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ABSTRACT

Microstructure data from the North Atlantic Tracer Release Experiment (NATRE) are presented, providing
detailed profiles of the thermal variance x in the upper 360 m of the Canary Basin for the fall and spring seasons.
The Osborn–Cox model is used to compute the diffusivity KT. The diffusivity for the depth range 240–340 m
is found to be 1.0(60.04) 3 1025 m2 s21 in the fall and 2.2(60.1) 3 1025 m2 s21 in the spring, in good agreement
with dye-inferred diffusivities at similar depths. Measured turbulent kinetic energy (TKE) dissipation rates were
found to be contaminated by hydrodynamic noise, so the Osborn dissipation method was not used to compute
Kr. However, data segments for which the TKE dissipation rate («) was large enough to be unaffected by noise
were used to compute the ‘‘apparent mixing efficiency’’ Gd. The computed Gd values are used to investigate
variations in apparent mixing efficiency with respect to density ratio (Rr) and turbulence Reynolds number [«/
(nN 2)], in an attempt to elucidate the underlying mechanisms of mixing in the NATRE region. Observed variations
of Gd are compared with existing theoretical models of mixing due to: salt fingers, a combination of salt fingers
and turbulence, ‘‘conventional’’ high Reynolds number turbulence, and low Reynolds number buoyancy-modified
turbulence. Significant variations of Gd with respect to both Rr and «/(nN 2) are found. Although Monte Carlo
tests show that some of the observed variations could be noise-induced, a substantial portion of the systematic
variations the authors observed were not reproduced by Monte Carlo simulations. These trends are found to be
statistically significant, and the authors conclude that they represent real variations in the apparent mixing
efficiency. The authors find that Gd is an increasing function of «/(nN 2) and a decreasing function of Rr; these
variations are not fully consistent with any of the available mixing models.

1. Introduction

The North Atlantic Tracer Release Experiment (NA-
TRE) was one of the Core-3 process experiments per-
formed as part of the World Ocean Circulation Exper-
iment (Ledwell et al. 1993; Ledwell and Watson 1994).
In April 1992, sulfur hexafluoride was released within
a few meters of the st 5 28.036 isopycnal surface near
300-m depth. Its lateral dispersion and vertical spread-
ing via diapycnal mixing processes were observed in
subsequent surveys during the following year. The
spreading rate was consistent with a diapycnal diffu-
sivity of 1–2 (31025 m2 s21), with the larger value oc-
curring in the winter months.

In order to explore the links between finestructure,
microstructure, and diapycnal mixing, and to test the
methods and models currently used to infer mixing rates
from microstructure measurements, nearly two thousand
profiles of the vertical gradients of microscale temper-
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ature and velocity were taken using the tethered profiler
EPSONDE (Oakey 1988). The instrument was also
equipped with conventional CTD sensors to relate the
microstructure observations to water masses and to local
vertical gradients of temperature, salinity, and density.
The main rationale for verification of microstructure
methodologies is cost: Tracer experiments require a
great deal of ship-time due to sampling requirements,
and microstructure measurements can be used to ex-
trapolate the NATRE findings to other depths, times,
and physical locations. The microstructure measure-
ments and ancillary finescale observations also provide
valuable clues as to the underlying physical mechanisms
causing the mixing. It is important to understand the
mechanisms so that suitable parameterizations can be
devised for use in numerical circulation models, and to
forecast the likely changes in mixing rate that might
occur as a result of climate shifts.

In this paper, we explore the variation of a key ob-
servable, the apparent mixing efficiency, within the NA-
TRE dataset in order to test the hypothesis that the ob-
served microstructure is associated with ‘‘conventional’’
high Reynolds number turbulence. In the next section,
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we summarize the classical models used to interpret
microstructure observations, Gargett’s (1988b) scaling
arguments for buoyancy-modified turbulence, and mod-
els involving salt fingers. In section 3 we examine depth
variation of diffusivity and compare with that inferred
from the tracer. Our TKE dissipation measurements are
found to have a noise problem, so that only the most
intense data segments can be used for further analysis.
In section 4 we examine the systematic variation of
apparent mixing efficiency with environmental param-
eters, particularly gradient density ratio

aTz
R 5 , (1)r

bSz

(where the subscript z indicates partial differentiation)
and turbulence activity parameter «/nN 2. Finally, in sec-
tion 5 we discuss the physical implications of our find-
ings.

2. Models for interpretation of microstructure

Gregg (1987) reviews the traditional models used to
interpret microstructure observations in terms of dia-
pycnal diffusivities. We will summarize two of the mod-
els here in order to explain the computation and physical
meaning of Gd. We also review microstructure models
involving salt fingers to consider the possibility that
double-diffusive fluxes play a role in this region.

a. The Osborn and Cox (1972) model

This model uses the concept that turbulent eddy trans-
port of temperature w9T9 down1 a mean temperature
gradient ]T/]z will transport fluid parcels to regions
where their temperature is anomalous, producing ther-
mal variance T92, which would increase indefinitely un-
less dissipated. The overbar indicates an average over
scales slightly larger than turbulent length scales (in this
case an average over the ;8 m data block length), and
the prime indicates deviations from that average. Mo-
lecular diffusion of heat with diffusivity kT causes the
anomalous blobs to blend into the background, and it
is this diffusive blending that is estimated by microscale
temperature sensors and is used in the Osborn–Cox
model. After performing the Reynolds decomposition,
the equation describing the budget of turbulent thermal
variance is (Gregg 1987)

1 Downward turbulent heat flux implies transport of warm water
parcels down to cooler (deeper) levels, where they are anomalously
warm and appear as thermal fluctuations.

2 2]T9 ] ]T9 ]T
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The first term represents the rate of change of thermal
variance; term 2 is the divergence of the transport by
the mean flow, the turbulence, and molecular diffusion,
respectively. The third term represents production of
thermal variance by lateral heat fluxes in a lateral tem-
perature gradient (i 5 1, 2) and by vertical heat flux in
a vertical temperature gradient. The lateral terms may
dominate in regions where lateral thermohaline intru-
sions occur (Gregg 1987). But since the lateral gradients
are weak in the NATRE observations, we assume the
vertical production term 3 (with i 5 3) dominates on
the left and is balanced by the dissipation term 4 on the
right side of (2).

