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ABSTRACT

Observations reveal a strong tendency for fronts to locate over the outer continental sheif and the upper
portions of the continental slope. In this paper, we consider a model of the alongshelf evolution of a quasi-
steady density front which separates relatively light nearshore water from the offshore. Results show how, in
the absence of any external forcing, the frictional stress associated with bottom geostrophic velocities can result
in the cross-shelf migration of a front as one progresses down the shelf in the direction of long coastal-trapped
wave propagation.

The primary results are derived for the hypothetical case of a flat shelf adjoining a very deep offshore region.
In this case, the rate of cross-shelf migration of a density front is similar to that of a passive scalar front in a
barotropic fluid. The offshore displacement of a front, s¢parating the lighter inshore from the heavier offshore
water, increases exponentially in the direction of shelf-wave propagation on the frictional decay scale of a
damped barotropic shelf wave,

Beyond a point of abrupt increase in depth, density variations play a more important role. There is a transfer
of alongshelf transport from the barotropic inshore region to a baroclinic current in the upper layer water above
the front. Eventually all of the transport carried by the lighter layer is shifted to the frontal region and the
intersection of the front with the bottom stops deepening. Interfacial friction continues to resuit in a seaward
spreading of the frontal transport and the interface consequently slowly flattens over time.

The results suggest slow cross-shelf migration for a nearshore front, more rapid migration across the outer
shelf and then stalling at a depth where all of the transport is carried in the frontal region. While the model is
highly idealized it is suggested that the physical mechanisms considered may be partially responsible for the
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fact that fronts are most often observed either nearshore or near the shelf break. Some important limitations

are discussed.

1. Introduction

Water properties are frequently observed to vary over
relatively small horizontal distances in the vicinity of
the shelf edge. This is most evident in salinity due to
the influence of ice-melt and freshwater runoff on the
shelf. Figure 1 shows examples from the east coast of
North America. At high latitudes (e.g., on the Labrador
Shelf) where the cold water temperatures result in re-
duced sensitivity of density to temperature variations,
the salinity fronts are generally associated with density
fronts, but to the south the cross-shelf density variations
are typically reduced due to compensation between sa-
linity and temperature effects (the coastal waters tend
to be relatively cold and fresh). Our primary interest
is in reasons for the apparent tendency for such fronts
to locate near the shelf break. We consider a highly
idealized model in order to both simplify the mathe-
matics and to center attention on one particular mech-
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anism of interest. The simplifications made invalidate
direct application of results to most real world situa-
tions. Results will, however, indicate the potentially
important role of frictional stresses in the cross-shelf
migration of density fronts in a simple geophysical set-
ting.

It is worth noting that we do not restrict our attention
solely to the buoyancy-forced component of the flow.
Buoyancy flux may of course be an important driving
mechanism for both the baroclinic and barotropic shelf
circulation (Shaw and Csanady 1983; Weaver and
Hsieh 1987), but forcing by the mean alongshelf wind-
stress (e.g., Ikeda 1985), by periodic wind forcing
(Denbo and Allen 1983) or by any other mechanism
is not excluded. On the other hand, we consider only
the idealized situation in which there is no local external
forcing: all external forcing is assumed to occur back-
ward (relative to coastal-trapped wave propagation ) of
the region considered. We thus contemplate a shelf-
slope flow caused by some unspecified forcing mech-
anism and consider the slow alongsheif evolution in
the region forward of the forcing region.

It is perhaps not surprising that fronts tend to occur
near the shelf break. Even in the absence of a front the
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F1G. 1. Three salinity sections from the east coast of North America showing the tendency for rapid property changes near the shelf break.
Figures were obtained from (a) J. R. N. Lazier (pers. comm.), (b) Petrie and Smith (1977), and (c) Wright (1983).

continental slope tends to act as a barrier to cross-shelf
exchange (Csanady and Shaw 1983; Wright 1986) and
hence the shelf break seems a natural location for
abrupt property transition. Indeed, Chapman (1986)
has developed this idea in some detail. For a passive
scalar front, he suggests that bottom stress coupled with

depth variations results in a velocity convergence near
the shelf break, tending to sharpen the front on the
shelf side, and that rapid tracer diffusion in the deep
ocean tends to maintain an abrupt property transition
into the deep ocean. The consideration of a passive
scalar front is motivated by conditions in the Middle
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Atlantic Bight region where a strong T-S front is ob-
served over the shelf/slope region but the two fields
tend to be density compensating so that the associated
density front is considerably weakened. Although the
model considered is an.over-idealization, it does clearly
reveal how a combination of bottom friction and hor-
izontal mixing may result in the formation of a property
front over the slope region.

