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ABSTRACT

Plumes of dense shelf water cascade down continental slopes in many parts of the world’s oceans and provide
a mechanism for shelf–ocean exchange. In this paper a nonlinear process-orientated theory is developed and
used to examine the dynamics of cascading. The theory is formulated in terms of a ‘‘1½-layer’’ model and
incorporates bottom topography, earth rotation, internal and bottom friction, and entrainment as well as externally
imposed pressure gradients. The theory occupies a niche between the stream tube class of model (which considers
only bulk properties of a plume) and the full three-dimensional primitive equation approach. The model provides
useful insights into the complex interplay between the controlling forces, and it allows one to recover the shape
and trajectory of dense plumes as well as the three-dimensional flow field inside the bottom layer. Asymptotic
limits are investigated and lead to several basic results. A typical thickness of a fully developed plume is found
to be twice the bottom Ekman layer scale, corresponding to reported observations. The relative importance of
downslope density-driven cascading and downslope drainage forced by interior currents is assessed. It is found
that vertical mixing always assists downslope plume propagation, while an interior current may assist or inhibit
cascading. The model is applied to some recent observations at the Hebridean shelf edge west of the British
Isles and is used to infer the characteristics of an observed cascade. The model could also be applied to double
frontal currents such as the Mediterranean outflow.

1. Introduction

Overflows of dense water down steep topography in
the form of ‘‘gravity currents’’ are a widespread phe-
nomenon in the world’s oceans (e.g., Simpson 1982).
Examples include the Denmark Strait overflow (White-
head 1987; Dickson et al. 1990; Jungclaus and Backhaus
1994), the Mediterranean outflow (Price et al. 1993),
and inflows over the sills into the Black Sea (Latif et
al. 1991) and the Baltic Sea (Lundberg 1983) as well
as into numerous smaller-scale fjords. Cascades down
the continental slope of dense water formed in shelf
seas include those in the Weddell Sea (Gill 1973), the
Arctic (Melling and Lewis 1982), Bass Strait and Spen-
cer Gulf, Australia (Tomczac 1985; Lennon et al. 1987),
the Adriatic Sea (Zoccolotti and Salusti 1987), and the
Celtic Sea (Cooper and Vaux 1949). Much of the present
interest in downslope transport stems from the fact that
it is a mechanism for ocean–shelf exchange, including
for the export of carbon and suspended material from
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continental shelves to the deep ocean (Huthnance 1995;
Hu and Bai 1995).

Gravity current cascading (Fig. 1) is not, however,
the only process that can generate downslope motion at
the ocean margin. Other processes (which can occur
even in the absence of density gradients) include wind-
driven downwelling and the bottom Ekman layer trans-
port induced by alongslope currents that impinge on the
sea bed (Fig. 1). We call the latter effect ‘‘forced Ekman
drainage’’ because it allows water to leak away per-
pendicular to the principal current direction. For meso-
scale processes like cascading and forced drainage, fric-
tion is important because it breaks the constraint of po-
tential vorticity conservation, which would require all
motion to be alongslope (parallel to isobaths). Time de-
pendence, nonlinearity, and lateral mixing in the mo-
mentum balance can also permit the geostrophic con-
straint to be broken, but these effects shall be omitted
in our subsequent analysis leaving friction as the sole
means to permit cross-isobath motions.

Hitherto the effort to model dense cascades has made
considerable use of the ‘‘streamtube’’ approach de-
scribed by Smith (1975) and developed by others, no-
tably Killworth (1977) and Price et al. (1993). Stream-
tube models consider only section-averaged properties
of a plume but provide reasonable first-order estimates
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FIG. 1. Schematic of cascading and current-forced Ekman drainage on a continental slope.

of plume trajectories. However, they tell us nothing
about the internal dynamics of plumes and do not, for
example, independently predict the plume thickness
without specification of how plume width varies (e.g.,
Price and Baringer 1994). An attempt to overcome some
of these limitations has been made in recent years by
use of numerical simulations of the bottom boundary
layer using two-layer (Jungclaus and Backhaus 1994)
and multilayer (Ezer and Weatherly 1990) primitive
equation models. However, in order to gain insight into
the underlying physics, there is much to be learned from
simpler classes of model that occupy the niche between
streamtube and primitive equation models.

Some of the individual ingredients of the cascade
problem are contained within the set of simple layered
models developed by Shapiro (1982), Nof (1983), Rhines
(1989), Speer et al. (1993), Zhmur and Nazarenko
(1994), Shapiro and Zatsepin (1996), and others. None
of the above models, however, meet all the main re-
quirements for adequate representation of the mesoscale
dynamics of cascading at the shelf break. The model by
Shapiro (1982) was developed originally for the plan-
etary boundary layer in the atmosphere and allows sim-
ulation of the dynamics of three-dimensional features
like fronts and lenses but is restricted by the horizontal
flat bottom. Nof’s (1983) model is based on volume
integrated equations and does not include friction. The
models developed by Rhines (1989) and Speer et al.
(1993) are focused on large-scale effects and assume
that friction is weak. The model by Shapiro and Zatsepin
(1996) was developed only for an axisymmetric conical
bottom topography.

The purpose of this paper is to present a theory that
synthesizes most of the main physical elements relevant
of the descent of dense cascades over a shelf break and
their interactions with overlying interior flows (e.g., bar-

otropic and/or baroclinic slope currents). We focus on
regions where the level of turbulence and frictional pa-
rameters are controlled by ‘‘external’’ driving forces like
tides or alongslope currents and develop a differential
1½-layer model capable of describing the dynamics of
cascading for a range of bottom layer thicknesses. The
model is not constrained to two-dimensional or uniform
bottom topography and thus, in general, could permit
the study of gravity current dynamics in shelf break
areas, over banks, and in canyons although, in our later
applications, we restrict attention largely to two-dimen-
sional cases.

