloeemy ] U e U Clegaee] U waws Clrzore ] U vars U ¢ [eser ] U vezn

Case 1.2.2 (' conrains exactly 8,,8; and B,. In this case, C’ is the eycle Clz, v ] U
vovs U Clogeve] U vave U Clessza] | zyv:. We also consider my,. Clearly my, € {1,3.4). If
m; = 1. then Gcontains two B-cycles, that is. Cluy v, ] | vsvgand C;. A contradiction. When
my =3 letG" =G — Cloyyvy) — Clws,vy) and v = |V (G- )|. Then G* contains two (°
— 3)-cyclesy ie. vivy UC[ry v, ] U vary U Clocsw, Jand vy, ) Clvsws ] U wrs U Clo, v, ]
U vsws IJ Clvs,v:]. Again a contradition. Now my; = 4. Let G* = G — Civ,,vy) and v" =
IV(G* )|. Then G* contains one (v~ — £)-cycle and one (z* — & — 1)- eycle for some 2 € {4,
5.7) for my €1{1.2.3.4,3} (see Table 2). That s to say. G always contans an odd length
cycle. Once more a contradiction,

Case 2 C; contains exactly three bridges. say B,, 8, and 8,. We shall now consider
three subcases, depending on B,, B, and 5, are skew bridges or not. Let B, be the other
bridge.

Case 2.1 Any two of the three bridges B,, B:and B, does not skew to each other, Since
G 15 a skew graph. one of the bridges B,, B; and B, must be a 4-bridge, say B,.

Case 2. 1.1 B, skews to one of the bridges 8; and B,, say B;, see B{v,v, 0,0 »1470
732:). Clearly B, € intC' (for | C(8,)| == 8). Then B, € arC’. Furthermore, C contains
exactly B, and B,, G contains two 8-cycles. 1e. (C; — B) U (C ) C{B)) and D(C'), A
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contradiction.
Case 2. 1. 2 B.; skews to both B; and Bﬂv See G(T}fvz s U3 17’51"31'047-’7}- i3 c contains

exactly two bridges, then G contains two 8-cycles, ie. £2(C'Yand (Cs— B,) U (CNCBM).
A contradiction. Therefore O contains three bridges. that is, B,, Byand B,. If B, € ext(”,
then the length of the cycle containing four bridges is 8. G contains two 8-cycles (the other is
(C, — B,y U (C N C(B). A contradition. Thus B, € intC’ and C" is the cycle Clvs,v, ] U
vy U Clog,w ] U vy U Cles.ve ] 1) wevs. We now consider #ig,. Clearly m;, € {1.2,3}. Let
G =G —Clrs,v,) — Clvs.vYand v = |VI{G* )|, Table 3 gives all the three cases and rhe

cause of impossibility of each case.

Table 3 The three cases of mgg

Mg Cause (the cycle(s) concained in Gor &° )

two 10-cyeles; Clwz.ve] UJ wre U CTov e ] U ey and
! Clygat] U mve U Clzsawe] U vpeg U Clrswe] U vszs

two (z" — 43 -cycles; CTvsvow] U vpn 1) Cley .t ] U ver; and
Clve,ven] U o U Clvzves] 1 vaog U CToiaws] U vatg

two (" — 3) —cycles; Clvy o] |J wgvn 1) Cley s ] UJ ey and
C[”n"’i] IJ wsra U C["T"f-‘:] U vy

Case 2. 2 Exactly two of the bridge B, B, and B, skew to each other, say B, and B,. If
B, is not a 4-bridge, rhen C' is the cycle which contains exactly B; and B, such rhat B, € ineC".
In this case, G contains one 6-side cycle to B; or B,. Therefore G contains trwo &-cycles. A
contradiction. Hence B, s a 4-bridge. In this case. G contains one 8-cycle. say C,, which
contains exactly B, and B;,. Then C" = D{(C;) and B, € extC’, Let B, be the fourth bridge.

let G" =G — E(By) . see G {2/ v, 0" 0 5,70 ¢). It is easily seen that there is no vertex
coutained in C{+/,,v'5).