Here we consider an alternative simple model which
complements Chapman’s work by allowing for density
variations. The basic equations are presented in section
2, migration across the flat shelf is discussed in section
3 and evolution beyond the shelf break 1s considered
in section 4. Some limitations of the model are dis-
cussed in section 5 and conclusions are summarized
in section 6.

2. Equations

Motivated by observations such as those presented
in Fig. 1, we consider the alongshelf evolution of a
front which separates lighter coastal waters from
heavier, uniform density, offshore waters. Bottom
depth is assumed to be a function of offshore coordi-
nate, only. Beyond the shelf break located at x = L,
we assume that the lower layer is very deep and con-
sequently currents are negligible outside of the inter-
facial Ekman layer (i.e., we use a reduced gravity model
for x > L). The basic geometry and variable definitions
for the special case of a two-layer fluid over a step shelf,
to which we shall shortly restrict our attention, are
schematized in Fig. 2.

For flow on an f-plane, under the Boussinesq, hy-
drostatic and rigid-lid approximations, the relevant
linearized, depth-integrated equations are discussed by
Shaw and Csanady (1983). They are

_ O 1 ép
fV-— proaxd

1
= L3 pirrtEn
0 1 dp
fU—_qua_ydz_rbvb
= poayf PdZ-rbvb 3]
U+ V,=0 3)

where (x, y, z) form a right-handed Cartesian coor-
dinate system with x increasing away from the coast
and z increasing upward from the rest position of the
sea surface, U and V are the horizontal transports in
the x and y directions, p is the hydrostatic pressure, po
is a constant reference density, and r; is a bottom fric-
tion coefficient which relates bottom stress to (#;, vp),
the geostrophic velocity at the bottom (see Csanady

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 19

(@ 3

ADVZ
y

*{ pEEP

LAYER
(VERY
WEAK
CURRENTS)
(b) v x=L
-'——TX
: 2|\
o \
o] \
= \
- \
\
\
\\
N x=x¢{y)
\/
AN
AN
?
~,
\\\
N
N\,
DOES THE h
FRONT MOVE
OFFSHORE ?

F1G. 2. (a) Schematic of a front in a 2-layer fluid overlying a step
shelf indicating variables referred to in the text. Alongshelf geostrophic
currents and the associated cross-shelf Ekman layer currents are also
indicated. (b) Illustration of the primary question considered in this
section: how does the front in (a) evolve down the shelf?

1979, for a discussion of this parameterization). The
bottom geostrophic velocity is given by
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where p; is the pressure at z = 0O associated with the
surface elevation.

In writing (1)-(3) we have assumed that alongshelf
scales of variations greatly exceed the corresponding
cross-shelf scales and that if there is temporal evolution,
it occurs on a time scale long compared to the frictional
spindown time (~ H;/r,: for typical values of H;
=100mand r, = 2.5 X 1073 X 0.15 m s, this time
scale is of order 3 days). Though our primary interest
is in steady-state solutions, the allowance for possible
slow temporal evolution will be useful in section 4.

Cross-differentiating (1) and (2), and using (3) and
(4), we obtain

(rsvs)x — fHyttp = 0. (6)

From (4) and (5) the horizontal divergence of the bot-
tom geostrophic velocity is given by

Upe + Vpy = —(8H/ £ P0)Psy- (M

Finally, within regions of constant H, and r;, elimi-
nating u, from (6) and (7) gives

Vpy + (rb/ﬁ)vax = “(g/fpo)spby,

where s = H,.

The above set of equations are equivalent to those
considered by Shaw and Csanady (1983). Augmenting
(8) with an appropriate density equation, they present
an interesting discussion of how an initially localized
density anomaly self-advects along the shelf. The joint
effect of baroclinicity and relief (JEBAR), entering
through the right side of (8), plays a central role in
their study of buoyancy driven flows. On the other
hand, Chapman (1986) has used a barotropic model
[zero right side in (8)] to illustrate that dynamically
important density variations are not necessary for the
formation of a (passive scalar) front at the shelf break
provided there is a flux of fluid with a property anomaly
into the region across the backward boundary. Further,
it is evident from Chapman’s analysis that similar re-
sults would be obtained for quite general topography,
including the case of a flat shelf.

