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ABSTRACT

The linear instability of a zonal geostrophic jet with a cosh22 meridional profile on an f plane is investigated
in a reduced-gravity, shallow-water model. The stability theory developed here extends classic quasigeostrophic
theory to cases where the change of active-layer depth across the jet is not necessarily small. A shooting method
is used to integrate the equations describing the cross-stream structure of the alongstream wave perturbations.
The phase speeds of these waves are determined by the boundary conditions of regularity at infinity. Regions
exist in parameter space where the waves that propagate along the jet will grow exponentially with time. The
wavelength of the most unstable waves is 2pR, where R is the internal deformation radius on the deep side,
and their e-folding time is about 25 days.

The upper-layer thickness of the basic state in the system has a spatial structure resembling that of the isopycnals
across the Gulf Stream. The unstable waves obtained in the present analysis have a wavelength that is in agreement
with some recent observations—based on infrared imaging of the sea surface temperature field—of the fastest-
growing meanders’ wavelength. Calculated growth rates fall toward the low end of the range of values obtained
from these infrared observations on the temporal evolution of Gulf Stream meanders.

1. Introduction

The Gulf Stream system is one of the oceans’ most
important and striking features (Stommel 1965). Nu-
merous observational, numerical, and theoretical studies
have been dedicated to it. Recently, Huang and Stommel
(1990) proposed a simplified, steady-state, uniform po-
tential vorticity model that successfully reproduces
some of the main features associated with the cross
section of the Gulf Stream. In their model, each of sev-
eral (two or three in the cases studied) discrete isopycnal
layers has a uniform value for the potential vorticity
(PV), while the flow in each layer is in geostrophic
balance with the slope of the interfaces separating the
layers. Huang and Stommel calculated only the steady
flows and interface depth profiles in their model.

In the present work we address the temporal evolution
of small amplitude perturbations for a simple steady-state
zonal jet with a meridional profile similar to those studied
by Huang and Stommel (1990). The simplest model, which
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we treat here, is that of an upper layer of lighter, moving
water that overrides a layer of motionless, heavier water.
The depth of the interface separating these two layers
varies in the cross-stream direction and this depth variation
is balanced geostrophically by the flow in the upper layer.
Although the PV (potential vorticity) in the upper layer is
not uniform in the present study, we assume a profile of
the interface separating the two layers in the basic state
very similar to the one obtained by Huang and Stommel
for the case when the PV is uniform there.

All the profiles studied by Huang and Stommel are
characterized by two or more moving isopycnal layers,
each of them having its own uniform PV. The stability
of such a model flow is more cumbersome to investigate
and the simpler model of a single moving layer, studied
in the present work, is a prototype case that can serve
as an initial step toward the stability analysis of Huang
and Stommel’s more elaborate profiles. Unlike in frontal
problems (e.g., Paldor 1983; Cushman-Roisin et al.
1993), the interface separating the two layers in the
present study does not outcrop; this fact simplifies the
analysis by removing the singularity associated with the
outcrop.

A closely related instability problem—in which each
of several isopycnal layers has piecewise-uniform PV,
that is, each layer contains meridional bands in which
the PV is uniform—was studied by Meacham (1991).
In the simplest of Meacham’s cases, the lower one of
the two layers is not banded and the PV there is uniform
throughout. In the upper layer, on the other hand, the
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FIG. 1. The cross-stream profile of the assumed zonal jet’s interface
between the upper and lower layer and the zonal velocity profile in
geostrophic balance with it. The parameter a determines the rate (in
units of deformation radius) at which the interface shoals from its
depth at 2` to that at 1`, while r , 1 is the interface depth on the
shallow side measured in units of the deep side’s depth.

PV has a jump along a line called the front. This PV
front has no corresponding density jump and the latter
remains uniform throughout the layer.