Case 2.2.1 B, does not skew to B, or B;, see G{v 157307 s U5t y Y5 ). Since (¢ contains
Cy and does not contain any 6-bridge, the (v — 8)-cyele of G is the cycle oy, vy ] U wer U
Clyg, vy ] U vevs |J Clvy 2] |) vyw;. Therefore B, is a 4-bridge. too. A contradichion.

Case 2. 2. 2 B, skews to one of the bridges B, and B;. say 8. See (G{v1% 1T, U1y
LA7P0 IR CX (2L VAN TR AL T TR 70 I £ € 2L R TIETAN T THIR TLTHS YRR £ £ N I UL P TR TIUTYS TR 1 C T T
Uply 2 U3 s Vs ) and Glonw, s v,1y , W35 .2,w5) . They are denoted by G,.G, .-+, G, respectively.

We now consider the (v — 6) -cycle contained in G, say C”. Clearly B, & C". Ortherwise,
G contains two (v — 4)- cycles, that is, C’ and (C" — B,) U (C M1 C(B,}). A contradiction.
Since & contains a §-skew cycle which contains exactly B, and B, with 8, € int(’;, and (+ does
not contain 6-bridge. C"is a skew cycle.

If C"contains exactly two bridges, then they are B, and B,. If B, € extC”, then (~ contains
one B-cycle again. which contains exactly B,. B, and B,. Thus this case is impossible. But.
when B, € intC”, G contains C(8,), C(B,), C(8;) and C(B,) for G,, G;, G, and C,,
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respectively. The lengths C(B;) and C{(B,) are less than 8; For G; and G;. G contains two 10-
cycles. One is D(C"), and the others ate Clvy.ve] U v, [U vvy ] U Clop e ] U v and
Clw,-vs ] U very, U Cloywvy ] U wowy . respectively. Thus G always contains rwo cycles having
the same length. A contradition.

If C” contains B,, B;and B, . then G contains another eycle whose length is less than 8 (the
discussion is simniltar to the former}. Again a contradiction.

Case 2. 2.3 B, skews to both B, and Bs. see Glugm v, U0y .7,15 ), Let G7 = G —
Cluame} — Clop ) — Clogazy ). v° = |V(G* Y. Then G* contains two (v" — 23- eycles,
ie. Clo; ooy ] U viey U Cleyv ] U vy and Ol e, ] U v U Clos vy U vy, U Clos o, ]
U w;v;. A countradiction.

Case 2. 3 There exists one of the bridges B;, B. and B,. say B;, which skews to the
other two bridges, If B, and B, have one end-vertex, see G{vyv,, v,vs, v, ). C; is the cycle
Clo.v] U vy U we, U Cles.w ] U vz, Futhermore, one of C(z,.v,) and Clv,.v,}
contains one vertex and the other does not, Without loss of generality, let C(v, . 2,) contains
one. Then Clw.,v.] U v and vyoy |J Clussvs] U vars U Clus -9, ] have the same lengh.
Orherwise, G contains two Hamilton eveles C and D(C,) . A contradiction.

Case 3 C;contains 8. By, By and B, Clearly (C, — B> |J (C N C(8,)) s a §cycle.
Since G is a skew graph. we may assume that B, and B, are skew, and B, is a 4-bridge.

Case 3.1 B, does not skew to B; or B;. see G(uv, vl 27T 21475 ) and G (o,ms + 1,0,
3V vy vs ). Since & does nat contain any 6-bridge. B, € intC'. Clearly Clv,,v,] U v, U
Clwsavs] | s is also a 8-skew cyele. A contradiction.