Chapman (1986 ) retained simplicity in his study by
assuming density variations are dynamically unim-
portant, and in particular that the fluid is of uniform
density in the region of interest. From (8) [or (6)] it
is apparent that a similar simplification results in re-
gions of very weak bottom slopes even if density vari-
ations are substantial. Below we will take advantage of
this simplification by considering the idealized, but
physically realizable case of a step-shelf geometry. That
is, we consider H = H,, a constant, for 0 < x < L.
Then (6) simplifies to give

®)

V=0, O0<x<L. )
Thus, v, is uniform across the flat shelf region. The
simple form of (9) arises because, on a flat shelf, any
divergence in the cross-shelf Ekman flux would cause
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stretching of planetary vortex tubes that would result
in an unbalanced vorticity tendency, thus contradicting
our assumption of a (quasi-) steady state. Of course,
over a sloping shelf this vorticity tendency could be
balanced by vortex tube stretching due to cross-isobath
flow and (9) must then be modified accordingly (Shaw
and Csanady 1983; also see section S below). However,
on a step-shelf Eq. (9) holds for arbitrary stratification.
Appropriate boundary conditions will be considered
in the following sections.

Where density variations are present, the above
equations must be supplemented by information about
the evolution of the baroclinic structure. To simplify

_the problem still further, we henceforth restrict our at-

tention to the case of a two-layer fluid. Then this in-
formation may be obtained from the depth-averaged -
equations of motion for the upper layer:

—for=—po 'Pix (10)
fitr = —po 1y — (;—’l)(vl —v) (D)
(hauy), + (hlvl)y = —hy, (12)

where (u,, v,) is the depth-averaged horizontal velocity
over the upper layer, (p.x, P1,) is the pressure gradient
in the upper layer, A, is the thickness of the upper layer
and r; is an interfacial friction coefficient analogous
to, but much less than, r,. Note that slow (i.e., on time
scales long compared to the frictional decay time, 4,/
r;, of order a few weeks) temporal evolution of the
density field is explicitly allowed for through the inclu-
sion of a possibly nonzero right side in (12). Shaw and
Csanady discuss the justification for retaining time-de-
pendence in the density equation while neglecting it
in both the momentum equations and the depth-in-
tegrated continuity equation.

Finally, substituting (10) and (11) into (12) and using
the thermal wind relation,

Uy == (%)hlm

where g’ = g(p2 — p1)/po is the reduced gravity, we
obtain

(13)

r
hy + wighix + Vi hy, = (%)hlxx (14)
where (#1, V1) [=(up, v5) + &/f 7 (—hiy, hix)) is the
geostrophic component of the upper layer current.

3. Case I: Front over a flat shelf

We now consider how and why a front over a flat
shelf (Fig. 2) will evolve in the alongshelf (— y) direc-
tion. In particular we want to determine whether or
not the front will move seaward under the influence
of friction.
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First, note from (9) that
vy = Up(y) (15)

= (pof/L) ' [s(L, ¥) = ps(0, »)].  (16)

In this section we assume that the lower layer extends
inside x = L. The reduced gravity model approxima-
tion beyond x = L then implies that the lower layer
pressure gradient vanishes there. Thus, matching lower
layer pressure across x = L we conclude that p, is uni-
form along x = L. Taking p, = O there (i.e., taking p
to be the pressure measured relative to that at x = L,
z = —~H;), (16) reduces to

vy = —(pofL) "' ps(0, ¥). an

Now, assuming that the front hits bottom seaward of
x = 0 so that the flow is barotropic at the coast, the
coastal constraint, U = 0 at x = 0, gives [using (2)]

po Hpyy + rpvp =0 (18)
or
r
Uy — (le}is)v” = 0. (19)
Integrating, we obtain
vy = vy (y = 0) exp (fZ’I);) . (20)
Finally, over the flat shelf
Upy, + Vpy = 0. (21)