Under the above assumptions, and introducing the
eddy diffusivity as the ratio of thermal eddy flux and
temperature gradient, (2) reduces to (Osborn and Cox
1972)

2
]T ]T

K [ 2w9T9 5 x/2 , (3)T @[ ] [ ]]z ]z

where

2 2
]T9 ]T

x 5 2k ø 6kT T[ ] [ ]]x ]zi

(assuming isotropy) is the rate of dissipation of thermal
variance by molecular diffusion. So long as a quasi-
steady, homogeneous local balance obtains, with the
vertical fluxes dominant, (3) is valid whether the vertical
mixing is due to mechanically generated turbulence, salt
fingers, or a combination of the two (Hamilton et al.
1993). The natural variability of x (usually several or-
ders of magnitude) and the skewness of its statistical
distribution (Baker and Gibson 1987) requires that a
large number of profiles be taken and averaged appro-
priately to obtain reliable diffusivity estimates. This has
prevented the widespread use of the method.

b. The Osborn (1980) dissipation method

This method is based on the turbulent kinetic energy
budget, and uses observations of the dissipation rate of
turbulent kinetic energy (TKE) by molecular viscosity
to infer the strength of the turbulent energy source, and
hence infer the buoyancy flux. The TKE equation for
stratified shear flow in the x1 direction is (Gregg 1987)
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r u9u9 r u9u9] ] ]uj j j j 11 u9 p9 1 1 r u9u9i 1 3[ ][ ] [ ]]t 2 ]x 2 ]xi 3

5 r J 2 r «. (4)b

The terms represent (from left to right) the rate of
change of TKE, its transport by pressure-work terms
and triple correlations; TKE production by downgra-
dient momentum transport ( ) in a mean shear2ru9u91 3

flow; the loss of TKE associated with the raising of
mean potential energy due to the buoyancy flux Jb, and
the loss of TKE to dissipation by molecular viscosity.

The turbulence examined here is probably forced by
a combination of low-frequency shear and internal
waves, and is consequently highly intermittent. The in-
termittent nature of the forcing means that the TKE
production term in (4) is not strictly correct, there being
no steady shear related to the production. We will regard
the production term in (4) as representing the average
rate of energy conversion from the internal wave field
to turbulence. Our observations consist of a spectrum
of overturns with a range of length scales and Reynolds
numbers, and the resulting turbulent ‘‘patches’’ are at
different temporal stages in their evolution. The under-
lying intermittency can be seen in several of the figures.

If the turbulence is statistically steady and homoge-
neous, then (4) reduces to

]u1r u9u9 5 r J 2 r «, (5)1 3 b]x3

where

g
2J [ 2 r9w9 5 2K Nb rr

is the vertical buoyancy flux2 with N 2 defined as the
segment average of 2grz / r and

2]u9]u9 ]u9 15 ]u9ji i« 5 n 1 ø n1 2 1 2]x ]x ]x 2 ]zj j i

is the rate of TKE dissipation (the approximation is valid
if the turbulence is isotropic), and n is the coefficient
of molecular viscosity. In practice, « is based on an
average of the shear measured by two probes; these may
be oriented parallel to one another (as was done on the
Hudson cruise in spring 1993) or perpendicular to one
another (as on the Oceanus cruise in fall 1992). If the
flux Richardson number R f is defined as the fraction of
the turbulent energy source used to change the potential
energy through buoyancy flux

]u1R 5 J / u9u9 , (6)f b 1 3 ]x3

then the buoyancy flux can be estimated as a proportion

2 We define Kr [ 2Jb/N 2.

of the dissipation «, giving an estimate of the eddy
diffusivity for density Kr (Osborn 1980)

2J «bK [ 5 G . (7)r t2 2N N

The proportionality factor Gt 5 R f /(1 2 R f) is often
called the ‘‘turbulent mixing efficiency,’’ which is a
misnomer since it is actually the ratio of buoyancy flux
to dissipation.

Laboratory experiments (Linden 1979; Rohr et al.
1988) suggest that the flux Richardson number (and
hence Gt) is a function of the gradient Richardson num-
ber N 2[]u/]z]22, a measure of the intensity of forcing.
Since forcing and dissipation must be linked, one might
expect that R f is also a function of the dimensionless
dissipation «/(nN 2). In oceanic applications of the dis-
sipation method, Gt is often taken to be close to the
maximum observed value of about 1/4.

c. Dissipation coefficient: Gd

Oakey (1985) estimated the turbulent mixing effi-
ciency Gt by forming the ratio of thermal and TKE dis-
sipations

2xN
G [ . (8)d 22T «z

In a turbulent, non-double-diffusive (Rr . 7) oceanic
mixed layer, Oakey measured a mean mixing efficiency
of 0.265 (with the 68% confidence region for the sample
mean lying between 0.066 and 0.436).3 Hamilton et al.
(1989) call this quantity the ‘‘scaled dissipation ratio,’’
and Moum (1996) suggests that it be called the dissi-
pation flux coefficient. In any case, Gd is an observed
quantity distinct from Gt and they are only expected to
be equal if

R the observed mixing is ‘‘conventional’’ high Reynolds
number turbulence (so that KT 5 Kr);

R the conditions for validity of both the Osborn–Cox
(1972) and the Osborn (1980) models are satisfied.

We will use the term ‘‘dissipation coefficient’’ for Gd

but, because of its historical usage, we also refer to it
as the ‘‘apparent mixing efficiency.’’

d. Gargett’s low Reynolds number scaling

Gargett (1988b) has proposed a pair of deterministic
scalings for buoyancy-modified turbulence, which pro-
vide order of magnitude estimates of the turbulent mix-
ing efficiency and its variation with turbulent intensity.
Gargett’s scalings differentiate between ‘‘conventional’’
high Reynolds number turbulence, isotropic between

3 In fact, Oakey (1985) used Gd 5 ga(1⁄3 6 1⁄6)x/«Ts, which assumes
that the stratification is predominantly thermal.
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buoyancy and dissipation scales, and what she terms
‘‘low vertical Reynolds number’’ turbulence, for which
buoyancy effects cause anisotropy at all scales. Both
scalings assume that the Froude number Fr [ U/Nl is
of O(1), and that the Peclet number Pe [ Ul/k k 1,
where the horizontal and vertical velocity scales of the
largest turbulent ‘‘eddies’’ are taken to be U and W, and
the corresponding length scales are l and h. The dif-
ference between the two scalings enters in the assump-
tions made about the size of the ‘‘vertical’’ Reynolds
number, Rew 5 Wh/n. For the high Reynolds number
scaling (Rew k 1) Gargett finds

U ; W ; Ï«/N
3l ; h ; Ï«/N . (9)

Thus, in the high Rew case the turbulence is approxi-
mately isotropic. However, if the Reynolds number
based on the horizontal length and velocity scales is
large, but Rew 5 O(1), very different vertical scales are
predicted;

W ; ÏnN

h ; Ïn /N , (10)

with horizontal velocity and length scales again given
by (9). Thus, for Rew ; 1 all scales are modified by the
stratification, and the largest turbulent eddies are sig-
nificantly anisotropic. Using values appropriate for the
NATRE area (« ; 1 3 1029 W kg21, N ; 4 3 1023

s21), we find that U ; 0.5 mm s21, l ; 0.1 m, W ;
0.05 mm s21, and h ; 2 cm.