Case 3,2 B, skews to one of the bridges 8, and B, say By, see G (0,0, 1020 2 Uy Us T 75 )
and G(vv, . v,v; . ,05 oy, ). For the former, G contains two (v — 2)- cycles, one of which is
the eyele Clw..v; ] U wyvs U Closaon ] U tery, U Cleg.o: | U vow,. For the latter, C' contains
only two skew bridges. Then G contains a 8-skew cyele, i e. £(C'Y It always Jeads to a
contradiction,

Case 3.3 B, skews to both B, and B, see G(u,7; 1Tyt 0,7 + Ty ) and G0 Up » Ty Vs 2T Ts
m1;). G contains two (v — 2)- cycles, one of which contains exactly B,, B, and B,. A
contradition.

Lemma 2.3 Let G(vv,.vv5.0%) be a graph in which no two cycles have the same
length. m; = 5 and m; = 3. then m,; = 4.

Proof By contradiction. Suppose m,; 3= 4. Then m, € {1,2.3}.

Casel1 my;=1 LetG" =G — Clo,.vdandv® = |[V(G*)|. Then ¢* contains two

{v* — 3)- cycles. A contradition.
Case 2 my; = 2. LetG" =G — C(vy,u)and v = |[V(G*)|. Then G* contains two
{v® — 2)-cycles, A contradition.

Case 3 wmy,, = 3. LetG" =G — Clreyvydand v = [VG* )|, Then G* contains two

(w" — 2J- cycles, Again a contradition,
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Thus all the passible cases lead to contraditions, and the proof is completed 0
Gi” Gﬂ’ frﬂ’ (.11’

G v

Figure 1 The six UB-graphs with v + 4 edges

The graphs Gii’, G, G’ Gif', Giy and G{{’ are depicted in Figure 1.

Theorem 2.1 A 4-skew graph G is an UB-graph if and only i G € (G{', GiJ', Gif.
G, G G0 L

Proof The sufficiency is easily seen by immediately checking G ( = 1.2.---,6). We
shall prove the necessity. Let & be any 4-skew graph. Suppose that G is an UB-graph. By
Lemma 2. 1 and Lemma 2. 2, G contains one 4-bridge and one 6-bridge. say B, and B;.
respectively. By Lemma 3. 1 in [3], B, does not skew to the other rhree bridges. Clearly. B,
& intC'{B,;). Let 8, and B, be the other two bridges of &. We consider the number A of the
bridges which skew to B;. It is evident thar A <C 2,

If A= 0. B,does nor skew to the orher bridges. In this case, B;and B, must skew 1o each
other. Then G is a skew [1] graph. By Result 1. 1. rhis case can not arise.

If A=1, B;skews to exactly one bridge. say B,. In this case, B; must skew 10 B, (by the
same cause as that in the case of A = 0). When BE; and B, are not adjacent, we have two
subcases and express then by 1. 1.1 and 1. 1. 2. When B, and B, are adjacent, we have three
subcases and express them by 1. 2.1, 1. 2. Z and 1. 2. 3.

If A =2, B,skews ro both B;and B,. When 8. and B, are adjacent. we have rwo subcases
and express then by 2. 1.1 and 2. 1. 2. When B; and B, are neither adjacent nor skew . we have
two subcases and express them by 2. 2.1 and 2. 2. 2. When B, and B, skew to each other. we
also have two subcases and express them by 2. 3.1 and 2. 3. 2.

Table 4 gives some digrams and their numbers of cycles contained in G as described above.
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By Lemma 2.3, we can eliminate cases 2. 1.2, 2. 2.1, 2. 2. 2 and 2. 3. 2 first.

Forcase 1. 1. 1. Let G° = ¢ — Civy.zy) — Clon,rgd and ¢° = |V(G* )|, Then G*
contains twa (0" — 3) -cycles, that is, Clvy.o, ] U veve U Cley v ] U v, U Cles .1, 1 U vy
and Clegvra | U ogvs U Clogsoe ] U zoze U Cleyews ) U vywe - which is false.