Substituting (20) in (21), integrating with respect to x
and using u;, = 0 at x = L we obtain

up = (L —X)(

r'p
fL Hs ) Up. (22)

This completes the determination of the bottom
geostrophic velocity field in the forward region (y
< 0) where the lower layer extends onto the shelf. Ba-
sically, as a result of the Ekman flux across x = L, the
alongshelf bottom geostrophic velocity decays on the
scale fLH,/r,. The bottom pressure drops accordingly,
with the corresponding cross-shelf geostrophic velocity
component given by (22). Interestingly, the scale
fLH,/r, is independent of the stratification: it is just
the distance that a long wavelength barotropic shelf
wave on a step propagates in the frictional decay time
scale, H;/r,. Thus, over a flat shelf, both u; and v,
evolve in a manner which is independent of the strat-
ification. In fact, over a flat shelf this result holds for
more general stratification provided that (1)-(3) are
valid, the density is uniform alongshore at x = 0, and
there is a uniform density, deep-ocean lower layer
which intrudes some distance onto the shelf.

Note that u, (the geostrophic¢ contribution to the
cross-shelf bottom velocity) is shoreward. In the case
of a homogeneous fluid the interior geostrophic flow
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would be vertically uniform and would tend to advect
any passive scalar towards the coast. On the other hand,
for a homogeneous fluid the total cross-shelf transport
including both geostrophic and Ekman flux contri-
butions, is given by

U(x, y) = Hou, - (Lf'i)vb
= —(%)vb. 23)

The net cross-shelf transport is thus seaward and in
the presence of strong vertical mixing, a passive scalar
would in fact be advected towards the shelf break as
noted by Chapman (1986).

The seaward advection discussed above is critical to
the frontogenesis mechanism discussed by Chapman
(1986). It is of interest to examine whether or not this
mechanism carries over to the case of a dynamically
active density front, particularly when mixing rates are
reduced so that vertical homogeneity is not maintained.
In fact, for the case of a two-layer fluid over a flat shelf
we may immediately show that the front does migrate
seaward as we progress down the shelf.

Let T, be the alongshelf transport carried by the
lighter, nearshore water mass. Then ’

L 9]
T, =J; hﬂ)]dX"‘L h]U]dx (24)

—_—

L L
=J; h,vbdx+f0 (v — vp)dx

+f:° h,u,,dx+f:° (v, — v)dx  (25)

~

where the underbraced terms represent the upper layer
transport carried in the region beyond x = L. If the
upper layer does not extend beyond x = L, these terms
vanish. Now, v, is uniform for 0 < x < L and vanishes
for x > L, and in either region, where two layers exist
v, — U, is given by (13). Thus,

7= a0, + & [ i 26)
S Iy
-mo-Laz-my @)
5 2]» 5 ag

where A, is the area of the upper layer overlying the
shelf, x = x,(y) is the position where the front intersects
the bottom, and A, is the depth of the upper layer far
from the shelf. We will henceforth assume #&;,, = 0,
but the following arguments carry over with only minor
modification to the case where h,,, is any specified
constant. Finally, rearranging (27) gives

o[ () o

(28)
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This equation holds for any section where the front
intersects the bottom inside x = L.

Now, since the numerator in (28) is constant while
" the denominator decreases exponentially with —y in
accordance with (20), we conclude that 4, the cross-
sectional area of the upper layer over the shelf increases
exponentially with —y and thus the front clearly shifts
seaward. The above conclusion depends on the as-
sumptions of a weak lower layer alongshelf current
component and geostrophically balanced alongshelf
current shear beyond x = L, but is otherwise indepen-
dent of conditions beyond x = L. In particular, slow
temporal evolution of the density field in the region x
> L will not influence this conclusion.

Note that as for v,, the alongshore variation in A4;;
is entirely independent of the stratification over the
shelf. This result suggests that the use of a barotropic
model with the front treated as a passive scalar, as done
by Chapman (1986), may yield useful qualitative in-
formation on the alongshore evolution of frontal po-
sition even when density stratification is significant.
Indeed, it is easily shown that (28) is precisely the for-
mula that is obtained for the evolution of an inshore
water mass which is marked by a passive scalar in a
fluid of uniform density over a flat shelf.

