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ABSTRACT

The behavior of the solution to a two-layer wind-driven model in a multiply connected domain with bottom
topography imitating the Southern Ocean is described. The abyssal layer of the model is forced by interfacial
friction, crudely simulating the effect of eddies. The analysis of the low friction regime is based on the method
of characteristics. It is found that characteristics in the upper layer are closed around Antarctica, while those in
the lower layer are blocked by solid boundaries. The momentum input from wind in the upper layer is balanced
by lateral and interfacial friction and by interfacial pressure drag. In the lower layer the momentum input from
interfacial friction and interfacial pressure drag is balanced by topographic pressure drag. Thus, the total mo-
mentum input by the wind is balanced by upper-layer lateral friction and by topographic pressure drag.

In most of the numerical experiments the circulationsin the two layers appear to be decoupled. The decoupling
can be explained by the JEBAR term, whose magnitude decreases as interfacial friction increases. The solution
tends toward the barotropic one if the interfacial friction is large enough to render the JEBAR term to be no
larger than the wind stress curl term in the potential vorticity equation. The change of regimes occurs when the
value of the interfacial friction coefficient x equals k, = H,f,(L,/L)(A/H,), where f, is the mean value of the
Coriolis parameter; L, and L, are the meridional and zonal domain dimensions; H, and H, are the mean depths
of the ocean and of the upper layer; and A is the amplitude of topographic perturbations. Note that «, does not
depend on the strength of the wind stress.

The magnitude of the total transport is found to depend crucially on the efficiency of the momentum transfer
from the upper to the lower layer, that is, on the ratio /e, where ¢ is the lateral friction coefficient. If & and «

are assumed to be proportional, the upper-layer transport and total transport vary as &~%°.

1. Introduction

It is still unclear why the Antarctic Circumpolar
Current (ACC) carries as much water as it does. Even
one of the most detailed numerical models to date,
FRAM (Fine Resolution Antarctic Model) (FRAM
Group 1991, overestimates the total ACC transport
by about 50% (Grose et al. 1995). Since observations
show that the ACC is strongly steered by bottom relief
(e.g., Gordon et al. 1978), many researchers have con-
centrated on topographic effects on the ACC.

Recent studies by Krupitsky and Cane (1994), Krupit-
sky (1995), Wang and Huang (1995), and Wang (1994)
have largely completed the linear theory of barotropic cur-
rents in the circumpolar domain with bottom topography
that was pioneered by Kamenkovich (1960, 1962). Two
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dynamically distinct situations are found. In the first, the
topography is small enough for there to be closed (cir-
cumpolar) geostrophic contours (lines of constant f/H, f
being the Coriolis parameter and H the depth). Since the
pressure gradient cannot build up on a closed geostrophic
contour, friction, no matter how small the coefficient is,
must balance the wind input. The total transport varies
inversely with friction (Kamenkovich 1962). In the second
case the topography exceeds the critica height where
closed geostrophic contours vanish. The momentum input
by the wind is balanced by bottom pressure drag and the
transport is independent of friction to leading order (e.g.,
Krupitsky and Cane 1994). The present work extendsthese
results to a stratified ocean.

Numerical experiments have demonstrated that strat-
ification can efficiently shield the circulation in the up-
per ocean from topographic effects. For example, the
ACC transport in the Cox (1975) GFDL baroclinic glob-
al ocean model is 184 Sv (Sv = 10° m® s7%), but it is
only 21.5 Sv in the barotropic case with the same pa-
rameters. Thus in this experiment baroclinicity leads to
a more than eight-fold increase in the ACC transport.

Topographic effects on the ACC have been exten-
sively studied using layered quasigeostrophic models
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(e.g., McWilliams et al. 1978; Wolff and Olbers 1989;
Wolff et al. 1990; Trenguier and McWilliams 1990;
Wolff et al. 1991). These studies have shown that the
transport in the abyssal layer can be very strongly
affected by topography while the transport in the rest
of water column is relatively robust.

A critical issue facing aresearcher intending to tack-
le abaroclinic problem analytically is how to force the
layers insulated from the direct action of the wind. In
layer models, in the absence of vertical viscosity the
steady motion in abyssal layersisentirely dueto eddies
(Harrison 1979). The same is true of level models. For
example, Stevens and lvchenko (1994, unpublished
manuscript) interpreted the downward penetration of
momentum in terms of meridional density fluxes and
Eliassen—Palm fluxes. Since the treatment of eddiesis
very complicated, most researchers employed various
parameterizations and hypotheses to take the action of
eddies into account implicitly. We consider the inter-
facial friction in our model to be a crude but useful
parameterization of eddy effects.