Since the PV in the lower layer is uniform in Mea-
cham’s model, there has to be a mean flow there (to
compensate for the varying thickness of this layer) and
the flow velocity grows linearly with distance from the
front. Thus, the mean velocities in both layers tend to
infinity in the cross-stream direction: As one moves
away from the PV front, which generates the flow in
the two layers, these flows are becoming ever stronger.
Despite of the infinite shear that exists between the two
layers, there are no instabilities and all perturbations
remain finite at all times in this particular version of
Meacham’s model (while in other cases instabilities do
exist). By contrast, we will show that in our model,
where the velocities in the mean state are finite, insta-
bilities exist and are characterized by a fairly realistic
wavelength of the fastest growing perturbation.

We expect a limiting case of the present study, when
the ratio of the upper-layer depths on either side of the
jet approaches unity, to agree with quasigeostrophic
(QG) theory. In this limit we expect, therefore, the flow
to be stable (to barotropic perturbations) unless the ve-
locity profile contains an inflection point (Kuo 1949;
Pedlosky 1987). At some value of the depth ratio, how-
ever, QG theory will lose its validity and instabilities
might develop even when the velocity profile is stable
according to QG theory.

The present study is organized as follows. In section
2, the mathematical model is formulated. The linear
stability problem is solved in section 3. Results are com-
pared with observations and other theories in section 4.

2. Formulation of the problem

a. The mean state

We envisage a steady zonal jet flowing on an f plane
in the upper layer of a two-layer ocean as shown in Fig.
1. In the lower layer the mean flow vanishes and, since
this layer is assumed to be infinitely deep, the PV there
vanishes too. The flow in the upper layer is in geo-
strophic balance with the prescribed slope of the inter-
face separating the two layers; the PV in the upper layer
is not prescribed a priori, as in other studies, being de-
termined instead from the geostrophic velocity there and
the interface depth. The equations describing the mean
flow are closed by specifying the cross-stream variation
of the interface.

Following the results of Huang and Stommel (1990)
for the case where two layers have prescribed constant,
nonzero PV and nonzero velocity, we let the nondi-
mensional interface depth h( y) vary as

1 1
h (y) 5 (1 1 r) 2 (1 2 r) tanh(ay). (1)

2 2

The dimensional height H of the upper layer on the deep

side, at y → 2`, has been used as the height scale and
rH is the depth on the shallow side, y → 1`. The
parameter a in Eq. (1) determines the (nondimensional)
slope of the interface depth near y 5 0, which equals

1
2 (1 2 r)a

2

at y 5 0. The scale for the horizontal coordinates x and
y is the Rossby radius of deformation g9H/f, whereÏ
g9 is the reduced gravity (i.e., the gravitational accel-
eration multiplied by the fractional density difference
between the two layers) and f is the Coriolis parameter.

Given the depth profile (1), the geostrophic velocity
for the jet in the upper layer, u( y), is given by

1 2 r 1
u (y) 5 2h (y) 5 a ; (2)y 22 cosh (ay)

this yields a zonally flowing jet, symmetric about y 5
0. The velocity scale used here is the length scale de-
scribed above (i.e., the internal deformation radius) di-
vided by the natural timescale of f 21 5 [4p sin(lat)]21

3 24 h.

b. Linear stability problem

We now linearize the x and y momentum equations
as well as the continuity equation in the upper layer
about the mean profile h( y) and flow u( y) given by Eqs.
(1), (2). We let the dependence on x and t of all the
perturbation variables—u, y, and h—be the typical one
for a zonally propagating plane wave, exp[ik(x 2 ct)].
After some trivial simplifications, which include the
elimination of u, this yields the following coupled or-
dinary differential equations for the y-dependent am-
plitude of h and V [ 2iy /k:
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1 2 u 1y2h 5 V k (u 2 c) 2 1 h , (3)y 1 2 1 2u 2 c u 2 c

u 1 2 u 1 u 2 cyV 5 V 2 1 h 2 . (4)y 1 2 1 2h u 2 c u 2 c h

In the absence of outcropping of the interface, the
only boundary conditions of interest for these equations
are regularity at infinity, as no other singular points exist
for unstable modes, for which Im(c) ± 0. By contrast,
stable modes have an additional singularity at the critical
layers where u 2 c 5 0. These modes are of interest
in the present context only to the extent that the concept
of overreflection (e.g., Lindzen and Barker 1985) sug-
gests that they play a physical role in inducing the in-
stability, albeit indirectly.