Finally, we note from (10) that for steady conditions
inside of x = L

Ughix + Vighy, = (g_r_l>h1xx- (29)

f

Horizontal advection by the interior geostrophic ve-
locity must then balance any “diffusion™ associated
with a divergent interfacial Ekman flux (see Garrett
and Loder 1981, for discussion of the latter effect in
the context of two-dimensional (8/dy = 0) models).
As noted earlier, i, is shoreward so the geostrophic
current tends to advect the front shoreward. On the
other hand, the Ekman flux tends to “diffuse” the front
seaward. As our previous results [particularly (28)]
demonstrate, the latter dominates and the front moves
seaward with —y: the rate of this scaward movement
is just such that the net advection by the geostrophic
current, including cross-shelf and alongshelf contri-
butions, balances the offshore Ekman flux.

4. Case II: Front beyond the shelf break

We now consider the situation depicted in Fig. 3 in
which the front is located beyond the shelf break and
overlying a very deep offshore region. We consider the
alongshelf evolution of this system under the influence
of friction.

Within the barotropic region over the shelf, the ar-
guments leading to (9) still hold so
O0<x<L.

v, = Up(Y), (30)
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FIG. 3. Schematic illustration of the conditions assumed in section
4. The front is entirely removed from the shelf and the deep lower
layer is assumed to be at rest.

We again assume that v, < 0 initially (as expected for
a relatively light nearshore water mass) so there is an
offshore Ekman flux which tends to drain the barotro-
pic transport carried inside x = L off into the frontal
region. In the previous case where the lower layer ex-
tended onto the shelf, we were able to argue that p,
= Q at x = L which allowed us to determine the along-
shelf evolution of v, without consideration of the off-
shore region. In the present case p; is constant seaward
of x = L but since the lower layer does not extend onto
the shelf, this condition need not be matched just in-
shore of x = L. The primary question of interest here
is what, if any, influence the cross-shelf geostrophic
currents associated with pressure variations along x = L
have on the rate at which the barotropic transport car-
ried inside x = L is drained off into the frontal region.

A qualitative answer is again easily obtained. To
avoid large transport in the deep lower layer we must
have a negligible pressure gradient there. Thus, sea level
(n) is simply related to upper layer depth by

1 = eh, @31

where we have assumed that both 5 and 4, tend to zero
far from the shelf. Also, the transport carried by the
upper layer in the region x > L is simply

T,= fL hyvydx = fL hg'hix fdx
- _ g'h*(L")
S a0l

Now, the offshore Ekman flux tends to drain trans-
port into the frontal region so there is an initial ten-

(32)
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dency for | Ty| to increase with —y. From (32) /(L")
must then increase with —y, and from (31), o(L™)
also increases with — y. The corresponding geostrophic
transport across x = L is thus seaward and we conclude
that the drainage of the shelf water transport into the
frontal region is accelerated by this influence.

More quantitative information may be obtained as
outlined below. The coastal constraint, U =0 at x
= 0, together with (2) gives

n,(0) + ( )[n(L) ~n0)]=0 (33)

JSLH,
where we have used the hydrostatic relation to write
pressure gradients in terms of gradients in sea surface
elevation, and the fact that v, is uniform across the
shelf to rewrite 7,(0) in terms of the sea level difference
across the shelf. Matching # and cross-shelf transport
across x = L gives

[m(L) + (fH )nx(L )]
- h.(L*)[ny(m + (#m)nxw)] . (34

which may be rewritten as

00+ (s ) (7o o) = w01
Ty O

Now, subtracting (35) from (33) gives

()

where Anp = n(0)—n(L). The case of no offshore
front beyond x = L may be obtained by taking
limh, (L") = oo: the result is equivalent to (19). In
the more general case of finite /,, we note that

_gH,Aq  gh’(L")
T, = 7 2f (37)
or
An = (g'/2gH)(a* ~ h*(L*)) (38)
where a? = (—2fT,/g'). Thus (36) is a nonlinear

equation for the evolution of #,(L*) [or for Ay]. In
general, the solution of (36) requires additional infor-
mation on the dynamics of the frontal region, but the
limiting case of negligible interfacial Ekman flux is in-
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formative. In this case, ( 36) may be solved analytically

to give
hi(L7, y) = a][ h(L*, y) + a]<a+H,)/(a—H,5
[’n(L*, 0)—a]lm(L*, 0)+a
- ryay
= exp[fLHs(a — Hs)] . (39