Wang (1993) assumed that eddies homogenize po-
tential vorticity (and therefore implicitly act as a sink
or source of momentum) in the deep layers of a quasi-
geostrophic channel model with weak interfacial and
bottom friction. Topography in his model was repre-
sented by a meridional ridge high enough to block all
geostrophic contours. In the limit of small explicit fric-
tion, the barotropic part of the solution is identical to
the solution of the corresponding barotropic problem,
while the shear is independent of the wind and is de-
termined by the requirement of potential vorticity ho-
mogenization in the subsurface layers.

Marshall (1995) took a continuous equivalent of the
same assumption; that is,

P _
faz = Q(p),

where p is the potential density and Q is chosen to be a
linear function, which implies exponentia variation of
density with depth. The problem was solved following
characteristics, which were shown to lie between the f/H
contours of a homogeneous ocean and f contours of a
strongly stratified ocean. The “initia’” value of surface
density had to be prescribed at some longitude to deter-
mine the solution. In the limit of weak bottom currents,
the ACC transport is found to be 160 Sv. The circulation
consists of circumpolar flow in the upper 3 km and abyssal
gyres trapped by bottom topography.

Here we will consider a two-layer wind-driven model
in a doubly connected domain with bottom topography
submerged in the lower layer. The lower layer is driven
by interfacia friction and by interfacia pressure drag. Our
primary goal is to describe the solution qualitatively and
to understand the nature of the momentum balances, which
determine the transport. Numerical experiments confirm
our analysis. In addition, the issue of coupling between
the layers is studied.
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2. The model

Consider a circumpolar ocean of depth H bounded by
solid boundaries I', at the north and T'g @t the south. The
momentum equations for the steady circulation in a two-
layer ocean are assumed to be

fk X u,=—-gVn—eu, — k(u, — u,)/h, + 7/h;, (1)
fk X u,=—gVn+g'Vh, —eu, + k(u, — u,)/h,, (2)

where h, and h, are the thicknesses of the upper and lower
layersrespectively, u, = (u;, y) arethe horizontal velocities
in each layer, 7 is the surface elevation, f is the Coriolis
parameter, g’ is reduced gravity, and « is the interfacia
friction coefficient. Interfacial friction in the present model
stands in for the effect of eddies. Lateral viscosity and
horizontal divergence of the Reynolds stresses are para-
meterized by the Rayleigh friction terms eu,.
Subtracting (2) from (1),

fk X (u, — u,) = —g’'Vh, + 7/h; — Af(u; — u,),
(©)

where

A=2{e+ ()
T T "

is a nondimensional friction coefficient; typicaly A <«
1. The transport streamfunctions are defined as

k X Vi = u;h;, (i=1,2),
k X Vi = u,h; + u,h,. (5)
Using (2), (3), (5) to eliminate u, in (1), we obtain
_kXVy N h,

BT (1 + A2H
k : T) - /\(g’Ahl - hl) .
1 1
(6)

Taking the curl of the vertically averaged momentum
equations yields

1 f g 1 T

Y + — = 2 2 | = =
(b o ) Lol ) < o
()
Thelast term on the left of (7), known as JEBAR (joint
effect of baroclinicity and relief), was first introduced

by Sarkisyan and Ivanov (1971). Substituting (6) into
the steady upper-layer mass conservation equation

V.(uhy) = 0

X

(g’k X Ah, —

€

8

gives an equation for the interface displacement
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h)\ ¢ 1-h/H
242 9(h2, Y| = V-uVh + V.
J(l!l,H) 2J< 7, f(1+,\2)> V-uV v

where

_gah@d-h/MH) g

f(1+ 1?9

is the nonlinear mixing coefficient. Notice that u is
proportional to A in the limit A — 0 and is significant
even for small A. For typical parameters of this model
[0 = O(10-2 ms2?), h; = O(1 km), £ = O(10-5-10"7
s, k = 0(10-2-10* m s %], one finds . = O(10>—
10* m? s71). Equations (7), (9) constitute a closed system
with respect to ¢ and h,.