Particular attention is paid to the situation where the
thickness of the bottom layer is of the order of the
Ekman depth. A key feature of the model is its ability
to predict the thickness of the bottom layer and the
location of the plume edge. The important limitation is
that the ambient fluid above the bottom dense layer is
treated as homogeneous. Since the stratification in the
ambient fluid is not specified, the model cannot, for
example, predict the downslope penetration of a plume
in relation to when it reaches its neutral density level.
In spite of this, the principal value of the model is that
it allows us to assess the complex interplay of forces
that affect the internal dynamics of dense plumes. The
simple model structure also results in an efficient nu-
merical code, which is helpful in describing the details
of the plume evolution. Moreover, the model is ame-
nable to analytical solution in some special cases, which
provides estimates of the main parameters of cascading
such as downslope plume speed and bottom layer thick-
ness.

2. Model description
Consider a nonlinear three-dimensional mesoscale

plume with horizontal scales exceeding the full depth
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of the fluid and with a time-evolution scale exceeding
the inertial period. The horizontal scale allows us to
employ the hydrostatic approximation for pressure
anomalies. We assume also that both along- and across-
slope local accelerations can be disregarded in com-
parison with the Coriolis force in the momentum bal-
ance.

A homogeneous bottom layer of dense fluid is over-
lain by a deep upper layer. Since we concentrate on the
dynamics of the bottom layer and on topographic ef-
fects, we use the 1½-layer approximation (Shapiro 1982;
Nof 1983; Rhines 1989), which means that the baro-
tropic circulation (or the velocity distribution in the in-
viscid core of the upper layer) is prescribed and is used
to force the model. The model describes the variable
thickness of the bottom layer as well as the current
velocities in the bottom layer and in a frictional sublayer
of the upper layer near the density interface. The bottom
topography is arbitrary except for the restriction that the
bottom slope is much smaller than unity, a condition
that is almost always satisfied in the ocean, even over
the continental slope where gradients are typically of
the order of 1021 to 1022.

The heights above a horizontal datum line of the in-
terface and the seabed are respectively j(x, y, t) and b(x,
y), while h(x, y, t) 5 j(x, y, t) 2 b(x, y) is the thickness
of the bottom layer (Fig. 1). Due to the usually moderate
horizontal scale of cascading, an f-plane approximation
is assumed, although beta-plane or full spherical ge-
ometry treatments are possible. The steady, linearized
momentum equations in the lower and upper layers are,
respectively,

21 ] uLf k 3 u 5 2 =p 2 g9=j 1 K (1)L 2r ]z
21 ] uUf k 3 u 5 2 =p 1 K , (2)U 2r ]z

subject to the boundary conditions

u 5 w 5 0 at z 5 b(x, y) (3)L L

u 5 u , w 5 w , ]u /]z 5 ]u /]zL U L U L U

at z 5 j(x, y, z, t) (4)

]u /]z 5 0 as z → `. (5)U

Here subscripts L, U indicate upper and lower layers
respectively, = 5 (]/]x, ]/]y) is the two-dimensional
gradient operator, u(x, y, z, t) 5 (u, y) is the horizontal
velocity vector, and w is the vertical velocity component.
Since we are considering mesoscale dynamics, veloci-
ties are assumed to be the average over a tidal cycle.
The pressure in the upper layer is p, the upward directed
unit vector is k, and f is the Coriolis parameter. The
density of the bottom layer is r and the reduced grav-
itational acceleration is g9 5 g Dr/r, where Dr is the
density difference between layers.

The momentum equations themselves are steady and

linear, so the time dependence and nonlinearity of the
problem is introduced later when these are combined
with the mass conservation equation below. Physically,
the friction terms introduce departures from geostrophy
bringing about flow convergence/divergence within the
bottom layer and near the density interface, which in
turn causes the bottom layer thickness to evolve with
time. The formal scale analysis, which explains when
this form of momentum equation can be used in the
nonlinear prognostic problem, is discussed by Shapiro
(1987) and is not repeated here. The continuity equation
is the same in both layers;

]u ]y ]w
1 1 5 0, (6)

]x ]y ]z

where the subscripts L, U have been dropped. Equation
(6) can be integrated vertically over the lower layer from
the bottom to the density interface using the well-known
nonlinear kinematic boundary condition to give the
mass conservation equation

j]h
1 = · u dz 5 w . (7)E L e1 2]t b

The entrainment velocity of fluid from the upper to the
lower layer is we. The approach imposes no restriction
on h, which can range from zero to many Ekman depths.

Equations (1)–(2) and the boundary conditions are
first expressed in terms of the complex velocity in the
usual way and solved subject to the prescribed forcing,
boundary, and matching conditions. The resulting ex-
pressions for horizontal velocities (in terms of the plume
thickness and other parameters) are substituted into the
mass conservation equation (7), which, after some ma-
nipulation and rearrangement, gives the following gov-
erning advection–diffusion-type equation for the inter-
face height that is the mathematical basis of our study:

]h
S S1 (R u 1 R u 1 R u 1 R u ) ·=h1 B 2 0 3 B 4 0]t

g9hE5 R h k · (¹ 3 u ) 1 = · (R =h)5 E 0 6f

g9hE 21 R ¹ b 1 w . (8)6 ef

Here hE 5 (2K/f)1/2 is the Ekman depth. The reference
velocities that appear in (8) are defined as follows:

g9 g9
Su 5 k 3 =b u 5 2 =bB Bf f

1 1
Su 5 k 3 =p u 5 2 =p. (9)0 0r f r f

These introduce two independent velocity scales into
the problem. The first of these, |u0|, is simply the im-
posed upper-layer geostrophic speed. The reference ve-
locities u0 and both have the same magnitude but areSu0
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FIG. 2. (a) Coefficients of R1–R6 and (b) ratios of the coefficients R2/R4, R1/R3, R1/R2, against nondimensional bottom layer thickness.

in the direction of the upper-layer interior flow and at
908 to the left of it in the Northern Hemisphere, re-
spectively. The second velocity scale, |uB|, is introduced
when there is sloping seabed topography. This scale is
the alongslope translation speed of a dense water mass
that is subject to a balance between the downslope re-
duced gravity force g9 sinu and the upslope component
of the Coriolis force f cosuuB, where tanu is the bottom
slope. This scale uB 5 uNof 5 g9 tanu/f was discussed
by Nof (1983) in his study of inviscid lens propagation
on a uniform bottom slope, and we shall refer to it
subsequently as the Nof velocity. The reference veloc-
ities uB and both have the same magnitude but actSuB

alongslope (with the shallow water to the right in the
Northern Hemisphere) and downslope respectively.