The limiting case a > (H,, h, (L™, 0)), though some-
what unrealistic, simplifies to yield the more transpar-
ent explicit solution,

hi(L*, y)
~ {h*(L*, 0) + a*[1 — exp(r,y/fLH;)]}'/% (40)

Clearly h,(L*, y) = a for —y > fLH,/r, [this may
be seen directly from (39) or from (40) on using a
> h (L™, 0)], corresponding to the limit where all
of the transport is drained off the shelf, as from (38),
Ay (L*) = a implies An — 0. The inviscid front then
stops deepening and simply carries the transport down
the shelf without further modification. Numerical so-
lution of (39) shows that similar results are obtained
for more general values of a, but the alongshelf scale
over which the transport drains into the frontal region
is reduced by approximately the factor 1 — H,/a. Thus
drainage is significantly accelerated by baroclinic effects
if a is not much larger than H;,.

Interfacial friction modifies the above picture. In
particular, we note that over the deep offshore region
where (g, V1) = (&'/f)(—hyy, hix), the basic equation
governing A, (14), reduces to

r

hlt ( i-zl )hlxx
If A, = 0, then A, is constant. However, if A, ¥ 0
then h; =» 0 at some offshore position and (11) reveals
an inconsistency (letting 4, = 0 we conclude that v,
— v, = g'h,/f must vanish). Thus the only steady-
state solution is that with A;, = O beyond x = L.

In fact, given typical observations of fronts, it seems
more physically relevant to allow for slow temporal
evolution of 4. Equation (41) then indicates that there
will be a gradual flattening of the interface as the in-
terfacial Ekman flux “diffuses™ the current seaward,
The associated time scale is of order f2L,?/g'r; (where
L, is a typical cross-shelf frontal scale) and for consis-
tency with the neglect of the acceleration terms in the
alongshelf momentum equation this must greatly ex-
ceed h,/r;. Thus, for consistency we require

g'h L, 2
=<1 —1.
2 <ts (Lx
The cross-shelf scale of variations in the front must

greatly exceed the internal Rossby radius to justify ne-
glecting time-dependence in the alongshelf momentum

(41)

42)
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equation, and the cross-shelf scale must be much less
than the alongshelf scale to justify neglecting the in-
terfacial Ekman flux in the cross-shelf momentum
equation.

With the above restrictions in mind, we conclude
that after the front crosses the shelf-break the transport
carried in the barotropic region over the shelf continues
to drain off into the frontal region at an accelerated
rate. Under the influence of interfacial friction the off-
shore front gradually flattens as the transport continues
to spread seaward. :

5. Comments on model limitations

The above discussion is intended to elucidate one
basic mechanism which affects the alongshelf evolution
of a density front. To keep the arguments as simple as
possible some potentially important influences have
been neglected. Prominent among the simplifications
are the neglect of any mixing processes and the choice
of a step-shelf topography so that the dynamical influ-
ence associated with along-isobath bottom density
variations is absent.

Mixing processes are certainly important in the dy-
namics of real fronts. Vertical mixing associated with
tides and relatively high frequency wind events are ex-
pected to be important particularly near the surface
and bottom and even more so in the regions where a
front intersects these surfaces. The vertical circulation
associated with the front (see Loder and Wright 1985,
for an example with continuous stratification ) in com-
bination with vertical mixing will contribute to hori-
zontal mixing through shear dispersion (e.g. Young et
al. 1982). Similarly, alongshelf topographic variations
will also result in enhanced horizontal mixing (e.g.,
Zimmerman 1986) and instabilities associated with the
front may also be important (Flagg and Beardsley
1978). All of these effects have been neglected in the
interest of simplicity, but they may be important in
reality. Indeed, two dimensional models such as those
studied by Pietrafesa and Janowitz (1979), Kao (1981),
Csanady (1984b) and Ikeda (1985) clearly demonstrate
the importance of mixing processes to frontal dynam-
ics. In fact, the study of Ikeda (1985 ) suggests that with
vertical diffusion included, the unrealistic seaward
spreading of the density front discussed in section 4
will effectively be limited to an offshore scale of order
Pr'/%r; where Pr is the Prandtl number (= eddy vis-
cosity/eddy diffusivity) and r; is the local internal
Rossby radius.