If the turbulence is high Reynolds number and iso-
tropic, then the molecular diffusivity of the stratification
should not affect the turbulent fluxes. Then Kr and KT

should be equal, and combining (7) and (3) we find Gd

5 Gt. Since the molecular diffusivity of the stratifying
component (heat or salt) should not affect the turbulent
fluxes in this case, we expect that Gd should not be a
function of Rr, and because the Reynolds number is
assumed to be large, we would expect that Gd should
not depend on the buoyancy Reynolds number «/(nN 2)
either.

In the low Rew case Gargett (1988b) predicts

Gt ø («/nN 2)21, (11)

implying a generally small mixing efficiency. Gargett’s
low Rew scaling suggests that the scaled dissipation «/
nN 2 is a measure of the anisotropy of the turbulent eddy
field, and of the (inverse) mixing efficiency, whereas
for high Rew, «/nN 2 is best thought of as a (buoyancy)
Reynolds number.

The scaling arguments in Gargett (1988b) were based
on the assumption that the Peclet number is large, so
that even at low vertical Reynolds number, small-scale
stirring should dominate over molecular diffusion as a
mechanism for incorporating entrained fluid parcels into
their surroundings. If this is the case, then the turbulence
‘‘does not care’’ what the stratifying agent is. Gargett’s

assumption was apparently motivated by laboratory ex-
periments in which salt (which has a rather low diffu-
sivity) was the stratifying property. However, if tem-
perature makes an important contribution to the strati-
fication, then the thermal Peclet number is

Wh n
Pe [ 5 Re , (12)T wk kT T

and the salt haline Peclet number is

Wh n
Pe [ 5 Re , (13)S wk kS S

where kT and kS are the molecular diffusivities of heat
and salt. Thus, if Rew ; 1, then PeT ; 7 and PeS ;
500, so the thermal Peclet number may not be very large,
and one might expect to see a Pe dependence like that
observed by Turner (1968) for interfacial entrainment.
Gargett (1988a) alludes to this possibility, noting that
heat and salt could mix unequally.

e. Salt finger mixing

The unstable ‘‘salty on top’’ stratification in the NA-
TRE area provides a source of potential energy that can
be released by salt fingers (Turner 1973). Hamilton et
al. (1989) suggest that, if mixing due to salt fingers
dominates that due to turbulence, then (4) reduces to

Jb 5 «, (14)

and KT is again given by (3). This allows derivation of
a formula for the dissipation coefficient Gd, given a salt
finger buoyancy flux ratio (g f)

g (R 2 1)f r
G 5 . (15)d R (1 2 g )r f

Hamilton et al. (1993) observed large values of Gd (with
median values of about 0.5) in data from beneath the
core of Meddy ‘‘Sharon,’’ and invoked salt fingers to
explain the elevated Gd values.

The model of McDougall and Ruddick (1992) can be
used to quantify mixing rates due to the combined ef-
fects of both salt fingers and turbulence, provided the
flux ratio of the salt fingers and the mixing efficiency
of the turbulence is known. For the model to be used,
Gd must lie between Gt and the finger values given by
(15), so that the relative position between these values
can be used to apportion the mixing between turbulence
and fingers.

In section 4 we compare Gd with the values and be-
havior predicted by the three hypotheses discussed in
section 2. The expected functional behavior of Gd(Rr,
«/nN 2) under each of these hypotheses is summarized
in Table 1.
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TABLE 1. Expected behavior of Gd according to different mixing models.

Isotropic
turbulence

Anisotropic
turbulence Salt fingers SF and turbulence

Gd (Rr) independent may vary varies [Eq. (15)] varies [between Gt and
Eq. (15)]

Gd

«1 2
2nN

Const., O(1) ,O(1), 21 slope N.A. ?

3. Turbulence observations

a. Field observations

After the injection cruise in April 1992, two NATRE
cruises were devoted to sampling the tracer and simul-
taneously observing turbulent microstructure with EP-
SONDE and its twin, ELITESONDE. The first was on
the RV Oceanus in fall 1992 (26 Oct–19 Nov 1992)
and the second was on the CSS Hudson in spring 1993
(5 Apr–14 May 1993). Over 800 profiles to depths of
about 360 m were obtained on the fall cruise and nearly
1000 were taken during the spring cruise, giving detailed
measures of temperature and velocity microstructure on
cm scales, and of CTD parameters (conductivity, tem-
perature, and pressure) on scales of order 1 m. The
typical sampling routine involved a CTD cast, tracer
samples at selected depths chosen relative to the target
isopycnal, followed by a series of EPSONDE micro-
structure profiles. Figure 1 shows the tracer release site,
the location of the tracer during the fall 1992 and spring
1993 cruises (Ledwell et al. 1993, 1994) and the lo-
cations of the EPSONDE stations. The coincidence of
the microstructure observations and tracer ensures that
the turbulent diffusivity estimates are representative of
the tracer plume; however, the microstructure was sam-
pled over about 3 weeks in fall 1992 and for nearly six
weeks in spring 1993, while the tracer was affected by
mixing processes during the entire experiment.