In Eq. (8), the coefficients R1 to R6, which have come
from the integration of the solution of Eqs. (1), and (2)
over the vertical, are functions of the nondimensional
bottom layer thickness, h 5 h/hE, and are

R (h) 5 2Q(h) 2 Q(2h), R (h) 5 Q(h),1 2

R (h) 5 2P(h) 2 P(2h), R (h) 5 P(h),3 4

1
R (h) 5 (P(h) 2 Q(h)),5 2

1
R (h) 5 P(h) 2 Q(h) 1 (Q(2h) 2 P(2h)),6 4

2h 2hP(h) 5 1 2 cos(h)e , Q(h) 5 sin(h)e . (10)

On account of their h dependance, these functions re-
flect the nonlinearity of plume dynamics. The advection
of the interface shape is governed by the four velocities
R1 , R2 , R3uB, R4u0, each of which depend upon theS Su uB 0

reference velocities and the local layer thickness through
the coefficients R. The detailed evolution of the bottom
layer thickness can thus be expected to be fully three-
dimensional, and a plume will distort over time as dif-
ferent parts of the plume propagate at different local
rates. Indeed, much of the essential physics that deter-
mines the behavior of dense bottom-layer plumes can
be inferred from the relative magnitudes of the four
primary velocity components above. Figure 2a shows
graphs of the coefficients R1 to R6 versus h for the range
0 , h , 6. As the layer thickness increases in com-
parison with the Ekman depth, R1 and R2, which are
coefficients of terms representing departure from geos-
trophy, both tend to zero.

Since Eq. (8) is nonlinear, the four velocities above
cannot be interpreted strictly as propagation rates of the
plume. However, they do give a broad indication of the
magnitude of plume propagation. Given that these pro-
vide an estimate of plume propagation rates, we use
them below to compare the relative magnitudes of these
velocities.

An estimate of the ratio of the advection speed per-
pendicular to the direction of a forcing interior current
(the forced drainage component) to the component of
advection in the direction of the forcing current (u0) is

S|R u | R2 0 25 . (11)1 2|R u | R4 0 4

The component of advection in the direction of the
interior velocity (R4u0) always dominates (Fig. 2), but
for progressively thinner bottom layers (h , 0.5) the
difference between advection in the direction of u0 and
perpendicular to it is small. As we show later, the typical
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thickness of a well-developed plume is h 5 1.78, so
the typical value of the ratio R2/R4 is 0.16 (Fig. 2b).

In the presence of a bottom slope, an estimate of the
ratio of the downslope advection (cascading) to the
alongslope density-driven advection is

S|R u | R1 B 15 . (12)1 2|R u | R3 B 3

For 0 , h , 0.4 downslope density-driven motions
(cascading) prevail over alongslope motion (more than
5 times greater). This represents the fact that in a strong-
ly frictional system the geostrophic constraint is broken
and the downslope reduced-gravity component drives
the dense water downslope balanced primarily by an
upslope friction force. When the bottom layer becomes
thicker, however, the importance of friction is reduced
in comparison with the effect of rotation, and for h .
3 the downslope component of total flux is negligible.
For a well-developed plume (h 5 1.78) the typical value
of R1/R3 is 0.33 (Fig. 2b).

The relative importance of downslope density-driven
motion (cascading) and downslope motion due to in-
terior-current-induced bottom Ekman transport (forced
drainage) can be assessed by comparing the magnitudes
of the second and third terms on the left of (8). Thus,
we have

Scascading |R u | R g9 tanu1 B 15 5
S 1 2forced drainage |R u | R fu2 0 2 0

R u1 Nof5 . (13)1 2R u2 0

Figure 2b shows R1/R2 for a range of values of non-
dimensional layer thicknesses. Except for very thin bot-
tom layer thicknesses (h , 0.5), the ratio R1/R2 exceeds
unity. For a fully developed bottom layer the above ratio
is about 2 (Fig. 2b). Hence, for equivalent forcing of
cascading and drainage flows (g9=b/f 5 =p/rf or equiv-
alently u Nof 5 u0), the cascading response will be twice
as great as that due to drainage.

The physical meanings of the terms on the right-hand
side of (8) are as follows. The first term represents
pumping of the interface because spatial variability
(vorticity) in the interior surface-layer flow induces con-
vergent transports in the bottom and interfacial Ekman
layers. The second term represents the frictional spread-
ing of the plume in the direction of the baroclinic com-
ponent of the pressure gradient. Mathematically this ap-
pears as a nonlinear diffusion term. The third term arises
because of the baroclinic velocity convergence in the
Ekman layers due to curvature of the seabed. The last
term, of course, represents the effect of entrainment.

3. Analytical solutions

In the special case of a flat, horizontal bottom (b 5
0) and no entrainment (we 5 0), Eq. (8) reduces to the

equation developed by Shapiro (1982) to describe the
occlusion of tropospheric fronts. When the thickness of
the bottom layer greatly exceeds the Ekman scale (h k
hE) and, hence, friction is of little importance in the
depth integral momentum balance, it follows from (10)
that R1 → 0, R2 → 0, R3 → 1, R4 → 1, R5 → ½, R6 →
¾. In this case (8), rewritten in terms of interface ele-
vation j 5 h 1 b, reduces in the absence of the baro-
tropic Ekman pumping (the second term on the right)
and entrainment (the last term), to the equation for in-
terface evolution obtained by Rhines (1989).