The boundary conditions are periodicity in x with
period L, and

(11)

Upnlryirs = O, (12)

where the subscript n denotes the component of velocity
normal to the solid boundary. Here, T is the total trans-
port, which can be found by integrating the vertically
averaged zonal momentum equation

fo
0

along any latitude line unobstructed by land (Kamen-
kovich 1962).

Taking the curl of the steady vertically averaged mo-
mentum equations within each layer yields equations
for ¢, and i,

f e
J(h? "’1) - V'(ﬁ""ﬁ)

‘l’er =0, ‘/flrs =T

foy gonk = sy

Hox 2Hox T H THay &0

(13)

K K

The system (7), (9) governing the interface displace-
ments is nonlinear and is very difficult to solve. [An
unforced inviscid version of (7), (9) was considered by
Salmon (1992).]
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- V. , (9)

A h,
f(1+ )\2)<1 - ﬁ)

(% € (20

]

Straub (1993) hypothesized that geostrophic contours
in the upper layer f/h, are closed whereas those in the
lower layer are blocked. This can be supported by the
following reasoning: interface displacements are small
compared to the mean thickness of the upper layer
whereas the largest topographic features observed in the
Southern Ocean should be able to block geostrophic
contours in the lower layer. The other possibilities are
that geostrophic contours are closed or blocked in both
layers. (It is not plausible that geostrophic contours in
the upper layer are blocked while those in the lower
layer are closed.) Let us consider these possibilities as-
suming the existence of a stationary solution to (7), (9).

To facilitate the analysis we temporarily assume a
relationship between the Rayleigh friction term and in-
terfacial friction terms:

(16)

where H, is the mean depth of the upper layer and « is
some bounded coefficient.

It follows from (9) and (10) that for sufficiently large
friction the amplitude of the upper-layer thickness per-
turbation is small enough to allow closed geostrophic
contours in the upper layer. Those in the lower layer
will be closed if topography is sufficiently high. Thus
Straub’s hypothesis is consistent with the equations of
motion for at least some combination of model param-
eters. If closed geostrophic contours in the upper layer
exist, the absolute values of f/h, equatorward of the band
of closed geostrophic contours (hereafter B) are smaller
than those poleward of the band. Integration of (1)
around a closed contour of f/h, yields an integrated mo-
mentum balance

e Y, k(1Y 1 9y, Ts
B0y K20 2 O0Va)  Tolyo_ 0 (1
% h, on h1<h1 an  h, an) h,| (17)

Suppose for amoment that the dependence of interfacial
pressure drag on friction is negligible; that is, the same
integration contour in (17) can be used over somerange
of friction parameters. Then (16) and (17) imply

Y = O(Tol-ylg)a (18)
where 7, is the amplitude of the wind stress and L, is

k = aH,e,
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the meridional scale of the domain. With increasing «
(increasing «) an increasing portion of the momentum
input from wind is balanced by interfacial friction and
thereby passed to the lower layer. Consequently, within
band B the lower layer is forced in a formally similar
manner to the wind forcing in the upper layer. Since
geostrophic contoursin the lower layer are blocked, (15)
is qualitatively similar to barotropic problems consid-
ered by Krupitsky and Cane (1994) and Krupitsky
(1995).

Consider now how the stationary solution will change
with decreasing friction. The solution in the upper layer
will grow as ¢~* within the band of closed f/h, lines, as
shown by Kamenkovich (1962). It follows from (3) that
this should be accompanied by increasing thermocline
slope. With eastward wind, h, will be thicker at the
equatorward side of the channel and thinner at the pole-
ward one. As a result, [f/h,| will decrease in the equa-
torial part and increase in the polar part of B, thereby
widening the range of values of f/h, within the band.

At the same time, with decreasing friction, h, = H
— h, will become thinner in the equatorial part and
thicker in the polar part, thereby enhancing the blockage
of potential vorticity contours in the lower layer. Then
it follows from the results of Krupitsky and Cane (1994)
that the solution in the lower layer is independent of
friction to leading order. Thus we find that the regime
suggested by Straub (1993) is not only possible but
holds for a wide range of parameters.

This simplified picture is somewhat altered by the
dependence of interfacial pressure drag on friction.
When ¢ and « decrease, upper-layer velocity need not
grow as ¢ * to maintain the momentum balance because
interfacial pressure drag can pick up part of the slack.
Therefore, upper-layer velocity increases less rapidly
while increasing interfacial pressure drag provides an
additional forcing for the lower layer.