Composite profiles of temperature, salinity, and den-
sity ratio (Rr) calculated over 8-m segments are shown
in Fig. 2. Individual 8-m averages are shown as points,
and depth-bin-averaged profiles as solid lines. Depth-
bin averages of Rr were4 computed as ^aTz&/^bSz&, and
only data segments for which the gradients Tz and Sz

were uncertain by less than 25% were used. The tem-
perature and salinity are (on average) stratified in the
salt fingering sense. There was a mixed layer in the
upper 60 m of the water column during the fall 1992
cruise, whereas the spring 1993 cruise showed a surface
mixed layer of ;90 m, with a remnant winter mixed
layer base at ;170 m. The spring 1993 cruise covered
a much wider geographical area than the fall cruise,

4 The notation ^ · & denotes an average. For gradient quantities like
Tz and Sz a simple arithmetic mean is used, while for microstructure
quantities ^ · & may refer to either an arithmetic average or an MLE
estimate (see the appendix).

accounting for the larger variation of water properties.
It is also possible that some of the salinity variation
apparent in the spring profiles may be due to conduc-
tivity sensor calibration errors, but these have little or
no effect on gradient quantities such as Gd, Rr, and («/
nN 2), which are our primary interest. A strong vertical
variation in density ratio is evident, going from a nearly
uniform value of 1.6 below 150 m to more variable and
larger within the mixed layer. The upper mixed layer
for the fall 1992 cruise was stably stratified in both T
and S (negative density ratio).

b. Diffusivity from temperature microstructure:
The Osborn–Cox model

We now examine the turbulent diffusivity inferred
from temperature microstructure via the Osborn–Cox
(1972) model. Figure 3 shows the depth-bin-averaged
temperature gradient, thermal dissipation (x), and tur-
bulent diffusivity KT for each cruise. Only data segments
for which Tz was uncertain by less than 25% were used
to compute the average profiles of Tz and KT. Because
the appropriate method for computing averages of mi-
crostructure quantities like x and « is unclear (e.g., Ba-
ker and Gibson 1987; Davis 1996), we show both arith-
metic averages (filled circles) and maximum likelihood
estimates (MLE, see the appendix). The method of av-
eraging appears to have little effect on the profiles. Bin
averages of x computed using the MLE for lognormal
variables are shown as solid curves, with shading giving
95% confidence intervals, and arithmetic means are
shown as filled circles. Bin averages of KT were com-
puted using the MLE estimator to give

x
27 82T z

(solid curve with shading) and averages computed as
0.5^x&/^Tz&2 are shown as filled circles. The temperature
gradient exhibits a maximum near the mixed layer base
for each of the cruises, and depth profiles of x tend to
mimic Tz. The diffusivity KT is quite large and variable,
and more uncertain near the surface, primarily due to
small and highly variable temperature gradients at these
depths. Below the mixed layer the diffusivity is well
estimated and has small estimated uncertainty.

Below the mixed layer the diffusivities estimated for
the spring and fall cruises are of the order of 1025 m2

s21, and there are significant differences between the



2594 VOLUME 27J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 1. Map showing the location of the NATRE experiment (panel a). Panel b is an
enlargement of the NATRE survey region, with the shading showing the area in which
significant quantities of dye were found during the cruise in April and May 1993 on the
CSS Hudson (adapted from Clark 1997). Filled circles (v) mark the locations of the
microstructure profiles that were taken. Panel c is an expanded view of the boxed area
in panel b, showing the locations of the initial injection in spring 1992 and the dye streaks
that were mapped out in three subsequent cruises (adapted from Ledwell et al. 1993).
The microstructure profiles taken from the RV Oceanus during October and November
1992 are shown as filled triangles (m).
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FIG. 2. Vertical profiles of T, S, and Rr taken during cruises on the RV Oceanus in fall 1992 (top three panels) and
on the CSS Hudson in spring 1993 (bottom panels). Individual measurements are scatterplotted in gray. The data were
divided into 20-m depth bins, and bin averages computed; solid curves show computed bin averages with error bars
giving the estimated 95% confidence intervals. In the right-hand panels, only data from segments with estimated gradient
uncertainties of less than 25% are shown.

spring and fall observations. In the fall, the diffusivity
is nearly uniform at these depths, with values of ;1 3
1025 m2 s21, while in the spring the diffusivity was
significantly larger, ranging from 2 3 1025 m2 s21 at
300 m to 5 3 1025 m2 s21 at 100 m. These differences
do not appear to be due to geographical variations in
KT associated with the greater geographical extent of
the spring 1993 survey, as little lateral variation is ap-
parent in either the fall or spring data. The substantially

larger diffusivity observed at depth in the spring is con-
sistent with the tracer studies of Ledwell et al. (1993)
and Ledwell and Watson ( 1994), who found the average
diffusivity for the winter months to be roughly twice as
large as that for the summer months. The diffusivity
estimated from the vertical spread of the tracer over the
previous six months is shown as an open box. The height
of each box indicates the depth range over which the
tracer concentration was .50% of its peak value at the
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FIG. 3. Vertical profiles of temperature gradient (Tz), thermal dissipation (x), and thermal diffusivity (KT) from cruises
on the RV Oceanus in the fall of 1992 (top three panels) and on the CSS Hudson in spring 1993 (bottom panels). The
data were divided into 20-m depth bins, and bin averages were computed. Shading shows the estimated 95% confidence
intervals on the bin averages, which are shown as solid curves. For x, bin averages were computed using a MLE for
lognormally distributed quantities (see the appendix), and the corresponding arithmetic means are shown as filled circles.
For KT, the solid curves show bin averages of KT 5 0.5x/ , and the filled circles show bin averages computed as KT

2Tz

5 0.5^x&/^Tz&2. The shaded boxes at ;300 m show the diffusivity inferred from dye measurements, with the height of
each box giving the vertical extent of the dye.

time of the sampling cruise, and the width of each box
indicates the estimated uncertainty of the tracer-derived
diffusivity (where available). The tracer and microstruc-
ture-derived diffusivities are in good agreement.