In certain special cases analytical solutions for (8)
may be found and some of these are considered below.

a. No bottom slope

When friction is present, some analytical progress can
be made when h K 1 for a flat, horizontal seabed (b
5 0). Suppose that the upper-layer interior current u0

does not vary in time and space, and that entrainment
is negligible (we 5 0). To reduce (8) to a scalar equation,
the x axis is orientated at 458 to the left of the direction
of u0. In this case (8) reduces to the modified form of
the Burger’s equation

]h ]h
1 Ï2 |u |h0]t ]x

2g9h ] ]h ] ]hE 3 35 h 1 h . (14)1 2 1 2[ ]3 f ]x ]x ]y ]y

The bottom-layer plume is assumed to have constant
thickness h0 far upstream (i.e., h 5 0 as x → `, h 5
h0 as x → 2`). In the two-dimensional case (no vari-
ation in the y direction), a steady-state solution of the
form h 5 h(x 2 Vt) exists if there is an upper-layer
flow (|u0| ± 0) and is

1
2 2(h 2 h ) 1 2h (h 2 h ) 1 h ln|h 2 h|0 0 0 0 02

3|u | f05 (x 2 Vt). (15)
Ï2 g9hE

The speed of the plume edge propagation in the x di-
rection for this flat-bottomed forced drainage is

|u |0V 5 h , (16)0Ï2

and the length scale of the interfacial frontal transition
from the upstream value to zero is

Ï2 g9hE
L 5 . (17)f 3|u | f0

If the Rossby radius of deformation based on the Ekman
vertical scale is LE 5 (g9hE)1/2/f and the corresponding
Rossby number is RoE 5 |u0|/(fLE), then Lf 5 LE/RoE ;
LE at Rossby numbers of order unity. This means that
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a significant portion of available potential energy is
transformed into kinetic energy of the current.

In the absence of an interior forcing current (u0 5 0),
the problem has a nonstationary similarity solution (e.g.,
Zeldovich and Kompaneets 1950; Barenblatt 1978),
which represents slow diffusive-like spreading of the
front according to

xfront 5 LE ft where C ø 1.3/2Ch Ï0 (18)

b. Uniform bottom slope

With uniform bottom slope (=b 5 const), no friction
(hE 5 0), no entrainment (we 5 0), and no upper-layer
flow (u0 5 0), Eq. (8) reduces to the linear advective
equation

]j
1 u ·=j 5 0. (19)B]t

This result alone is interesting because it represents
a generalization of Nof’s (1983) result concerning the
propagation of finite volume dense lenses over a uni-
form bottom slope. Nof’s conclusion was that lenslike
eddies (for which interface height goes to zero at their
edge) move along isobaths at the same speed regardless
of their horizontal size, shape, and maximal depth and
that this speed (the Nof speed) is uNof 5 g9 tanu/f (where
the sign of tanu is taken into account in determining the
direction of propagation). Equation (19) has the same
physical interpretation but it applies under more general
conditions that do not require interface intersections
with the bed and is thus applicable, for example, to
plumes as well as to isolated lenses.

In the case of a two-dimensional frictional plume (no
variation alongslope in the y direction), without entrain-
ment (we 5 0) and no interior forcing (u0 5 0), Eq. (8)
reduces to the nonlinear equation

]h ]h g9h ] ]hES1 u R (h) 5 R (h) , (20)B 1 61 2]t ]x f ]x ]x

where x is the downslope direction. If the interface
thickness is h0 far upslope from the interface intersec-
tion with the bed, then the boundary conditions on the
plume are the same as used previously (h 5 0 as x →
`, h 5 h0 as x → 2`). Equation (20) has a steadily
propagating shock-wave-like solution, h 5 h(x 2 Vt),
which describes a descending tongue of dense water for
which the front of the plume propagates at the constant
horizontal speed

R (h )6 0SV 5 u . (21)B h0

The solution only exists if h0 # hmax, and hmax 5 1.78
is the value at which the coefficient R1(h) equals the
value of R6(h)/h. The mathematical reason for this is
that the phase plane characteristics of the purely ad-
vective (hyperbolic) part of (20) converge only under

this condition. This conclusion has the important con-
sequence, referred to previously, that without upper-lay-
er current forcing, the steady stage of dense plume evo-
lution can be obtained only if its thickness does not
exceed approximately two Ekman depths. When h0 .
hmax, there is no analytical solution, but what happens
in this case will be discussed in the following section
where a numerical treatment is used. For the case of a
fully developed plume with maximal upstream thick-
ness, h0 5 hmax, the downslope cascade speed is

R (h )6 max|V | 5 u 5 0.2u . (22)Nof Nofhmax

For shallow bottom-layer depths, h0 K 1, (21) yields

2g9 tanu
2V 5 2 h . (23)03 f

If the interior forcing greatly exceeds the density forcing
over topography (u0 k uNof), the results (16) and (17)
for the flat-bottom case can be used to estimate the front
propagation speed.

In order to examine the behavior of (8) further it is
necessary to turn to a numerical treatment, which is the
subject of the following sections.

4. The numerical model

In this section, (8) is solved numerically to illustrate
the behavior of a dense bottom plume under a range of
forcing conditions. We consider first a dense plume on
a horizontal flat bottom and then turn to the case of a
uniform bottom slope before considering the case of the
Hebridean shelf edge west of Britain.

a. The numerical method

For the numerical solution the following nondimen-
sional variables (denoted by a prime) are introduced into
(8): (x9, y9) 5 (x, y)/L, t9 5 t/T, b9 5 b/hE, h 5 h/hE,
u9 5 u/U, 5 we/W, f9 5 f/F, where f is the geo-w9e
potential of the upper-layer current, defined by

=f 5 =p/r.

The total length of the model domain in the x and y
directions is 2L and other scales are as follows:

2 2fL g9h g9hE ET 5 , U 5 , W 5 ,
2g9h fL fLE

F 5 g9h .E

To give a physical idea of the parameters used, the
idealized cases presented below were computed with
nondimensional parameters corresponding to the fol-
lowing set of dimensional variables: L 5 50 km, f 5
1024 s21, g9 5 1023 m s22, hE 5 20 m, which gives T
5 1.25 3 107 s, U 5 0.4 cm s21, W 5 1.6 3 1024 cm
s21, and F 5 2 3 102 cm2 s21. To ease interpretation,
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results presented below in dimensional form in the fig-
ures are discussed in the text in dimensional terms based
on the above values.