The infinite y domain can be transformed into a finite
one by observing that h( y) is monotonic and using it
to replace y as the independent variable. Defining

h (y) 2 r
z 5 (5)

1 2 r

maps the points y 5 2`, y 5 1`, and y 5 0 into z 5
1, z 5 0, and z 5 ½, respectively. Both h and u can be
expressed as functions of z;

h (z) 5 r 1 (1 2 r)z , (6)

u (z) 5 2a(1 2 r)z(1 2 z). (7)

Meridional differentiation transforms according to

] u ]
5 2 , (8)

]y 1 2 r ]z

so that the governing differential equations for h(z) and
V(z) become

u 1 2 u 9 1
22 h 5 V k (u 2 c) 2 1 h ,z 1 2 1 21 2 r u 2 c u 2 c

(9)

u u 1 2 u 9
2 V 5 V 2z 1 21 2 r r 1 (1 2 r)z u 2 c

1 u 2 c
1 h 2 , (10)1 2u 2 c r 1 (1 2 r)z

where u9 on the right-hand side (rhs) of (9), (10) is the
shear of the mean velocity expressed in the z coordinate
[which differs from yy by the factor 2u/(1 2 r)]. The
system (9), (10) constitutes a nonlinear eigenvalue prob-
lem in the phase velocity c for which boundary con-
ditions at the end points z 5 0 and z 5 1 are required.
These end points coincide with the singular points,
where u(z) vanishes. Given the algebraic nature of the
singularity at these points, an expansion about them can
remove the singularity and identify the behavior of the
regular solutions there.

The expansion of u(z) near the two end points yields

u (e) 5 u (0) 1 u (0)e 5 2a(1 2 r)e, (11)z

u (1 2 e) 5 u (1) 1 u (1)(2e) 5 2a(1 2 r)e. (12)z

Thus, near z 5 0 in particular, the governing equations
take the form

1 1
222aeh 5 2k c 1 V 1 2 h 1 O(e), (13)e 1 2 1 2c c

1 1 c
22aeV 5 V 1 2 1 h 1 O(e). (14)e 1 2 1 2c c r

For the regular solution we let
ah ; Ae , (15)
aV ; Be (16)

near z 5 0 and require Re(a) . 0 for regularity, with
A and B constants to be determined; the linearity of the
problem allows us to let one of these constants equal
1. Substituting the asymptotic expressions (15) and (16)
for h and V in Eqs. (13), (14), we get two linear equa-
tions for A and B:

1 1
22 2aa A 1 k c 2 B 5 0, (17)1 2 1 2c c

c 1 1
2 A 1 1 2aa B 5 0. (18)1 2 1 2r c c

For a nontrivial solution, that is, |A|2 1 |B|2 ± 0, the
determinant of this 2 3 2 system has to vanish. This
determines a as

2 21 1 k c
2a 5 6 k 1 2 , (19)!2a r r

where the sign is chosen such that Re(a) . 0 even for
complex c so that the solution will be regular at z 5 0.
For this value of a, the constants A and B are related by

B V(0) 2aa 2 1/c
[ 5 . (20)

2A h(0) k c 2 1/c

A similar analysis near z 5 1 reveals that the regular
solutions there vary as (1 2 z)b, where

1
2 2 2b 5 6 Ï1 1 k 2 k c (21)

2a

and, here too, the sign is chosen such that Re(b) . 0.
For this value of b we get

2V(1) 1 2 c
5 . (22)

h(1) 1 2 2acb

The governing equations (9), (10), along with the
asymptotic expansions (19)–(22) of the regular solutions
near the singular points z 5 0 and z 5 1, are solved in
the next section as an eigenvalue problem: h and V are
the eigenfunctions and the phase speed c is the corre-
sponding eigenvalue.
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FIG. 2. The growth rate kci(k) and the phase speed cr(k), for (a) r
5 0.5 and (b) r 5 0.9; a 5 1.0 in both cases.