The histograms and probability plots of x, «, and Gd

that follow (Figs. 4–6) are for the depth range 240–340
m that brackets the tracer, over which conditions are

more uniform than in the upper 240 m. The probability
distribution function (PDF) of logx for the depth range
are shown as histograms (Figs. 4a,c) and probability
plots (Figs. 4b,d). The axes of the probability plot are
such that a lognormally distributed variate would yield
a straight line, with a steeper slope signifying a narrower
distribution. The straight lines in panels b and d rep-
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FIG. 4. Histograms and normal probability plots of log x for the depth range 240–340 m. The histograms in
panels (a) and (c) show data from the fall 1992 and spring 1993 cruises, respectively, and the corresponding
probability plots are shown in panels (b) and (d). The solid curve superimposed on the histograms shows the best-
fit lognormal distribution, which was obtained by fitting to the central 50% of the distribution. For the fall cruise,
log x has a mean of 28.25, a standard deviation of 0.37, and the MLE-estimated mean of x is 8.1(60.2) 3 1029

8C2 s21 (uncertainties represent 95% confidence intervals); for the spring cruise log x has a mean of 28.09, a
standard deviation of 0.50, and the MLE-estimated mean of x is 1.6(60.06) 3 1028 8C2 s21.

resent a linear least squares fit to the central 50% of the
distribution, and the corresponding ‘‘best fit’’ distribu-
tions are shown by the solid curves in panels a and c.
The plots show that x is approximately lognormal, al-
though both cruises show a moderate excess of large
values relative to the central 50% of the distribution.
The MLE-estimated mean of x for the fall 1992 data
(240–340 m) is 8.1(60.2) 3 1029 8C2 s21, while for the
spring 1993 data it is 1.6(6.06) 3 1028 8C2 s21—a factor
of 2 larger. The corresponding values of KT for the 240–
340-m depth range are 1.0(60.04) 3 1025 m2 s21 and
2.2(60.1) 3 1025 m2 s21 for the fall and spring cruises,
respectively. The computed MLE estimate of ^x& for the

two cruises is 1.1(60.02) 3 1028 8C2 s21, and ^Tz& 5
1.9(60.01) 3 1022 8C/m (using only segments with
estimated gradient errors , 25%), so that ^KT& 5
1.5(60.05) 3 1025 m2 s21 for the depth range 240–340
m, in agreement with the tracer observations, and with
the microstructure-inferred diffusivity of 1.4 3 1025 m2

s21 reported by Sherman and Davis (1996). We note that
the values of ^x& (and the corresponding KT values) quot-
ed here are somewhat smaller than those apparent in
Fig. 3 for the same 240–340-m depth range. The reason
for this is that only the central 50% of the distribution
is used here, whereas all x values within a depth bin
were used to generate the profiles in Fig. 3. The slight
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FIG. 5. Histograms and normal probability plots of the turbulent kinetic energy dissipation rate («) for the depth
range 240–340 m. The histograms in (a) and (c) show data from the fall 1992 and spring 1993 cruises, respectively,
and the corresponding probability plots are shown in (b) and (d). The solid curves superimposed on the histograms
show the best-fit lognormal distributions for the upper tail of the distributions (« . 7.0 3 1029 W kg21, and excluding
the upper 0.1% of the distribution). For the fall cruise, the extrapolated distribution has a logarithmic mean of 29.2,
a logarithmic standard deviation 0.51, and the MLE-estimated mean of « is 1.26 3 1029 W kg21; for the spring
cruise the extrapolated distribution has a logarithmic mean of 28.79, a logarithmic standard deviation of 0.44, and
the MLE-estimated mean of « is 2.75 3 1029 W kg21.

‘‘excess’’ of large x values apparent in Fig. 4 leads to
slightly larger computed means for the depth profiles.

c. Velocity microstructure

Temperature microstructure and the Osborn–Cox
(1972) model suggest a diapycnal diffusivity of 1.5 3
1025 m2 s21. If this mixing is achieved by turbulence
with an efficiency of 0.265, then the observed mean
value of N of 4.0 3 1023 s21 for the depth range 240–
340 m leads us to expect a mean dissipation rate of
turbulent kinetic energy, ^«& ø 1.0 3 1029 W kg21. The

lognormal distribution of temperature dissipation leads
us to expect a lognormal distribution of « of similar
width. Histograms of TKE dissipation (Figs. 5a,c) show
a narrow distribution (with logarithmic standard devi-
ation of 0.17–0.20) centered about 3 3 1029 W kg21.
The MLE-estimated means of the measured dissipation
are 3.3 3 1029 W kg21 and 3.7 3 1029 W kg21 for the
fall and spring cruises, respectively, several times larger
than expected. The probability plots (Figs. 5b,d) show
two straight regions, suggesting a bimodal distribution,
the first of these lies between 1029 and 7 3 1029, and
the second falls between 7 3 1029 and 2–3 (31028).
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The first region corresponds to the large narrow peak
in the histograms, while the second corresponds to the
extended tail of higher dissipation values. The straight
solid line shown on the probability plots corresponds to
the solid curves on the histograms, representing a log-
normal distribution with a logarithmic mean of 29.2
and logarithmic standard deviation of 0.51 for the fall
cruise, and a logarithmic mean of 29.79 and a loga-
rithmic standard deviation of 0.44 for the spring 1993
cruise. These curves, derived from the tail of the ob-
served distributions, are consistent with what we expect
from the temperature and tracer observations. The ob-
servations of « are therefore consistent with an under-
lying broad distribution centered on roughly 1029 W
kg21, upon which a narrow noise distribution centered
on 3 3 1029 W kg21 is superposed. The extrapolated
distributions suggest a mean « of 1.26 3 1029 W kg21

for the fall 1992 cruise, and a mean of 2.75 3 1029 W
kg21 for the spring 1993 cruise. Taken together with
Fig. 4, this suggests that both x and « were larger by a
factor of 2 to 3 during the spring 1993 cruise.

To obtain an estimate of the instrumental noise in «
as a function of drop speed, EPSONDE was dropped
repeatedly in a quiescent seawater-filled tank of diam-
eter 3 m and depth 10 m. A noise level of roughly 1.5
3 1029 W kg21 was found to be associated with hy-
drodynamic noise from a sensor guard assembly (since
redesigned). It was originally hoped that this noise could
be subtracted, but the nonlinear nature of the problem
and of the data analysis has precluded this. We have
concluded that dissipation values less than 7.0 3 1029

W kg21 (this value corresponds to the intersection of
the two straight-line portions of the probability plots)
are likely to be contaminated by hydrodynamic guard
noise, while values larger than this are not.