For the purposes of numerical solution the advective
part of (8) was rewritten in divergent form. The nu-
merical scheme is based on the operator splitting method
according to which the full spatial operator in (8) is
subdivided into several advection and ‘‘diffusion’’
terms. We use the explicit scheme for diffusion with
small time steps and modified Lax–Wendroff scheme
with larger time steps for the advective terms. The mod-
ification of the standard Lax–Wendroff scheme is that
for the sake of improved stability, we use averaging
over 8 side points at the first substep instead of 4. Some-
times we used the Godunov scheme (Godunov and Ria-
benkiy 1973) for improved resolution of shock-wave-
like solutions. The problem is solved in a rectangular
domain. Unless indicated otherwise, the boundary con-
ditions in the horizontal are h 5 0 at the offshore bound-
ary and ]h/]n 5 0 on all other boundaries.

b. Parameterization of the eddy viscosity K

Equations (1) and (2) employ the Ekman-style dif-
ferential form of frictional force with an eddy viscosity
coefficient K, which does not depend on the plume ve-
locities u, y. In this sense the model differs from the
streamtube models (Smith 1975; Killworth 1977), where
a quadratic bottom drag law is used. When the level of
turbulence is controlled primarily by conditions external
to the bottom current itself (e.g., tides or alongslope
currents, which have velocity UT), the relation between
K and the external forcing is obtained by setting KUT/
hE 5 Cd , which gives2UT

2C ud *K 5 2 , (24)
f

where u* 5 (Cd)1/2UT is the friction velocity based on
the background external forcing velocity outside the
frictional wall layer (e.g., the tidal current amplitude).
For the widely used value, Cd 5 2.5 3 1023, for shallow
seas (24) coincides with the empirical relation given by
Csanady (1976).

c. Parameterization of entrainment

There are many approaches to the estimation of in-
terfacial entrainment for two-layer models (e.g., Smith
1975; Csanady 1984; Jungclaus and Backhaus 1994).
For the present purpose we start with the parameteriza-
tion used by Csanady (1984);

2w ue *5 C , (25)Cu g9h*

where h is the thickness of the plume and CC 5 0.32
is an empirical constant. Combining (24) and (25), the
entrainment velocity is given by

3 2C f h hC E Ew 5 F . (26)e 3/2 1 28C g9 hd

When the bottom layer is much thicker than the Ek-
man layer, the velocity shear used in the determination
of u* is calculated over the Ekman depth hE; when the
bottom layer is thinner than the Ekman layer, the shear
is calculated over the depth h. Hence F(hE/h) 5 hE/h if
h . hE and F(hE/h) 5 1 if h , hE. For the purpose of
this paper it is not the details of the entrainment param-
eterization that are crucial but the fact that the bottom
layer can thicken during the course of the motion so
altering the force balance within the plume.

5. Numerical model results

In the following cases (a, b, c, and e) both bottom
topography and the initial shape of the plume were taken
as two-dimensional without any variation in the y di-
rection. In case d, the bottom topography was two-di-
mensional, while the plume initially had a three-dimen-
sional shape. However, the full three-dimensional model
was applied in each case.

a. Flat, horizontal seabed

Figure 3 shows the shape of the dense water plume
plotted as nondimensional interface height h 5 h/hE

versus the nondimensional horizontal distance x/L. Suc-
cessive interface shapes are shown for times corre-
sponding to dimensional values t 5 0, 5, 10, and 15
days. Dimensional times are calculated using the set of
dimensional scales introduced in the previous section.
Initially the interface is horizontal for x/L . 0.5 and
has a thickness of five Ekman scales (h 5 h/hE 5 5),
which tapers to zero between 0 , x/L , 0.5.

In the base case, there is no entrainment (we50) and
no externally imposed interior current forcing (u0 5 0),
that is, the upper layer at rest throughout the motion.
Figure 3a shows how the density interface spreads slow-
ly under the pressure gradient opposed by earth rotation
and friction. Note that the primary flow is geostrophic
in the positive y direction and hence into the page. In
this case the motion is governed by a reduced form of
Eq. (8), which represents a diffusionlike spreading of
the interface (where the entrainment term has been set
to zero):

]h g9hE5 =(R =h) 1 w . (27)6 e]t f

This form of the interface equation is well known and
was discussed, for example, by Garrett and Loder
(1981). The diffusion effect arises because physically
there is a tendency for flow to be down the density
gradient (rather than parallel to density contours) within
the bottom and interfacial Ekman layers.

Figure 3b shows the case where the upper-layer flow
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FIG. 3. Evolution of a 2D plume on a horizontal bottom. The
maximum nondimensional upslope interface thickness is hm 5 5 (hm

5 100 m). Interface height is shown on sections normal to the plume
edge for times t9 5 0, t9 5 3.4 3 1022 (5 days), t9 5 6.9 3 1022

(10 days), t9 5 10.4 3 1022 (15 days) when (a) =9f9 5 0 (u0 5 0),
5 0; (b) =9f9 5 0 (u0 5 0), 5 80 (we 5 11 m day21); andw9 w9e e

(c) =9f9 5 10 (u0 5 0.04 m s21), 5 0. The figures in bracketsw9e
are dimensional values based on the dimensional scales given in the
text.

is again zero (u0 5 0) but where entrainment is included
with we 5 11 m d21. The governing equation is (27).
Surprisingly the effect of entrainment is to enhance the
rate of propagation of the density interface. The role of
entrainment can be explained physically as follows.
Only when the density gradient is sufficiently sharp (i.e.,
the density interface is steep) can the rate of propagation
of a plume be large. Without entrainment, the only
source of water supply necessary to steepen the interface

is from the main body of the plume. At the leading
edge, however, where the thickness of the bottom layer
is small, friction strongly inhibits this supply of water.
Entrainment, on the other hand, breaks this constraint
by thickening the leading edge, enabling more water to
enter from the main body of the plume.