3. Unstable waves

The possibly complex values of the phase speed c are
determined, for given r and k, by solving the eigenvalue
problem formulated in the previous section. The method
presented here is a slight variation on the more general
scheme described in Paldor and Ghil (1991). Briefly,
the system (9), (10) is integrated first starting from some
z 5 e, say e 5 1025, to z 5 ½ by letting h(e) 5 ea,
where a is given by (19) and V(e) by h(e) 3 [rhs of
(20)]. The values of h2(½) and V2(½) as obtained from
this integration are stored. Another integration is now
carried out from a point z 5 1 2 e to z 5 ½ by letting
h(1 2 e) 5 eb and V(1 2 e) 5 h(1 2 e) 3 [rhs of
(22)]. The values of h1(½) and V1(½) from this inte-
gration are also stored.

The numerical solutions of the perturbation equations
have to be continuous across z 5 ½ in order for them
to be acceptable physically. One can always make one
of the two functions, h(z) say, continuous at z 5 ½ by
multiplying the functions found previously in z 5 (½,
1) by the numerical factor h2(½)/h1(½). The value of c
is determined by requiring that the other function, V(z)
in this case, be also continuous at z 5 ½ [i.e., after the
function V1(z) has been multiplied by the same nu-
merical factor as h1(z)]. The values of c that satisfy this
requirement are therefore the zeroes of

F(c; k, r, a)

1 1 1 1
1 2 2 1[ V 3 h 2 V 3 h . (23)1 2 1 2 1 2 1 22 2 2 2

Many real eigensolutions exist but are of no physical
interest here, as explained in the previous section, after
Eqs. (3), (4). Therefore, only eigenvalues with Im(c) ±
0 are described below.

Typical results for the growth rate kci and the phase
speed cr as a function of the wavenumber k are shown
in Fig. 2 for a 5 1 and for r 5 0.5 and 0.9. The overall
shape of the instability curves in the two cases is very
similar: Both kci and cr are zero as k → 0 and increase
quadratically with wavenumber for small k. The growth
rate has a maximum near k 5 1.0, that is, for a wave-
length of 2pR in dimensional units, and becomes zero
again (linearly) at k 5 k0(a, r) , 2. The phase speed
keeps increasing roughly linearly with k.

Two differences should be noted, however, between
Figs. 2a and 2b: First, for r 5 0.5 the maximum growth
rate is 6 3 1023, while for r 5 0.9 it is only 2.3 3
1023; the difference between the phase speed values is
even more pronounced. Second, the cutoff value, above
which no instabilities can be found, is higher for r 5
0.9. Recalling from Eq. (7) that the mean speed u is
proportional to (1 2 r), it follows that the more energetic
jets have a larger instability exponent but the instability
is restricted to a narrower wavenumber range.

The dependence of the instability exponent kci on the
depth ratio r—for fixed wavenumber k—is shown in

Figs. 3a and 3b for k 5 1.0 and k 5 1.5, that is, near
the wavenumber of maximal growth. As expected, the
growth rate vanishes at r 5 1.0, where there is no jet
at all. Surprisingly, however, as long as (1 2 r) does
not vanish, the instability exponents are different from
0 and, in fact, the curves seem to be linear with (1 2
r) as (1 2 r) → 0. Since at r values near 1 the depth
variations relative to the mean depth of the interface are
small and so the QG theory is expected to be valid, the
instability found here can be regarded as a continuation
of the QG instability into the regime where the relative
depth variations are not necessarily small. The differ-
ences between QG theory and the present one are dis-
cussed in section 4a below.

At the other end, of vanishing depth on the shallow
side of the jet, a cutoff exists in r at some r0 . 0, beyond
which the jet is stable for all 0 , r , r0. These numerical
findings will be addressed in the next section in the
context of QG theory and of PV profile considerations.
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FIG. 3. The dependence of the instability exponent kci on the depth
ratio r for (a) k 5 1.0 and (b) k 5 1.5; a 5 1.0 in both cases.