Table 4 The varwus cases [ncd =] and A = 2

Case Dhagram Number of eycles
1.1.1 Glo s, vsy « Tabiga vy ) zy
1.1.2 GOtnme e st Ty Ti7 . T ) 23
l.2.1 Dy 23l o Ty « TrqTig ) 20
1.2 2 Gz ey, tyvg s Tals Ty 7 ) 21
1.2.3 (o o vty a2y, T ) 21
2.1.1 Crlo Ty o TgTls T a T T ) 21
2.1.2 Gl Uy T V5T 2 -5 ) 2a
2.2.1 Gl Ualig @ty Tgig ) By
2.2.2 Clo vy v Ty P - 1T ) 23
2.31 |2 8 PR TR S T 24
2.3.2 GHan w2 T3y - Ty Ty T ) *

For case 1.2. 2, let G° = G — Clu;,1y) — Clvg.r,) and v*° = }V{G"2]. Then G°
contains two (v" — 3} -cycles, i.e. Clog.ve] U vvy U Clyyyea] U voe U Cle, v ] U wezn and
Clos.vs 1 U vevyw, U Cloy vy ] U vars . which is false.

Forcase 2.3. 1. LetG™ = G — Clwy,o) — Clo,0p) and 0 = [V(G*)|. Then "
contains two (¢ — 2} —cycles, One 1s Clw.,24] U vowy U Clewwzn] U 2510 and the other i
Clrcsvs] U wue U Clogse] U e, U Clos -] U vy, which is false.

We now discuss the other four cases in Table 4.

Let M = {x|.ris the order of a cycle in G}y M* = (4,6, v — 2.1},

s = E.r, (1)
e
and s* = E Oo= (v— 2) v+ 4)/4, (2}
reM”

where v is the order of G.

Case 1. 1. 2. Itis easily seen that G contains 8 eveles which contains exactly one bridge, 8
cycles which contain exactly two bridges. 5 eyeles which contain exactly three bridges and one
cycle which contains exactly four bridges. Hence G contains 23 cycles in all (we can count the
numbets of cycles contained in (5 for the other cases by the same method, see Table 4).

By Lemma 2. 3, we have »;; = 4 and m,y = 1.

Counting the length of every cyele in . we have

M = {4, 6, my + m5 + 5, my + sy + 54w + o - 1, omy + m, + 9,

J— PO AT e e — . e o -
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m, + my + 3. my + mg + Ty oy + 30 my oy + 9, 1 4 Mg + 5.
w4 g+ 6. g T s + 6, oy - Taomy g + 3.+ oms + 4
m, + me + 10, m + my; + 8, 42, 44, 46. 48},
where m, = my, + w1 and
my + my + mys o = 40, (3
Using (1), (2) and (3). we find easily s = 5m, + mg + 565 and s* = 598. Since Gis UB-
graph. we have s=s"., ie,
5m, + my, = 33. (4)
Because each #, is an integer and m, + m;; + 3 € M is even, equation (4) has five solutions.
Then we can obtain the values of #;, + m,; from {(3) about these solutions. From min (44 —

{4,6}) = B, we can obtain the values of w4, or P,

Table 5 The five subcases of Case 1.1. 2

" migg neyy + mys mintM — 14,6}  ma, Fgs Two elements having the same value in M

o 33 7 g +3 5 2 my+nus+6, mzytne 41
nus+4 k! 4 my+mege+7, mys+nes+3

1 28 11 nizg+4 4 7 mL+na+7,. mytmes 41
nus+5 8 3 oy +mae+3, mactmes I

> 23 15 mus +6 13 2 My g +6,42
iz +5 3 12 on + Mg+ 54 mage+migg 4

3 18 19 niy +6 2 17 on +mys+6. mlge+ms 6
mays+7 18 1 mas +mge+6. 42

4 13 23 my+7 1 azg mzq +mss +6, nn +mgs+3

Table 5 gives the five solutions of (4), the values of m,, + 1,5, the smallest elements in A
— {4.6}, the values of #1,, and #,;,» and two elements in M having the samne value about these
five splutions.

Table 5 shows that & always contains two cycles having the same length for case 1.1, 2,
which is false.