Figure 3c shows the remaining key influence on in-
terface propagation in the flat-bottomed case. All the
initial parameters are kept the same except that entrain-
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ment is removed once more (we 5 0), and, instead, a
uniform upper-layer flow (directed into the page) is im-
posed with u0 5 0.04 m s21. The effect is to increase
the rate of advance of the bottom front (nearly double
the rate in Fig. 3a for this particular parameter choice).
In these circumstances, the spread of interface is gov-
erned by

]h g9hES1 (R u 1 R u ) ·=h 5 =(R =h). (28)2 0 4 0 6]t f

It is the inclusion of second term on the left-hand side
that is responsible for the increased speed of propagation
perpendicular to the direction of geostrophic flow. Phys-
ically this represents the effect of bottom Ekman trans-
port induced by the interior current.

b. Uniform bottom slope

Figure 4 shows what happens when dense water is
released over uniform bottom slope with gradient 4 3
1023 (calculated from dimensional variables). The evo-
lution of the plume is shown for times corresponding
to the dimensional values t 5 0, 2, 5, 7, 10 days. The
initial condition is that, far upslope, the layer thickness
is five Ekman scales for x/L . 0.5 and, for 0 , x/L ,
0.5, the interface height tapers to zero.

Figure 4a shows the base case when there is no upper-
layer flow (u0 5 0) and no entrainment (we 5 0). The
governing equation (dropping the entrainment term on
the far right) is then

]h g9hES1 (R u 1 R u ) ·=h 5 =(R =h) 1 w . (29)1 B 3 B 6 e]t f

As before, propagation of the interface is induced by
diffusionlike spreading effect explained previously. Ad-
ditionally, however, the effect of bottom slope comes
into play because the downslope component of the (re-
duced) gravity force will tend to produce downslope
motion. Outside the Ekman layer this force is geo-
strophically balanced and all motion is parallel to the
slope. Within the frictional Ekman layer, part of the
downslope gravity force is unopposed by rotation so
some downslope motion is possible. It is this part of
the motion that is represented by the second term on
the left of (29). The alongslope propagation of the den-
sity interface is represented by the third term on the left
of (29), which is thus not relevant to the motion visible
in Fig. 4a.

The effect of the addition of entrainment with a value
of we 5 11 m d21 (while the upper layer flow is still
absent, u0 5 0) is shown in Fig. 4b. As with the flat-
bottomed case, the downslope propagation of the den-
sity interface is enhanced for the same physical reason
as explained above.

Figure 4c shows the effect of the introduction of a
uniform alongslope current (in the positive y direction,
directed into the page) with a speed of u0 5 0.04 m s21,

while entrainment remains zero (we 5 0). The governing
equation for interface propagation in these circumstanc-
es is

]h
S S1 (R u 1 R u 1 R u 1 R u ) ·=h1 B 2 0 3 B 4 0]t

g9hE5 =(R =h). (30)6f

The effect of the addition of the interior flow is to
induce downslope drainage (to the left of the flow) in
the bottom Ekman layer. With flow into the page as
prescribed, the interior flow induces downslope Ekman
transport, which assists the gravity force, and hence
downslope propagation is enhanced.

Figure 4d shows the effect of reversing the direction
of the imposed interior flow [now directed in the neg-
ative y direction, out of the page with speed five times
that used in Fig. 4c (0.2 m s21)]. Entrainment remains
absent (we 5 0). The effect of barotropic forcing in this
case is to arrest or block the downslope propagation of
dense fluid (blocked cascading) since the bottom-layer
Ekman transport opposes the direction of downslope
propagation.

c. Shockwave behavior

The existence of a stationary shock-wave solution for
Eq. (21) was demonstrated analytically for the case of
h , hmax. However, the question remains as to what
happens if h . hmax when no analytical solution exists.
To examine this question, a model simulation was per-
formed with an initial upper-layer thickness of 5hE, bot-
tom slope 2 3 10 22, and no entrainment or interior
current (we 5 0 and u0 5 0). The result is presented in
Fig. 5, which shows that even when the initial layer
thickness is large, a propagating nose forms that has a
thickness of the order of two Ekman depths. Thus re-
gardless of the initial condition, part of the plume will
propagate downslope in a shock-wave-like form that
satisfies the condition that h , hmax. The result that the
thickness of fully developed (shock-wave-like) plumes
is about two Ekman depths allows us to account for a
well-known observational result (e.g., Armi and
D’Asaro 1980) that the mean turbulent Ekman layer
height is roughly half the mean bottom mixed layer
height. After some time the propagation of the plume
becomes stationary with a speed consistent with the
analytical solution (22).

d. Three-dimensional plume on a sloping bottom

The above results show how the plume propagates
under various conditions on a uniform slope. As men-
tioned previously, however, the coefficients R1 to R4,
which determine the propagation rate of the interface,
depend themselves on the interface height. Hence the
downslope and alongslope velocities vary from place to
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FIG. 4. Evolution of a 2D plume on a slope. In all cases, the nondimensional bottom depth is =0b9 5 10 (=b 5 4 3 1023) and the
maximum nondimensional upslope interface thickness is hm 5 5 (hm 5 100 m). Interface height is shown on sections normal to the plume
edge for times t9 5 0, t9 5 1.4 3 1022 (2 days), t9 5 3.4 3 1022 (5 days), t9 5 4.8 3 1022 (7 days), t9 5 6.9 3 1022 (10 days) when (a)
=9f9 5 0 (u0 5 0), 5 0; (b) =9f9 5 0 (u0 5 0), 5 80 (we 5 11 m day21); (c) =9f9 5 10 (u0 5 0.04 m s21), 5 0; (d) =9f9 5w9 w9 w9e e e

50 (u0 5 20.2 m s21), 5 0.w9e

place in a plume of nonuniform thickness. To illustrate
this behavior, Fig. 6 shows the situation when a plume
is released over a uniform bottom slope (4 3 1023,
computed from dimensional variables) in the presence
of an upper-layer current u0 5 0.2 m s21. Contours show
the plan view of the nondimensional bottom layer thick-

ness in nondimensional space x/L, y/L. Initially the
plume has a maximum height of 5hE at y/L 5 0 on the
right-hand boundary (Fig. 6a). The shape of the inter-
face on this boundary is kept invariant over time to
represent a continuous source of dense fluid. The plume
is shown again 2.3 days later (Fig. 6b). Over time the
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FIG. 5. Shock-wave formation on a sloping bottom. The parameters
are =9b9 5 50 (=b 5 2 3 1022), nondimensional geopotential gradient
=9f9 5 0 (u0 5 0), maximum nondimensional layer thickness, hm 5
5 (hm 5 100 m) for times t9 5 0 to t9 5 8.4 3 1022 (12 days) with
the interface shown at time intervals Dt9 5 1.4 3 1022 (2 days). The
solution shows the formation and evolution of a nose about two
Ekman layers thick that propagates as a stationary shock wave.