To estimate the effect of interfacial pressure drag on
the upper-layer transport T,, we make use of the baro-
tropic model analysis by Johnson and Hill (1975). For
the upper layer, the role of bottom topography is played
by the interface h,. The zonal momentum balance (1)
integrated over the volume of the upper layer can be

written as
1
VRTl%FTEL— 7 dx dy,

where v = ¢ + k/H, and R is the “‘reduction” factor
due to nonzero correlation between surface elevation n
and topography (of the interface, in this case):

ffhlvndxdy;é 0.

This integral represents the interfacial pressure drag.
Johnson and Hill (1975) showed that

(19)
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Ly > 2

Rz%f 1+ :°2<a—h1) dx,
« Jo B2Hz2\ ax

where H, is the mean ocean depth. Zonal perturbations
of the interface are entirely due to the lower-layer cur-
rent. To see this, note that if the lower layer is stagnant,
then the interface tilts only to compensate for the tilt in
the sea level, which is assumed to be a function of y
only. Hence (3) implies

M of la %)

X g'H, ax

(20)

where H, and H,, are the mean thicknesses of the upper
and the lower layers. We thus need an estimate for the
zonal gradient of the lower-layer flow . For this ar-
gument we assume that ¢, is mainly driven by inter-
facial friction in the region of fast upper layer flow B;
that is, by the last (‘‘external’ forcing) term in (15),
F, = O(xT,/H,H,L2). The gradients of i, are concen-
trated within the internal boundary layers of width
O(L,(vff,)~¥?) (Krupitsky and Cane 1994). The jump
across the boundary layer in i, O(F,H,LL/f) =
O(xT,L,/fH,L,) and the internal boundary layers are
slanted at the angle O(L,/L,), assuming L, > L. There-
fore, (20) implies

oh KT
a—xl =0 L (y/f,) V2

TR — 21
g'LH;H, =

and

R=1+0 (22)

f2 [oh,\’
Bz&g(_l) CANE

1)
Substituting (21) in (22) yields

R=1+0 Llfo 2( /) V2
9 BLHH,H,) ]

Using (16), (19) becomes a cubic equation for T,
1+ &qT9eT, = F(1 + o) Y, (23)

where q = f¥?(a~*g'BLHH,)2(1 + «) Y2 For suf-
ficiently small ¢ the solution to (23) varies as &%¢.
For the parameters used in numerical experiments de-
scribed below, £¥2qT% < 1, therefore one expects the
rate of growth of T, to be between ¢~%¢ and &~*. This
isin contrast to Wang (1993), who found a finite “‘in-
viscid” limit of the transport in all layers. Note, how-
ever, that, since Wang (1993) assumed that baroclinic
instability would limit the shear growth, there is im-
plicit dissipationin hismodel, even as ¢ - 0. Equation
(23) can be rewritten as

a2

55/2(]0(1_{_—(1)21-% +eT,=F_,
where ¢ = &(1 + «) may be termed the total friction
coefficient, and q, = f¥*(g’'BL,H,H,) 2. It follows that
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for sufficiently small &, T, isindependent of « for large
a and varies as a2 for small «.

3. Numerical experiments

We seek to verify the results in a series of numerical
experiments. We either integrated the time-dependent
versionsof (7) and (9) or solved (6), (7), and (8) directly.
The two systems are equivalent but the boundary con-
ditions are more conveniently handled in the latter. The
numerical experiments were conducted for a periodic
zonal channel with vertical walls on a 8 plane (0 = x
=L, 0=y=L,) centered at 60°S. We used the C-grid
for space variables and the leapfrog scheme for time
differencing. The forcing and model parameters were
chosen as follows: H = H, — A sin(2wx/L), H, = 4
km, H, = 1km, A= 1.5km, ™ = 7°sin(ny/L,), 7 =
0, =10“m?s? L, = 20000 km, and L, = 1320
km. The mean value of the Coriolis parameter is f, =
—126 X 10*stand B =114 X 10" m st

The very high topography (A = 1.5 km) was chosen
to ensure blocking of geostrophic contours in the lower
layer. It allows us to compare the true behavior of the
solution with the estimate of the previous section far
from the quasigeostrophic limit.