The consideration of more realistic cross-shelf depth
variations introduces two important dynamical effects
not discussed above. These two effects correspond to
the first and last terms in (8). Scaling as suggested by
the results presented above [x = Lx', y = (fh/r)Ly’,
v, = V', pp, = Ap + p'] the relevant nondimensional
equation is
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(SL/h)v}y: + Vi = —(g's/fV)(sL/ h)p}

where k, V and Ap are typical values of depth, along-
shelf current speed, and density variations. For typical
parameter values (s ~ 10>, L ~ 10°m, h ~ 10’ m,
g~102ms 2 f~10"s, V10" ms')all
three terms have similar magnitudes. A very weak bot-
tom slope is clearly required for the step-shelf results
to be quantitatively accurate.

The first term in (4) illustrates the well-known fact
that bottom slopes are important even in regions of
very weak stratification (i.e., for g's/fV < 1, sL/h
< 1). In this limit, (8) [the dimensional version of
(43)] reduces to the diffusion equation

~Vpy = (75/ f5) Vb (44)

which has been discussed in some detail by Csanady
(1978).

The particular case where # — 0 as x = 0 is of
interest as it is the opposite extreme from the step-shelf
limit considered earlier. Appropriate boundary con-
ditions for this case are

U=0 at x=0 45)
Up = —poy/fpo=0 at x=1L, (46)

where a very deep ocean with a uniform density lower
layer has again been assumed beyond x = L, and, as
in section 3, the lower layer has been assumed to extend
shoreward of x = L. Using (2) and (6) these conditions
may be rewritten as

(43)

v, =0 at x=0 (45")
(46")

The solution of (44) with these boundary conditions
is

vp=0 at x=0L.

Oy =3 @y sin(x/Ln) explry/fLnhn] (47)
m=0

where L,, = L/(m + })w, and h,, = sL,,. The values
ofa,, m=0,1,2, «-. are determined by the form
of v, specified at y = 0. The first term in this series
decays on the scale (2/x)2fLH,/r, where H is the
depth at x = L. This decay scale is very similar to that
on a step shelf with H, = 0.5 H,; , the mean depth across
the shelf. With H;, ~ 200m, f ~ 10™*s 'andr ~ 5
X 107* m s~!, the alongshelf decay scale is of order 20
shelf widths for this term. The second term decays nine
times as fast and higher order terms decay faster still.
Thus, if @y = a,,, m = 1, then beyond a few shelf widths
distance from y = 0,

vy =~ ao sin(x/Lo) exp[ry/fLoHol.  (48)

Using (46) and (48) and integrating (7), with p,,
= (, we obtain

up =~ (r/fHo)ag cos(x/Lo) exp[ry/fLoHol, (49)



540

and total cross-shelf transport is simply
U= Hu,— (r/f)vy
= [x/Lo cos(x/Lo) — sin(x/Lo)}(r/f)vs.  (50)

As in the case of a step shelf, u, is shoreward but the
total transport is seaward increasing from zero at the
coast to the Ekman transport at x = L. The qualitative
picture is very similar to the step-shelf case, and we
expect that after an initial adjustment near y = 0, a
passive scalar front, or a weak density front, would
move seaward with —y in a manner qualitatively sim-
ilar to that case. This conclusion is consistent with
Chapman’s (1986) results.

The above discussion applies for g's/fV < 1, or
equivalently for g'’h%/2f < VhL/2. That is, density
variations may be neglected when the enhanced cur-
rents over the front carry a negligible portion of the
total transport. Where this condition is violated, the
influence of density stratification must be considered.
Recent studies (e.g., Shaw and Csanady 1983; Csanady
. 1984a; Huthnance 1984; Vennell and Malanotte-Riz-
zoli 1987) have included density stratification and
considered the influence of along-isobath variations in
density. Our interest here is in how this effect will in-
fluence the cross-shelf migration of a density front. The
previous results indicate that in the case of a lighter
nearshore region the steady state solution will tend to
have p,, > 0. The right side of (8) thus tends to be
negative, and hence we expect the reduction in |v;|
with —y to be accelerated by the JEBAR influence. As
a result we expect a buoyant nearshore region to spread
seaward with —y more rapidly than would a corre-
sponding region in a homogeneous fluid which was
“dyed” with some passive scalar. This result is quali-
tatively consistent with our finding, for the case of a
step-shelf, that the drainage of transport off the shelf
is accelerated by baroclinic effects after the front shifts
beyond the shelf break. More detailed examination of
this question is clearly warranted.