FIG. 6. Evolution of a 3D plume on a sloping bottom with nondimensional slope =9b9 5 10 (4 3 1023), nondimensional geopotential
gradient =9f9 5 50 (u0 5 0.04 m s21), maximum nondimensional layer thickness, hm 5 5 (hm 5 100 m). Contour maps of nondimensional
layer thickness h are shown at (a) t9 5 0 and (b) t9 5 1.6 3 1022 (2.3 days).

dense fluid propagates both downslope under the influ-
ence of reduced gravity and friction and is deflected to
the right under the influence of rotation. The shape of
the dense plume distorts severely over time due to the
different propagation speeds within the plume. A semi-

isolated lens is formed at the front of the plume and an
abrupt shock-wave-like structure is established at the
leading edge. Numerical simulations suggest that small
changes in the initial plume shape do not influence the
plume behavior significantly.

e. The Hebrides shelf edge

The possibility that dense winter water cascades
might exist at the northwest European shelf edge was
first raised by Nansen (1913) and Cooper and Vaux
(1949). Some evidence for cascading down the slope of
Rockall Bank west of Britain was obtained by Ellett in
1968 (reviewed by Huthnance 1995). Additionally a
narrow (order 20–50 km wide) slope current flows pole-
ward year-round along the upper slope (above 500 m)
west of the British Isles with characteristic surface
speeds of about 0.05–0.3 m s21 (Huthnance 1986).

In February 1996, hydrographic observations were
made from RRS Challenger at the shelf edge northwest
of Ireland as part of the U.K. LOIS (Land Ocean In-
teraction Study) Shelf Edge Study. The observations
will be reported in detail elsewhere, but Fig. 7a is a
cross-slope density section obtained from the vicinity
of 558N, 108W, which shows what appears to be a cas-
cade of denser shelf water penetrating downslope to a
depth of about 500 m, at the top of the main thermocline.
The plume has a characteristic thickness of 50–100 m
and other tracers (e.g., nutrients and chlorophyll) sup-
port the interpretation that this water mass originates
from the continental shelf. The cascade was found only
on this particular section, and transects 100 km along-
slope both to the north and south of this section showed
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FIG 7. (a) Cross-slope density (s) section near 558N, 108W on the Hebrides slope. (b) Model simulation over real topography. The
parameters are Dr 5 0.01 kg m23, f 5 1.2 3 1024 s21, and u0 5 0.07 m s21. The cross section through the plume is shown at t 5 0, 1, 2,
and 3 days.

no evidence of deep downslope penetration of dense
water, although the other sections did show shelf water
to be gravitationally unstable with respect to slope water.

An important question in relation to the above ob-
servations is how long would it take such a structure
to evolve from an initial condition of gravitationally
unstable shelf waters? The numerical model has been
applied (in two-dimensional form) over the real shelf
edge topography at the site on the Hebridean slope
where the observations were made. Based on the ob-
servational data, the initial density difference between
shelf and ocean at the surface was taken as 0.01 kg m23,
and the Ekman layer thickness was taken as hE 5 40
m (UT 5 0.8 m s21), and the Coriolis parameter, f 5
1.2 3 1024 s21. An alongslope current u0 5 0.07 m s21

was imposed to represent the influence of the Hebrides
slope current at this latitude (Huthnance 1986). How-
ever, in view of the uncertainties in its value, no en-
trainment was included. The model suggests that the
dense plume would reach the observed depth in about
2.5 days with an average speed of 0.035 m s21 (Fig.
7b).

The main properties of the cascade can be inferred
from the simple order of magnitude relations (11)–(13).
From Fig. 7b, h 5 h/hE 5 1.5, which gives R1 5 0.43,
R2 5 0.22, R3 5 0.92, R4 5 0.98, and R6 5 0.5 (see
Fig. 2a). Taking the bottom slope as tanu 5 8 3 1022,
the Nof speed is g9 tanu/f 5 0.067 m s21. The estimated
cascading speed R1uNof 5 0.029 m s21 and the drainage
speed is R2u0 5 0.015 m s21, so the total downslope
velocity can be estimated as 0.045 m s21. The alongslope

baroclinic speed of propagation is R3uNof 5 0.061 m s21,
while the slope current forced component of bottom-
layer motion (drainage) is R4u0 5 0.069 m s21. In this
case, therefore, the ratio of cascading/drainage is 2. On
the upper slope the bottom gradient is about 4 3 1022,
which gives a cascading/drainage ratio of unity. Drain-
age may, therefore, be relatively more important on the
upper slope and could assist the initiation of shelf-edge
cascades. As mentioned previously, some care is needed
in the use of the estimated velocities taken from (8)
because the governing equation is nonlinear and these
cannot be interpreted directly as propagation velocities
but only as estimates. An improved method of esti-
mation of the downslope cascade speed is by the ap-
plication of the ‘‘shock-wave’’ analytical formula (21),
which through its derivation takes into account the non-
linearity of the dynamics. In the Hebrides case, with the
values of h and R6 above this gives a speed of 0.022
m s21. The total downslope speed including drainage is
therefore 0.037 m s21, very close to the numerical result.
Of course, in order to obtain the most accurate estimate
of cascading speed, the full nonlinear model should be
run as was done to obtain Fig. 7b.

6. Discussion

The overall dynamics and especially the dynamics of
the bottom layer in shelf–slope regions is strongly in-
fluenced by ageostrophic effects. A complex interplay
of forces affects the evolution of dense water plumes
and lenses in the presence of bottom topography and
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friction. The relative importance of these forces depends
on the local plume parameters so that, in general, a dense
plume can be expected to distort in a complex manner
over time. We have presented a 1½-layer model that,
through analytical and numerical solutions, gives the
capacity to simulate the detailed evolution of a bottom-
layer plume over realistic bottom topography in the
presence of an externally imposed current in the upper
layer.