The contamination of the « observations precludes
direct estimation of ^«& and of ^Kr& using the Osborn
(1981) dissipation model. However, the dissipation co-
efficient Gd can be computed for data segments in which
« is large enough to be uncontaminated. The density
and temperature gradient in each 8-m data segment were
estimated by a linear least squares fit, and the gradient
uncertainty was estimated from the residuals. Each 8-m
data segment was required to pass the following four
criteria in order to be included in the subsequent anal-
ysis:5

1) The shear and temperature gradient spectra must be
visually consistent with the expected ‘‘universal
spectrum’’ of Nasmyth (Oakey 1982). [48%]

2) The segment-averaged dissipation rate must exceed
7.0 3 1029 W kg21 to be considered free of contam-
ination by hydrodynamic guard noise. [5.8%]

3) The segment-averaged density gradient must be un-

5 The percentage of the segments passing each criterion for the
depth range from 20 to 340 m is shown in square brackets.

certain by no more than 25%. The major uncertainty
was not instrumental noise, but small-scale nonlin-
earities in the density profile. [18.2%]

4) The segment-averaged temperature and salinity gra-
dients must be uncertain by no more than 25%.
Again, the major uncertainty was due to small-scale
nonlinearities in the profiles rather than instrumental
noise. [29%].

The above criteria resulted in only 0.9% of the data
records (738 in all) being used to study Gd. The gradient
criteria are necessary to minimize the creation of bogus
trends due to imperfect estimation of gradients. This
effect will be discussed in detail in section 4.

In studying Gd variations, we have chosen to combine
data from the two cruises, primarily to reduce the sta-
tistical uncertainties on our bin-averaged quantities. The
data indicate a mixing efficiency of 0.14(60.02) for the
fall (for the depth range 20–340 m) and 0.21(60.02)
for the spring, suggesting that the more intense micro-
structure activity in the spring was associated with more
‘‘efficient’’ mixing. This is consistent with the depen-
dence of Gd on buoyancy Reynolds number found in
section 4c, given the larger dissipations observed in the
spring.

It is possible that sampling only the high dissipations
(criterion 2) could bias the results to certain (high en-
ergy) phases of turbulent events. If x and « evolve dif-
ferently through the course of each event, the computed
dissipation coefficient would be biased. The histogram
and probability plot of Gd computed for those records
are shown in Fig. 6. The dissipation coefficient is log-
normally distributed, with an MLE-estimated mean of
0.18(60.015), and a (logarithmic) standard deviation of
0.41, both of which are consistent with the earlier find-
ings of Oakey (1982). Thus, it appears that any such
bias is not large enough to dominate the results.

In the next section, we will examine systematic vari-
ations of dissipation coefficient Gd with respect to buoy-
ancy Reynolds number and density ratio, without fo-
cusing on its magnitude. We find trends in Gd that we
believe are not due to the truncation of the dataset, since
if Gd were independent of both density ratio and buoy-
ancy Reynolds number, then restricting the analysis to
high values of buoyancy Reynolds number could not by
itself induce a trend.

4. Variations in apparent mixing efficiency Gd

The working hypothesis to be tested is that Gd is in-
dependent of buoyancy Reynolds number («/nN 2) and
density ratio Rr. We find small but systematic variations
of Gd with both quantities. However, as we have found
our analysis technique to be sensitive to errors in esti-
mation of microstructure and gradient quantities, we
first describe the Monte Carlo procedure we devised to
validate our results.
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FIG. 6. Histogram and probability plot of the dissipation coefficient Gd, using data from both the fall 1992
and spring 1993 cruises. The data have been subsampled according to the criteria in section 3c. The solid curve
in the left panel shows the best-fit lognormal distribution (corresponding to the solid curve in the right panel),
which was obtained by fitting to the central 50% of the distribution. The fitted distribution has a logarithmic
mean of 20.94, a logarithmic standard deviation of 0.41, and the MLE gives a value of 0.18(60.015) for the
mean of Gd (uncertainties represent estimated 95% confidence intervals).

FIG. 7. Histograms of the measured dissipation rate («) and the
synthetic dissipation data («S) used in the Monte Carlo tests. The
synthetic data were constructed so as to give a constant value of
0.265 for Gd. The measured dissipation « has a mean of 4.1 3 1029

W kg21, while the mean of the synthetic dissipation «S is 1.3 3 1029

W kg21.

a. Effect of observational errors: Monte Carlo
analysis of synthetic datasets

A serious problem of plotting derived quantities like
Gd against Rr or («/nN 2) is that measured quantities such
as N 2 appear in all three variables. Therefore, random
noise will appear in both the ordinate and the abcissa
of the scatterplots. This could lead to apparent system-

atic variations of Gd with respect to either density ratio
or buoyancy Reynolds number. To test the robustness
of the trends we observe to sampling or observational
errors in any of the quantities that make up Gd, we
generated synthetic datasets and performed Monte Carlo
tests on them. Several different artificial datasets were
generated and tested, but our approach and overall re-
sults are well illustrated by the following one involving
a synthetic TKE dissipation «s.

From each 8-m data segment, we constructed the syn-
thetic dissipation (denoted by the subscript s) that would
make the segment value of Gd equal to 0.265;

21 xN
« 5 . (16)s 20.265 2T z

Figure 7 shows the histograms of « and «s. The synthetic
dissipation has a broad lognormal distribution similar
to what was expected, and the tail at high dissipation
values matches the observed dissipation. In the sections
that follow, we first examine the dependence of Gd on
density ratio, using both observed and synthetic data-
sets, and then the dependence on buoyancy Reynolds
number.

b. Gd versus Rr

Figure 8a shows segment-average values of Gd plotted
against corresponding values of density ratio, for those
records satisfying the criteria outlined in section 3 (ac-
ceptable spectra, dissipation rate exceeding the thresh-
old value, gradient errors estimated at less than 25%).
The maximum likelihood estimate (the appendix) of the
bin-averaged Gd and the corresponding estimated 95%
confidence intervals are shown by the solid curve and
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FIG. 8. The observed variation of the dissipation coefficient Gd with (Rr 2 1) (a). Solid curves show the MLE for the mean of Gd (with
95% confidence intervals shown by the dashed curves); filled circles show the corresponding arithmetic means. The additional curves in (a)
show the expected behavior of Gd [from Eq. (15)] if the mixing were due to salt fingers with a flux ratio of 0.6 (solid curve) and 0.25
(dashed). (b)–(d) The results of Monte Carlo tests that were performed to see whether the observed trend in (a) could be reproduced by
adding noise to observed quantities if Gd were independent of Rr. (b) The effect of adding noise with mean of 3 3 1029 W kg21 to «S. (c)
and (d) The effect of 25% error in the estimation of temperature and salinity gradients, respectively.

shading, respectively. The arithmetic means are shown
as open circles. A significant trend (in the sense of ex-
ceeding the computed error bars) is seen for Rr in the
range 2.5–5. The solid and dashed curves show the ap-
parent mixing efficiency computed from Eq. (15). The
solid curve corresponds to a flux ratio of g f 5 0.6, the
value found experimentally by Schmitt (1979), while
the dashed curve corresponds to g f 5 0.25, the value
predicted by the Howard and Veronis (1987) steady-
state model. Although the observed behavior of Gd is
roughly consistent with the dashed curve for low Rr, so
that we cannot rule out fingers with a low flux ratio,
the Monte Carlo tests below show that a more plausible
explanation involves the effects of noise.