Case 1. 2. 1. By Lemma 2. 3, we have m;; = 4 and m,, = 1.

we obtain easily

M= {4, 6, ma; + 5y + 5. m2, + 5. g + 6. 01, + g - 4,
my + o e - 2.omy 4 3. - ome, + 20 om 9. mg b ome; + 3.
tse + 20 oy + 3. omy + mge + 9y oy = Taom A+ oms + Tamg, + 7, 38. 40, 42},

where #1, = m;, + #,, and

wty + me, + mig = 34, (3)
Using (13,(2) and (5). we find s = 2»2, + 442 and s~ = 460. Hence
m, = 9, {6

In this case, #;; + m; = 25 from (5). If min (M — {4.6}) = m;, + 2, then my, = 6 and m,
= 19. We havem;, + 6 =m, 4+ 3. If min (M — (4,6}) = m;; + 3. thenm,, = 5 and m, =
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20, we have m, -+ m + mg; + 4 = m + m.; + 9. That is to say. (& always contains two cycles
having the same length for case 1. 2. 1, which is false.
Case 1. 2. 3. By Lemma 2. 3, we have m;;, — 4 and my; = 1.

we can obtain easily
M= {49 6; m45+5r ml+m34+5! m34+m45+1‘ ml+9! m]+m34+m-&5+2’

my, + my, + 3. my + T.myg +~ 3sm +my + 9. mm + 5, my + 6,
m o+ my +6ym myy T+ 3om w4 om0 4, 40, 42, 444,

where m; = m;; + m;; and

M+ mg, — my; = 36. (7)
Using (1),{2) and {7), we find

5= Sm, + 2m,, + 431 and 5" = 504,
Hence
Sm, + 2Zm,, = 73. 8)

Since both m, + 5 € M and m;, + 4 € M are even. m, is odd and my, is even. Then equation
(%) has four solutions. From (7). we can obtain the values of m,, about these four solutions.
Table 6 gives the four solutions of (8). the values of m.; and two elements in M having the

same value about these four solutions.

Table 6§ The four subcases nf Case 1. 2. 3

my I m myg Two elements having the same value in A
1 34 1 mys + 5. 6

3 o} 7 mus + 3,0 + 5

9 L4 13 mye+ 5., 40

13 4 [ m) 4+ 9, my + . + 5

Table 6 shows that case 1. 2. 3 cannot arise.
Case 2. 1.1. By Lemma 2. 3. we have m., = 1 and m,, = 4.

we obtain easily
M = {4; 69 Mg, + 51 g, -+ my, + 51 Ty “'_ 50 iy T Mgy +m51 + 2| ny “'—mﬁ? + 3..

m,+3. m]+mﬁ?+gl My + 3. ml+9. m55+m57+3- m57+2. ml+mﬁf+?s
ny + 7. ny +mq.—,—'f—5.m1 +?”55+4n My + omg + 5, 40, 42, 443,

where m, = m,; + m;; and
my + mq; + mg; = 36. {9
Using {1).(2) and (9), we find s = 4m, + m,, -+ 466 and 5° = 504. Hence
dm, + mg; = 38. {10)

Since m + 3 € M is even, equation {10) has five solutions. Table 7 gives the four solutions of

(10}, the values of ms and two elements in M having the same value about these four

solutions.
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Table 7 The four sulxases of Case 2.1, 1

e, 1. Mg Two elements having the same value in M
1 H 1 mszs + 5. 6

3 20 7 my + 4. %

7 10 19 mey 5. m + 8

9 2 25 ry + 9, my Fomer + 7

Table 7 shows that case 2. 1. 1 cannot arise for mi;, € {1.3.7.9}). When m, = 5, we have
mg; = 18 and g = 13, Then G € (GGG .GY .G LGE Y, In [3]. the authors
determined all outerplanar - UB-graphs.

The class of UB-graphs with v + 4 edges is determined and the conjecture in [ 3] is false,
But, there is much work to do to determine the class of »~ -UB-graphs with v 4+ m edges
(where m = 5).
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