An example of the eigenfunctions associated with the
eigenvalues presented above is shown in Fig. 4. The
eigenfunctions do indeed both vanish at the end points
z 5 0, 1, which correspond to y 5 6`, and are con-
tinuous at z 5 ½ where the velocity is maximum—as
required. The similarity between the V and h eigen-
functions, in both their real and imaginary parts, is ex-
pected for the eigenvalues used in Fig. 4. Indeed, in the
limit of small c, the exponents at both ends satisfy

1 1
2a 5 k 1 1 O(c), (24)!2a r

1
2b 5 Ïk 1 1 1 O(c), (25)

2a

and

V(0) V(1)
5 1 1 O(c) 5 . (26)

h(0) h(1)

Hence, for small c values we do expect the V and h
eigenfunctions to be similar. Comparing Fig. 4a (|c| 5
0.0692) with Fig. 4b (|c| 5 0.0152), it is clear that these
functions become less similar as |c| increases.

4. Discussion

a. Potential vorticity considerations

The results presented in the last section regarding the
range in r over which the jet is unstable can be related
to the PV distribution in the upper layer. The latter is
given, in the z coordinate, by

21 1 4a (1 2 r)z(1 2 z)(1 2 2z)
Q(z) 5 (27)

r 1 z(1 2 r)

so that

1 1 1
Q(0) 5 , Q 5 , Q(1) 5 1. (28)1 2r 2 (1 1 r)/2

The condition r , 1 implies that Q(z) has to decrease
overall as z goes from 0 to 1, Q(0) . Q(½) . Q(1).
Moreover, inspection of Eq. (27) reveals that in the inner
region, near the core of the jet at z 5 ½, the gradient
of Q(z) is always negative when r , 1. This decrease
of Q(z), however, is not necessarily monotonic through-
out the interval (0, 1) and the gradient of Q(z) can, in
particular, be positive near the end points z 5 0, 1 for
certain values of a and r. It follows that, in such cases,
the PV will have inflection points near one or both end
points. The conditions for Qz(z) to be positive near these
end points are determined as follows: Near z 5 1 (that
is, y 5 2`), we find that

Qz(1) 5 (1 2 r)(4a2 2 1), (29)

which is positive for all a . ½ and r , 1, while near
z 5 0 (that is, y 5 1`)

2(1 2 r)(4a r 2 1)
Q (0) 5 , (30)z 2r

which is positive for all 1 . r . 1/4a2. The latter con-
dition is more restrictive than the former; that is, a pos-
itive value of (30) implies a positive value of (29): if
Qz(z) is positive at the shallow end point, it has to be
so at the deep end.

In order for the PV gradient in the upper layer to
change sign, Qz(z) has to change sign there too since
Qy( y) differs from Qz(z( y)) by factors of a constant sign
only [cf. Eq. (8)]. According to QG theory, a single
extremum of Q( y) is necessary to yield instability; this
will occur near the deep end of the jet (z 5 1) provided
a , ½ and regardless of the value of r. In Fig. 3, how-
ever, where the dependence of growth rate on r is shown
for k values that yield near-optimal growth and for a 5
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FIG. 5. The dependence of the growth rate on the jet’s width for
k 5 1 and r values of 0.5 (full rectangles) and 0.9 (plus signs). For
the latter, growth rates are uniformly lower (compare also Fig. 2).

←

FIG. 4. The complex eigenfunctions h(z) and V(z) that correspond to near-maximal growth rates, k 5 1, for (a) r 5 0.5 and kci 5 0.0058
and for (b) r 5 0.9, kci 5 0.0022.

1, there is a (k dependent) cutoff value r0 of r below
which there is no instability; in Fig. 3b, this cutoff value
is r0 ø 0.28. We notice, on the other hand, that on the
shallow side of the jet, at z 5 0 (y 5 1`), we have Qz

. 0 and hence an inflection point of u(z) in the interval
0 , z , ½, provided r . 1/4a2 or r . 0.25 for a 5 1.
This PV consideration, along with the numerical result
above, together suggest that—for the present model—
a second inflection point is necessary for the instability
to obtain.