Most experiments were conducted on a4° X 2° grid.
In the first series of experiments we set k = ¢H,, that
is, « = 1. For the smallest values of ¢ and « that we
triedonthe4° X 2°grid (¢ <2 X 10775, k <2 X
10+ m s1), forward time stepping did not lead to sta-
tionary solutions. Instead, periodic solutions with pe-
riods of order 1 yr were observed. Steady solutions
obtained by directly solving (6), (7), and (8) turned out
to be unstable with respect to small perturbations. On
the 2° X 1° grid the steady solutions become unstable
at e = 7 X 108 s~*. Such behavior is not unusual in
hydrodynamic systems (Marcus 1981). The oscillating
solutions do not reflect the actual behavior of the con-
tinuous system. We were always able to find a steady
solution on a sufficiently fine grid, unless outcropping
occurred. Higher resolution calculations also show that
the steady solutions (in particular, the values of the
transport) are increasingly less reliable as friction ap-
proaches the critical value where instability occurs. As
in Krupitsky et a. (1996), very high resolution is re-
quired to retrieve correct values of the transport when
closed characteristics are present. It appears to be nec-
essary to resolve the internal boundary layers on both
sides of the band of closed characteristics.

Experiments were also run for cases of stronger («
= 10) and weaker (e« = 0.1) frictional coupling. The
calculated transports are plotted in Fig. 1. The slopes
of the curvesin Fig. lavary between —0.85 and —0.95
(except in the high friction part of the case « = 10,
where it goes as £~2°), consistent with the estimate of
the previous section that slope is between —%, and — 1.
This means that interfacial pressure drag plays a pro-
gressively more important role in the momentum bal-
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ance as friction decreases. The lower-layer transport, as
expected, depends on friction very weakly (Fig. 1b).
This result is consistent with the findings of Wolff
(1990), who used a coarse resolution quasigeostrophic
model and a narrower range of parameters.

Selected solutions for total streamfunction and inter-
face displacement are presented in Figs. 2 and 3. It is
clear that the topographic ridge (situated at 90°) exerts
stronger influence on the flow than the trough (270°).
The contours of ¢ and h, are almost parallel except in
the vicinity of the ridge and the trough, where the gra-
dients of H vanish so that the JEBAR term vanishes.

As one expects from the arguments presented in the
previous section, the circulations in the two layers in
these solutions are decoupled. The upper-layer stream-
lines (which almost coincide with isolines of the tota
streamfunction i) are almost zonal, whilethecirculation
in the lower layer mainly consists of weak closed gyres.
The only difference between (7) and barotropic equation
(11) of Krupitsky and Cane (1994) is the second term
on the left of (7), JEBAR. Thus the JEBAR acts to
insulate the upper layer from topography. Thisresult is
most readily understood in terms of the structure of the
geostrophic contours in the upper layer using (14).

The degree of coupling between layers in this model
depends on parameters g’ and k. Asthe barotropic limit
(9" - 0) is approached, the JEBAR term is certain to
become negligible. Hence, as g’ — 0, the solution for
 would approach that of Krupitsky and Cane (1994).
Unfortunately, since the slope of the interface varies
inversely with g’ [cf. (3)], the numerical experiments at
small g' require higher values of ¢ and k to prevent
outcropping of the lower layer near the poleward bound-
ary or grounding of the upper layer at the equatorward
boundary.

Therefore, we investigate coupling by increasing «.
The following scaling argument helps to understand the
role of k. Since the slope of the interface is to leading
order determined by 7 f, and the friction coefficient u

[cf. (9)],

ah, _ ™ f
Iy ow
Assuming that ¢ is sufficiently small (a > 1),
ah, _ f
dy kg

The JEBAR term can make the solution to (7) substan-
tially different from that in the barotropic case if

g 1 T
=J| h? — l,—.
2J< 2, H>>>curZH

This holds if

L, A
H, o

KL Ky = LH_'
x ' '0
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With our choice of parameters k, = 3 X 103 m s™%
Figures 4 and 5 illustrate the evolution of , and i,
with increasing k. With k = 10-3 m s, the upper layer
is barely affected by topography. With k = 102 m s1,
JEBAR is about three times smaller than the wind forc-
ing and the circulation patterns in the upper and the
lower layers resemble each other. With k = 3 X 10-2
m s, the solution is almost barotropic. Asisclear from
Fig. 5, the lower-layer flow is dependent on « only
weakly: if T, varies as k%%, then total frictional drag
on the lower layer kT, varies as 6. With sufficiently
large « this influence is passed to the upper layer via
interfacial momentum exchange.