In a diagnostic study of the circulation patterns as-
sociated with specified density variations, Csanady
(1985) presents several solutions for idealized two-layer
density fields, which are relevant to the present study.
In particular, he shows that an interface whose inter-
section point with the bottom deepens in the forward
(—y) direction is consistent with an upper-layer flow
from the barotropic inner region into the baroclinic
offshore region. The seaward flow is always fed from
the forward portion of the shelf. In the case of an x-
independent interface depth the flow escapes offshore
to infinity, but with a surface to bottom front the off-
shore flow is absorbed into the frontal region as dis-
cussed in section 4 above. Csanady (1985) also notes
that a front which shifts towards shallower water with
increasing — y, is inconsistent with the maintenance of
the prescribed density field unless a strong over riding

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 19

flow toward positive y is present. In fact, such a flow
pattern would imply a divergent Ekman flux in the
upper layer across the line of intersection of the front
with the bottom (the upper layer Ekman flux would
reverse directions from one side of the line to the other).
Since geostrophic transports are continuous, there
would be a mismatch in the net transport across this
line which would violate the steady-state assumption.
It thus appears that the simple two-layer model con-
sidered here is inconsistent with such a density field.
On the other hand, in a more realistic continuously
stratified model with a coastal buoyancy source over a
limited range of y, it is clear that horizontal diffusion
will eventually reverse the alongshelf density gradient.
Vennel and Malanotte-Rizzoli (1987) show results,
which illustrate the potential importance of this influ-
ence. The model considered in this paper cannot re-
produce this situation since it does not incorporate
mixing between the two water masses.

6. Conclusions

The primary conclusion of this study is that, with
or without density stratification, there is a tendency
for offshore fronts to migrate seaward under the influ-
ence of bottom and interfacial stress. In buoyancy-
forced models with /3y = 0 this is well-known and
leads to persistent migration seaward; no steady state
is possible in this case unless a sink of buoyancy is
included at some location. With d/dy # 0, evolution
with distance in the direction of long coastal-trapped
wave propagation can replace time evolution and a
steady state may be possible. While the front is over
the shelf this can be achieved through a balance be-
tween advection by geostrophic currents which tends
to shift the front shoreward and the diffusionlike influ-
ence of Ekman flux which tends to shift the front sea-
ward. This balance is achieved by a state in which the
front migrates seaward in the direction of long coastal-
trapped wave propagation. This process will asymp-
totically result in all the transport shifting off the shelf
into the frontal region.

Assuming a deep ocean beyond the shelf break, the
bottom geostrophic currents are taken to be vanishingly
small in this region so the geostrophic current asso-
ciated with density-variations are along isopycnal (or .
iso-interface) lines and hence do not advect the front.
Thus, beyond the shelf break the offshore Ekman flux
cannot be balanced with advection by geostrophic cur-
rents and the only possible steady state is one with
negligible interfacial Ekman flux. The density interface
slowly flattens with time in this region until arrested
(or eliminated) by some process not included in the
present model (for example, see Ikeda 1985).

Finally, it is of interest to note that near the coast,
the offshore Ekman flux and the onshore geostrophic
currents nearly balance. Thus a nearshore front will
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move seaward slowly with increasing —y. As it moves
seaward the shoreward geostrophic flux reduces relative
to the seaward Ekman flux and the front moves more
quickly seaward. Eventually the transport is all shifted
into the frontal region offshore. Beyond this point the
intersection point with the bottom no longer deepens.
Further evolution in the alongshelf direction is due to
the slow seaward migration of transport under the in-
fluence of interfacial stress. This scenario with slow
cross-shelf migration for a near-shore front, more rapid
migration across the outer shelf and then stalling at a
depth where all the transport is carried in the frontal
region may be partially responsible for the fact that
fronts are most often seen either nearshore or near the
shelf break but seldom (or in few places) in the offshore
region over the shelf.
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