This requirement of a second inflection point does
not contradict QG theory, which stipulates merely that
one such point is necessary—but not sufficient—for an
instability to occur. In the present problem, the jet’s
physical symmetry with respect to the axis ( y 5 0), on
the one hand, and the inflection point’s occurrence nec-
essarily off this axis—in z as well as y—on the other,
imply that there have to be two inflection points on the
shallow and the deep side, rather than one only.

Equations (29), (30) also suggest that the jet is stable
for all r provided a , ½. Further analysis of Eq. (27)
confirms that the PV gradient in the upper layer is then
of one sign. Our numerical results have confirmed this
stability conjecture inspired by QG theory: no instabi-
litites were found when a , ½ for a wide range of
wavenumbers and depth ratios. An example of the de-
pendence of the instability exponents on the jet’s width
parameter a is shown in Fig. 5 for r 5 0.5 and 0.9 and
for k 5 1. For both r values, a cutoff a0 in a occurs
just below a 5 1.

Griffiths et al. (1982) and Ripa (1983) have dem-
onstrated that in certain primitive equation models,
where the QG approximation is no longer valid, insta-
bilities do arise even when the QG necessary conditions
for instability do not hold. In the study of Griffiths et
al. outcropping of isopycnals occurs, while Ripa studied
instability on a b plane. In the present study, the f-plane
approximation is made and no outcropping occurs. Boss
et al. (1996) demonstrated that, in fact, a surface of
discontinuity can restore the applicability of the QG
theory, so the QG necessary conditions still hold even
though the relative change in the upper layer’s depth is
O(1).

For a . a0, the growth rate increases linearly with a
2 a0. This linear dependence implies that the instability
owes its existence to the horizontal shear in the jet, as
in QG theory’s barotropic instability (Pedlosky 1987).
Kuo’s (1949) classic analysis of a jet’s instability in the
QG barotropic setting, however, yields a growth rate kci

of the order of 0.05umax, ignoring the details of the jet’s
velocity profile u 5 u( y). In our model, Eq. (2) gives
umax 5 a(1 2 r)/2 ø 0.25, for a 5 1 and r 5 0.5. This
would yield a QG growth rate, according to Kuo, of

0.0125, about twice as large as the largest kci found in
the present study for a 5 1.0 (see Fig. 2a) but smaller
QG growth rates than those found here for larger values
of a (see Fig. 5).

b. Observations

The Gulf Stream east of Cape Hatteras provides a
primary oceanic example of a near-zonal jet. Various
field experiments were conducted in the past to deter-
mine the length scale and growth rate of rings and eddies
that form along it (Robinson 1983).

Several observations concerning the growth of me-
anders on the Gulf Stream and their wavelength were
recently reported in the literature. Watts and Johns
(1982) have used moored arrays of inverted echo sound-
ers (IES) to track the wavelength of meanders propa-
gating through the array of moorings. They calculated
an e-folding time of 6 days for meanders with wave-
lengths exceeding 400 km, whose period was about two
weeks. Using the same IES instruments but in a different
segment of the Gulf Stream, Kontoyiannis and Watts
(1994) found meanders with a wavelength of 260 km
and a period of 8 days to have a maximal growth rate
that corresponds to an e-folding time of about 3 days.

Using 8 years of infrared (IR) satellite imaging, Lee
and Cornillon (1996) have calculated that the period
and wavelength of the fastest-growing meanders is of
about 40 days and 350 km, respectively, while the e-
folding time is between 12 and 25 days. The temporal
evolution of a single 100-km meander—first noticed in
satellite IR images on 15 February 1977 and observed
to have detached from the stream into a cold core ring
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on 10 March 1977—is described in detail by Richardson
(1980).