Figure 8b shows the same quantities, computed from
the synthetic dataset altered by adding to «s a lognor-
mally distributed random variate with mean and stan-
dard deviation corresponding to the narrow peak of Fig.
5 (logarithmic mean of 28.52, logarithmic standard de-
viation of 0.2); this corresponds to adding random noise
with a mean value of 3 3 1029 W kg21. The data were
then sieved in the same manner as the observed data,
and plotted as in panel a. The results confirm that noise

in « does not induce systematic dependence on density
ratio.

Figure 8c shows the effect of adding random noise
to temperature gradients consistent with the 25% error
allowed by our sieving procedure. First, we computed
a random variate whose logarithm was uniformly dis-
tributed between (1.25)21 and 1.25. This was multiplied
by the temperature gradient to form6 Tzs; was then2Ns

computed from the ‘‘noisy’’ temperature gradient and
the measured salinity gradient:

5 gaTzs 2 gbSz.2Ns (17)

The noisy density ratio was similarly calculated:

Rrs 5 aTzs /bSz. (18)

This synthetic dataset was then sieved and plotted in
the same manner as the original data. The result shows
a weakly increasing trend in the density ratio range of

6 The subscript s is used here to denote a synthetic ‘‘noisy’’ tem-
perature gradient; similar notation is used for other gradient-derived
quantities.
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FIG. 9. Monte Carlo test designed to investigate the robustness of the decreasing trend observed in Fig. 8a at high values of Rr. (a) The
decreasing trend exhibited by the synthetic dataset. (b) The effect of adding noise with mean of 3 3 1029 W kg21 to «S. (c) and (d) The
effect of 25% error in the estimation of temperature and salinity gradients, respectively. The solid curves show the MLE for the mean of
Gd (with 95% confidence intervals shown by the dashed curves); filled circles show the corresponding arithmetic means.

1–2, and no significant trend above that. Similar but
slightly stronger trends are induced by 25% random
noise in the salinity gradient, again linked to errors in
the computed buoyancy frequency (Fig. 8d). The trends
that are induced by noise in either the temperature or
salinity gradients are inconsistent with those observed
in panel a.

Our observations are broadly consistent with a neg-
ative dependence on density ratio that is cancelled in
the range 1 , Rr , 2 by the effects of noise on the
estimated salinity or temperature gradients. This con-
clusion is further supported by increasing the temper-
ature and salinity gradient error level to 50%, which
causes a positive trend in the range 1 , Rr , 2.5, and
leaves the negative trend at larger Rr unchanged. The
effect of a 50% salinity or temperature gradient noise
level on synthetic data is to induce an increased positive
trend in the range 1 , Rr , 2, enhancing the convex
dependence seen in Fig. 8a.

We conclude that the negative trend observed in Fig.
8a is real. The trend may in fact extend over the full
observed range of density ratio, but the dependence is
likely to be masked at low density ratio by errors in
estimating the temperature or salinity gradient. To test
this, we generated a new synthetic dataset, this time
computing «s to give a decreasing trend similar to that

observed in Fig. 8a over the full range of Rr. The re-
sulting Rr dependence is shown in Fig. 9a. Panel b shows
the effect of adding noise with a mean of 3 3 1029 W
kg21 to the synthetic dissipations; panels c and d show
the effect of 25% error in Tz and Sz—the procedure was
identical to that discussed in connection with Figs. 8c,
d. The plots in panels b, c, and d are similar to the actual
dependence shown in Fig. 8a, consistent with the hy-
pothesis of an overall decreasing trend which is masked
at low Rr by noise.

c. Gd versus buoyancy Reynolds number

Figure 10 examines the dependence of Gd on buoy-
ancy Reynolds number in the same manner as in Fig.
8. Figure 10a shows a significant increasing trend, with
Gd increasing from 0.1 to about 0.35 as Re increases
from 40 to 2000. Additive noise on « (Fig. 10b) induces
a very weak increasing trend for Re above 600 in the
simulations. This trend is far too weak to explain the
observed trend in panel a. Panels c and d show the effect
of 25% noise in temperature and salinity gradients re-
spectively; there is a very weak positive trend, incon-
sistent with the observed one. Experiments on datasets
synthesized in different ways (not shown) also exhibited
no induced trends consistent with those we observed.
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FIG. 10. Variation of dissipation coefficient Gd with turbulence activity parameter «/(nN 2) (a). The solid curves show the MLE for the
mean of Gd (with 95% confidence intervals shown by the dashed curves); filled circles show the corresponding arithmetic means. (b), (c),
and (d) The results of Monte Carlo tests designed to investigate whether the observed trend in (a) could be reproduced by adding noise to
observed quantities if Gd were independent of «/(nN 2). (b) The effect of adding noise with mean of 3 3 1029 W kg21 to «S. (c) and (d) The
effect of 25% error in estimation of temperature and salinity gradients, respectively.

We conclude that Gd exhibits a systematic increase with
buoyancy Reynolds number that is not induced by mea-
surement error.

The Monte Carlo tests have taught us a valuable les-
son: Testing the hypothesis that Gd is independent of
density ratio is very sensitive to noise in temperature
or salinity gradients due to the consequences on esti-
mated N 2. We tried to devise a statistically valid test
that avoided plotting ‘‘x against x,’’ but were unsuc-
cessful. Monte Carlo simulations seem to be the best
way to estimate the effects of noise on such results.

5. Discussion

The diffusivity obtained from thermal dissipation
measurements and the Osborn–Cox model agreed well
with that inferred from tracer observations, and show
clear variations of KT with depth and time. The velocity
microstructure observations were contaminated by sen-
sor guard noise such that we had to select relatively
energetic 8-m data segments with dissipation rates ex-
ceeding 7 3 1029 W kg21 for our analysis. This pre-
cluded direct estimation of Kr using Osborn’s dissipation
model. However, the data segments in which « was high
enough to be uncontaminated were examined with re-

spect to the dissipation coefficient Gd, to test for con-
sistency with the mixing mechanisms proposed in sec-
tion 2. Although selecting for high dissipation events
(or parts of events) could lead to a bias in Gd, the his-
togram of Gd for the selected data (Fig. 6) suggests that
any such bias is small. The potential problem of bias
was minimized by focusing on variations of Gd rather
than its magnitude.