These results are in apparent contradiction with Kill-
worth’s (1992) theory predicting the self-similarity of
the inviscid planetary geostrophic flow on density sur-
faces. However, the direct comparison with Killworth's
arguments is difficult because his model does not in-
clude forcing explicitly. On the other hand, given the
self-similarity of the time-mean velocity field in the
ACC found in FRAM (Killworth 1992), our results are
consistent with Killworth and Nanneh (1994), who find
the balance between top and bottom drags in each (thin)
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FiG. 1. The transport (Sv) as a function of & with k = H,e/a and
(solid line) « = 1, (dashed line) « = 0.1, (dash—dotted line) « = 10
for (a) upper layer, (b) lower layer, and (c) total.

isopycnal layer. Both in FRAM and in our model, self-
similarity is associated with large vertical stresses. This
suggests the possibility that the equivalent barotropic
structure found by Killworth (1992) in FRAM is gen-
erated by interfacial stresses.

4. Conclusions

A theoretical and numerical analysis of a two-layer
wind-driven channel model on a 8 plane, intended to
simulate the ACC, shows that for a realistic range of
parameters the regime most likely to be realized is the
one suggested by Straub (1993): geostrophic contours
in the upper layer are closed while those in the lower
layer are blocked by solid boundaries. Then in the upper
layer the momentum input from wind is balanced by
lateral and interfacial friction and by interfacial pressure
drag. The latter is shown to become progressively more
important when coefficients of lateral and interfacial
friction simultaneously decrease. In the lower layer, if
lateral friction is sufficiently small, the momentum input
from interfacial friction and from interfacial pressure
drag is mainly balanced by topographic pressure drag.
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Thus, in the total budget the momentum input by the
wind is balanced by the upper-layer lateral friction and
by topographic pressure drag. Their relative importance
in thismodel isdetermined by theratio of lateral friction
to interfacial friction in the upper layer. Interpreting the
interfacial friction as a surrogate for the eddy activity
puts this analysis in general agreement with results of
eddy-resolving experiments (McWilliams et al. 1978;
Wolff and Olbers 1989; Treguier and McWilliams 1990;
Wolff et al. 1990; Wolff et al. 1991).

In contrast to the barotropic models of Krupitsky and
Cane (1994) or Krupitsky (1995), here we find unre-
stricted (except by outcropping) growth of the upper-
layer (and therefore total) transport. We conclude that
topographic pressure forces, again unlike those in bar-
otropic models, may not be sufficiently large to effec-
tively restrict the total transport. Instead, the effective-
ness of topographic control depends on the magnitude
of the vertical momentum exchange. In the real ocean
as the flow speeds up, more eddies are generated, so
momentum exchange increases. This effect is not in-
cluded in our study, but increasing « allows our model
to indicate how it might work. As a step toward greater
realism, we could set k to be a function of shear. In-
terpreting the numerical modelsin this framework leads
us to suggest that their transports are too high because
their effective interfacial friction and pressure drag are

too weak. Since the interfacial effects in these models
are largely the result of baroclinic eddies, we are led to
suggest that the level of eddy activity istoo low in these
models.

The rate of growth of the upper-layer transport T,
varies between £~ and ¢7%¢ as lateral and interfacial
friction simultaneously decrease (cf. Fig. 1). This the-
oretical estimateis confirmed by numerical experiments.
The magnitude of the total transport depends strongly
on the efficiency of the momentum transfer from the
upper to the lower layer, that is, on the ratio «/e.

These results are in contrast to Wang (1993), who
found a finite limit to the transport by assuming that
excessive shear is removed by an implicit baroclinic
instability. It is this assumption that effectively imposes
the “inviscid” limit in his calculation. We do not have
such a limiting mechanism in our model. Instead, the
eddies are parameterized by interfacial and lateral fric-
tion. It is possible that baroclinic instability occurs in
planetary geostrophic systems, despite the absence of
the nonlinear terms. [Colin de Verdiere (1986) shows it
for a three-layer flat bottom model with no barotropic
mode.] In our calculations, however, it does not happen.

In most numerical experiments the circulationsin the
two layers are decoupled. The decoupling can be ex-
plained by the JEBAR term, whose magnitude decreases
as interfacial friction increases. The solution tends to
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the barotropic oneif theinterfacial frictionissufficiently
large to render the JEBAR term to be of the same order
or less than the wind-stress curl term in the potential
vorticty equation. A critical value of interfacial friction
separating coupled and uncoupled regimes is deter-
mined. It depends on the size and scale of the topog-
raphy and on the scale of the wind stress, but not on
the wind amplitude.
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