All these observations point to the fact that more than
one instability mechanism may be responsible for the
observed growth of wavelike perturbations on the Gulf
Stream. In fact, Feliks and Ghil (1996), using a mul-
timode QG model, find two distinct instabilities, short-
and long-wave, both with an e-folding time of about 5–
7 days; the former instability has wavelengths of about
250 km and periods of about 10 days, the latter 400 km
and hundreds of days, respectively. The former are clos-
er to the observations of Kontoyiannis and Watts (1994),
the latter to those of Lee and Cornillon (1996). Mea-
cham (1991) also obtained two groups of unstable
waves, with wavelengths of 200 and 400 km, both hav-
ing an e-folding time of about 5 days.

The present 1½-layer model only supports one type
of instability. In particular, it cannot capture baroclinic
instability, which requires the presence of vertical shear
in the horizontal velocity. In a layered model, like the
one considered here, this can only occur when the ve-
locity perturbations in the active (upper) layer are cou-
pled with those in the lower (passive) layer. Theoretical
models that include baroclinicity (Barth 1994; Fuka-
machi et al. 1995; Samelson 1993) have shown that the
growth rate and wavelength associated with this insta-
bility are on the order of a few days and tens of kilo-
meters. The effect of differences in water column strat-
ification on either side of the front was studied by Feliks
and Ghil (1997), who found instabilities with growth
rates of 5–6 days and wavelength of about 200 km that
correspond roughly to the short waves of the Feliks and
Ghil (1996) uniform-stratification model.

It is evident that baroclinic instability will dominate
the evolution of Gulf Stream meanders at shorter wave-
lengths and faster growth rates—as inferred from IES
measurements (Kontoyiannis and Watts 1994)—es-
pecially near the separation of the stream from the coast
at Cape Hatteras. The instability studied here, on the
other hand, is potentially quite relevant to observations
characterized by larger wavelengths and slower growth
rates, such as those described by Lee and Cornillon
(1996), farther downstream.

Furthermore, linear instability theories, such as ours,
are inherently relevant only to the initial stages of a
perturbation’s evolution, when its amplitude is suffi-
ciently small. By contrast, observations are much more
easily carried out on the mature stages of its develop-
ment, when the particular perturbation can be distin-
guished clearly from both the basic state and the other
perturbations that exist in the observed system. Thus,
one can only hope to obtain bounds or order-of-mag-
nitude agreements in a comparison between a linear
theory and a set of observations.

To apply our model to actual observations on growth
of meanders in the Gulf Stream requires some simpli-
fications of the observed mean flow. The first of these
is the two-layer representation of the continuous density

stratification. In the present model the lower one of the
two layers has no mean flow. We select a fairly deep
isotherm across the Gulf Stream to represent the bottom
of the active upper layer. The Pegasus data analyzed by
Halkin and Rossby (1985, see their Fig. 10) show that
only below 48C does the downstream velocity compo-
nent become less than 10% of the maximal upper layer’s
speed. To match the theoretical interface profile in Eq.
(1), we fit a hyperbolic tangent function to the 48C iso-
therm shown in Halkin and Rossby’s work. This yields
a dimensional value of the slope parameter a in Eq. (1)
that equals 55–60 km, while the asymptotic depths on
the shallow and the deep sides are 770 m and 1500 m.
The latter two correspond to a depth ratio r ø 0.5. If
we take the density jump between the two layers to be
1.6 s-units (i.e., a temperature jump of 108C) then the
radius of deformation R falls into the range of 55–60
km as well, which gives a nondimensional value of a
in our model of the Gulf Stream that equals 1.0.

The instability mechanism proposed here predicts
(see Fig. 2) a wavenumber of fastest growth, which is
k 5 1 for r 5 0.5 and a 5 1. This yields a dimensional
wavelength for this wave of about 2pR or 350 km. Such
a theoretical value is in good agreement with the 350-km
wavelength observed by Lee and Cornillon (1996) for
their most unstable meanders. The theoretical growth
rate associated with this unstable perturbation is on the
order of 0.006, which yields a nondimensional e-folding
time of about 160 or, in dimensional units, about 25
days. Lee and Cornillon (1996) give e-folding times of
12–25 days, so that the model value lies at the high end
of their observed range.
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