Previous observations of Gd (Table 2) from a variety
of locations by other observers find Gd ranging from 0
to 0.4. Our observations are well within this range. So
far as we can determine, ours appears to be the first
attempt to discern systematic variations of Gd with re-
spect to dimensionless parameters such as density ratio.
We found Gd to decrease systematically with increasing
density ratio and to increase systematically with in-
creasing buoyancy Reynolds number. Monte Carlo ex-
periments show that the observed trends are not likely
to have been induced by measurement errors. A com-
parison of our findings with the predictions of the hy-
pothesized mixing mechanisms (Table 1) from section
2 shows the dependence of Gd to be not fully consistent
with isotropic turbulence, low vertical Reynolds number
turbulence, or salt fingers. Models involving salt fingers
cannot explain the decreasing trend observed at large
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TABLE 2. Summary of oceanic estimates of dissipation ratio. In the last column Jb is the buoyancy flux estimated by eddy-correlation
techniques.

Reference Location Rr «/nN2 Gd

JbG 50 «

Oakey (1982, 1985) Rockall Trough .7 300–3000 0.05–0.32 —
Peters et al. (1988) Equatorial Pacific ;25 25–2500 0.1 —
Peters et al. (1985) As above; spectra well resolved 0.1 —
Moum et al. (1989) Equatorial Pacific ;25 0.11–0.32 —
Yamazaki and Osborn

(1993)
Eastern N. Pacific, 42 m ;25 12–2500 — 0.05

Fleury and Lueck (1994) Atlantic (128N, 568W) turbulent
interface

1.6 85–480 0.003–0.14 0.01–0.28

Fleury and Lueck (1994) Atlantic (128N, 568W) upper
thermocline

` 156–255 0.0–0.23 0.03–0.11

Fleury and Lueck (1994) Atlantic (128N, 568W) T inver-
sion

0.1 370–3200 — 0.05–0.12

Toole et al. (1994) Eastern subtropical Atlantic,
2500–3000 dbar

;2 60 0.35 —

Gargett and Moum
(1995)

Juan de Fuca Strait turbulent
tidal flow

— — 0.2 if Kr . 0
0.13 if Kr , 0









0.63 if Kr . 0
21 if Kr , 0

Moum (1996) Midlatitude Pacific thermocline — — 0.3–0.4 0.15–0.2
Farmer (1975) Fjord under ice — — — 0.003–0.113

values of density ratio (2.5 # Rr # 5); salt fingers could
perhaps explain the ‘‘leveling off’’ of this trend at small-
er Rr values, but our Monte Carlo experiments suggest
that measurement error is the most likely explanation.
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APPENDIX

The Lognormal Distribution

A lognormal distribution can be used to describe a
dataset that is skewed toward large values (i.e., more
than half of the points are smaller than the mean, but
the larger values tend to be more extreme). The arith-
metic mean of a finite number of observations taken
from a lognormal distribution is largely dependent on
a small number of extremely large values. The arith-
metic mean is hence an inefficient estimator of the mean
of a lognormally distributed random variable (Baker and
Gibson 1987).

A non-negative random variable X is said to have a
lognormal distribution if its logarithm, the random vari-
able Y 5 ln(X), has a normal distribution with expected
value m and variance s2. The probability density func-
tion (pdf) of X is

21 2(ln(X) 2 m)
P(X) 5 exp . (A1)

2[ ]2sÏ2p sX

The expected value of the ith moment can be shown to
be

2 2i s
iE(X ) 5 exp im 1 . (A2)[ ]2

The mean, median, and mode are not equal as they are
for a symmetric distribution like the Gaussian. Using
(A2) the mean, or the first moment, is

2s
E(X) 5 exp m 1 , (A3)[ ]2

while the mode, corresponding to the peak in the pdf, is

mode(X) 5 exp[m 2 s2]. (A4)

The median, or 50th percentile, is

median(X) 5 exp[m]. (A5)

Note that mean(X) . median(X) . mode(X), and the
difference increases with the so-called intermittency fac-
tor s2.

Given a finite number n of samples Xi from a log-
normal distribution, Baker and Gibson (1987) show that
the arithmetic mean of these samples,

n1
^X& 5 X , (A6)Oam in i51

is an inefficient estimator of the expected value, es-
pecially for large intermittency factor. They suggest us-
ing the maximum likelihood estimator (MLE)

2s
^X& 5 exp m 1 , (A7)mle [ ]2

where m and s2 are the arithmetic sample mean and
variance of ln(Xi), computed as
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n1
m 5 ln(X ) (A8)O in i51

and
n1

2 2s 5 [ln(X ) 2 m] . (A9)O in 2 1 i51

In practice, the observed distributions of « and x deviate
from lognormality at the low and high ends of the dis-
tribution, possibly due to instrumental considerations,
but computation of m and s2 using (26) and (27) is fairly
insensitive to these deviations.

a. Confidence intervals for the mean of a lognormal
variate

The confidence limits for the mean of Yi 5 ln(Xi)
(with a normal distribution) are 6za/2(s/ n), where theÏ
quantity za/2, the (1 2 a) confidence coefficient, is de-
fined below. The antilog of this is the confidence interval
for the median of Xi; the appropriate confidence interval
for the mean of a lognormally distributed variable is
(Baker and Gibson 1987)

^X&mle , E(X) , ^X&mle
2z h 1z ha/2 a/2e e (A10)

and
1/2

2 4s s
h 5 1 . (A11)[ ]n 2(n 2 1)

In practice, the sample variance s2 is used for the in-
termittency factor in 29. To compute 95% confidence
limits we take the confidence coefficient in 28 as za/2 5
1.96. For 99% confidence limits, we take za/2 5 2.575.

To estimate the number of degrees of freedom of the
data [denoted by n in (A8)], autocorrelation functions
were computed for logGd, and correlations were found
to be smaller than 0.16 for lags of one segment length
(;8 m) or larger. Hence adjacent data blocks are very
nearly statistically independent, so n is equal to the num-
ber of observations in a given bin.
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