Several authors have considered the motion of dense
water masses over sloping bathymetry (e.g., Bowden
1960; Bowers and Lennon 1987) from the point of view
of bulk force balances. This approach is underdeter-
mined in terms of unknown variables and cannot be
used to make an a priori prediction of plume trajectory.
The stream tube approach (Smith 1975) can predict the
plume trajectory, but only the cross-sectional area of
the plume is determined from the dynamics, and eval-
uation of plume thickness depends upon specification
of how it varies, if known (Price and Baringer 1994).
On the other hand, our approach, which comprises force
balance as well as mass conservation considerations, can
predict both the plume trajectory and its thickness and
is not limited to stationary conditions as are the other
two approaches.

The governing equation for our model (8) is of the
advection–diffusion type and is structured in such a way
that inspection of terms allows an estimate to be made of
their relative importance. The nonlinearity of the govern-
ing equation means that plume velocities are only properly
determined by the full solution of the equation. However,
some progress can be made by taking the above velocities
as broad estimates of plume propagation rates. On account
of the balance between pressure gradient, friction, and
Coriolis force the density difference between the bottom
and upper layers brings about density-driven components
of advection both alongslope (with the shallow water to
the right in the Northern Hemisphere) and downslope. For
the same reason an externally imposed current will advect
the bottom layer with vector components in the direction
of the main current and perpendicular to it (to the left in
the Northern Hemisphere). All of these four vector com-
ponents are determined by two primary scale velocities
modulated by scalar coefficients. These two-scale veloc-
ities are the Nof velocity, g9 tanu/f, which represents the
speed of alongisobath propagation of long topographic
linear waves, and the geostrophic velocity of the external
current u0. The scalar coefficients are functions of the ratio
of the layer thickness to the Ekman depth and are given
by (10) and depicted in Fig. 2a. It is interesting that the
Nof speed, which originally arises as the key scale for
alongslope density-driven motions, also controls the cross-
slope density-driven motion brought about by Ekman veer-
ing.

We distinguish between the two processes that bring
about downslope motion in the bottom layer over slop-
ing topography. The first, which we call forced Ekman
drainage, is the motion induced by the Ekman veering

of an imposed upper-layer alongslope current (e.g., a
barotropic eastern boundary current). The second,
which we term cascading, is the density-driven down-
slope component of flow that arises when friction allows
part of the downslope reduced-gravity force to drive
downslope motion (unbalanced by rotation). For plumes
that are thick compared to the Ekman depth, the water
transports within the Ekman layer are a small fraction
of the total transport within the lower layer. Bottom
friction effects are, therefore, relatively unimportant to
the overall motion of the plume. For this reason, ex-
ternally imposed currents drive thick plumes in the di-
rection of flow and, on sloping topography, density-
driven plume translation is principally alongslope. Nev-
ertheless, the model predicts a leakage of dense water
away from the plume in the bottom Ekman layer. For
thin plumes, friction is of much greater importance and
the overall motion is more ageostrophic with relatively
larger components of plume advection perpendicular to
upper-layer-driven currents (greater drainage) and stron-
ger downslope density-driven motion (cascading).

The theory provides several qualitative insights into
shelf-edge cascading. A two-dimensional downslope
propagating density-driven plume (no forced drainage)
forms a shock-wave structure with a sharp leading edge
and a tail of constant thickness. This structure exists in
a quasi-stationary state only if the thickness of the main
body of the plume is less than about two Ekman depths.
If the plume is initially thicker than this, only a nose
two Ekman depths thick propagates down slope. The
propagation velocity of these fully developed plumes/
noses is about 0.2 times the Nof speed [Eq. (22)]. For
these plumes it is also found that the ratio of cascading/
drainage is about two times the ratio of the Nof speed
to the (barotropic) externally forced alongslope current.

On the shelf where the bottom slope is small, the den-
sity-driven or Nof speed is necessarily small also. The
slow propagation speed of a dense plume in the flat-bot-
tomed case (Fig. 3a) highlights the weakness of density-
driven flow in these circumstances. When the bottom slope
is small, drainage is likely to prevail over cascading as a
downslope forcing mechanism. On the ocean eastern
boundaries, where poleward undercurrents or slope-
trapped currents meander onto the shelf, their effect will
be to force offshelf drainage flows. Consequently this may
take dense shelf water close to the steep slope beyond the
shelf break where cascading will take over as the primary
downslope driving mechanism. Meandering of an along-
slope current is thus a possible mechanism to trigger the
cascading process. On the other hand, an alongslope cur-
rent that flows opposite to the direction of topographic
wave propagation may resist or even block the descent of
dense shelf water, as illustrated in Fig. 4d.

The role of entrainment in downslope cascading is of
interest. Without entrainment, the downslope propagation
of the leading edge of the plume is severely inhibited by
friction, which restricts the supply of water from the main
body of the plume to the leading edge necessary to steepen
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the interface and allow density-driven propagation. By
thickening the leading edge, entrainment allows more wa-
ter to reach the leading edge from the plume behind and
so increases the speed of propagation (Figs. 3b and 4b).

Several aspects of the theory warrant further attention
in future, such as the role of Ekman pumping by the
upper-layer vorticity [first term on the right-hand side
of (8)] and the extent to which the theory can be applied
to upwelling systems where motion is upslope rather
than downslope. The model has been applied largely
under two-dimensional conditions in order to extract the
important physical insights. Figure 6, however, dem-
onstrates some of the complexity that can develop under
fully three-dimensional conditions. It also shows that
the model is capable of describing double frontal cur-
rents where the plume thickness vanishes on both up-
slope and downslope sides, such as in the case of the
Mediterranean outflow. It remains to be seen how ap-
plicable the simple results derived in two dimensions
are in the three-dimensional case. This is particularly
relevant since dense cascades in the natural environment
are likely to be intermittent in both space and time and
thus evolve as three-dimensional features. Nevertheless,
the expectation is that some of the insights and results
outlined here will be of value and help in the design of
future observational programs directed at these impor-
tant oceanographic phenomena.
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