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ABSTRACT

A simplified model originally developed to simulate sea surface temperature (SST) in the tropical Pacific is
extended in two directions. First, the model is formulated and run for the tropical Atlantic. Second, optimal
values are determined for a number of model parameters, especially those determining surface heat flux. In the
Pacific, the difference between model SST and data SST is the size of the probable error due to uncertainties
in the heat flux, O (35 W m ~2). In the equatorial Atlantic the discrepancies may also be attributed to heat flux
errors, but model—data differences in the Atlantic near coastal regions north of 10°N and south of 10°S are too
large to be explained by heat flux errors: model problems involving other physical processes must be involved.
By giving the best result possible in the face of our uncertain knowledge of the parameters and observations,
the optimal-fit procedure unambiguously indicates which oceanic features require model changes in order to
be adequately characterized. Only in these cases can potential improvements be evaluated without improving

the database.

1. Introduction

The work reported here is part of an ongoing effort
to develop better simulation models of the ocean. From
one point of view, developing a more thorough account
of ocean physics is intrinsically virtuous. In view of
the cost in computer time and research effort, however,
attempts to improve model physics must be restrained
by an assessment of the chances for success. We mea-
sure whether a new model is better by a comparison
with data, evaluating the discrepancies between the
model simulation and observations. Discrepancies
could be due to either model shortcomings or errors
in the data, most pointedly errors in the forcing data
such as wind stress and cloud cover. In general, model
shortcomings can be such that the form of the model
is inadequate, in which case the model should be re-
built, or they can be such that the form of the model
is adequate, but the value of a poorly-known model
parameter is poorly chosen. The latter sort of model
shortcoming is relatively easy to repair, and one would
like to avoid rebuilding the model until that possibility
has been ruled out. Once good parameter choices have
been made, however, discrepancies between calculated
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and observed variables are due either to model flaws
that require rebuilding or to errors in the data. If the
discrepancies are the size and structure expected of data
errors, additional data are required to verify the model.
If the discrepancies are larger or more structured than
expected of data errors, then the data, although flawed,
are good enough to allow discernable improvements
in the model.

A specific example of an uncertain parameter rep-
resenting more complicated physics is in our latent heat
formulation. We use a constant “evaporation poten-
tial,” which we know is not truly constant: a more
complete formulation would replace it with a planetary
boundary layer model which transports water vapor.
Constructing one is a nontrivial undertaking, so before
beginning we want to be sure the data will allow us to
conclude that the effort was worthwhile: that the data
will tell us it is discernably better than the present for-
mulation.

In this paper we study a model for tropical sea surface
temperature (SST) which includes representations of
ocean dynamics, ocean thermodynamics, and surface
heat exchange. We simultaneously optimize the values
of those model parameters which are not well known
a priori, using a procedure which takes explicit account
of the uncertainties in the available data. The model-
data discrepancies remaining after the parameters have
been optimally chosen are analyzed to determine
whether the present form of the model is adequate for
its purpose: simulating tropical SST evolution.

Determining model parameters is a universal mod-
eling problem. No ocean model, not even the most
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elaborate general circulation model (GCM), can in-
clude a complete representation of all ocean physics.
Even if all the fundamental physics and computational
dynamics are understood (which is close to the truth),
it is still necessary to include the influence of subgrid
scale processes on the larger scales which are retained.
Attempts to do so rest on the assumption that these
processes can be parameterized, which is not expected
to be more than approximately true. Whether it is true
enough depends on the particular goal.

A successful parameterization correctly represents
the influence of its processes on the scales retained in
the model. It usually depends on variables that are de-
termined by the model, as well as variables determined
from an external source such as measurements. Both
sorts of variables have errors—the model variables be-
cause of the nature of the model, the data variables
because of the nature of measurements—and the na-
ture of the errors can greatly affect the success of a
parameterization. For example, a precise parameter-
ization which is critically dependent on a noisy mea-
surement may perform worse than a crude parame-
terization which does not require this critical mea-
surement. In creating a successful parameterization,
then, one must not only consider the underlying pro-
cesses, but also the nature of the model and the avail-
able data.

The work reported in this paper is directed toward
the goal of improved simulation of tropical SST for
the purpose of modeling interannual variability in the
coupled ocean—atmosphere system. The ocean model
used is not a GCM but a simpler model built for a
specific purpose, the calculation of SST. This purpose
requires attention to ocean dynamics and thermody-
namics, and demands even closer attention to a sub-
model (i.e., a parameterization ) for surface heat flux.
The model is very much like that developed by Seager
et al. (1988; henceforth SZC), which in turn evolved
from the ocean model of Zebiak and Cane (1987).
The Pacific Ocean version differs from these earlier
versions in detail only; the Atlantic version is new.

Originally (Zebiak and Cane 1987) this ocean model
was used as a component of an interactive ocean-at-
mosphere model. But here, as in SZC, the ocean-heat
flux model pair is forced by observed surface wind and
cloud cover (as well as by solar input, which is deter-
mined by time and latitude; SST is determined by the
model). Our approach, however, is still conditioned
by the goal of coupling to an atmospheric model. The
standard bulk formulae are based on fits of direct flux
measurements to local values of relatively measurable
quantities like windspeed, SST, surface air temperature,
relative humidity, cloudiness, position, and time. As
in SZC, we avoid using observed surface air tempera-
ture and humidity because in the coupled system these
boundary layer variables are largely determined by SST.
Their roles in the conventional bulk formulae are taken
by functions of SST in our parameterization. It would
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be better to incorporate fully the influence of the at-
mosphere on the marine surface layer, but this is be-
yond the scope of our present efforts.

In addition to the incompatibility with our modeling
goals, specifying air-sea temperature differences and
air humidity would introduce difficulties due to the
nature of the available data as well. Apart from the
results of a handful of microstructure and radiation
measurements, there is no heat flux data. The fields of
heat flux numbers which appear in atlases and as ocean
model forcing are calculated from models; e.g., the bulk
formulae. These models are based on isolated calibra-
tions and are highly uncertain. Even if they were reli-
able, the data used to make atlases (and force our
models), which comes from merchant ship observa-

“tions, are of a distinctly lower quality than that used

in the calibrations. Possibly it is too poor to provide
usable estimates of the air-sea temperature and hu-
midity differences which lie at the heart of these heat
exchange parameterizations. At the very least the for-
mulae should be recalibrated. The vast discrepancies
in the heat flux numbers in different atlases indicate
such data are not adequate for determining SST
through heat flux based on conventional bulk formulae
alone (cf. SZC).

Though both the ocean dynamics and heat flux for-
mulation are greatly simplified, the model has been
shown to do a creditable job of simulating tropical Pa-
cific SST for both climatology (SZC) and low frequency
variations (Seager 1989). These results suggest that the
model does represent the physical processes most in-
fluential in determining SST. If we had specified surface
heat flux values, the negative feedback control exerted
on net surface heating by SST would have been lost,
and the results testify to the dominant role of this feed-
back in determining SST. If we had taken the air tem-
perature T, from data, we would have constrained SST
to be close to T,, whereas in nature it is 7, which is
forced to be close to SST: the ocean mixed layer has
far greater thermal inertia than the planetary boundary
layer. Specifying T, would be little better than speci-
fying SST directly; it would be no test of the model
phuysics.

In addition to the data variables, a number of em-
pirical constants appear in heat flux formulae—both
ours and the standard bulk formulae. The values for
these constants, which derive from a mixture of theory
(e.g., for turbulent boundary layers) and a limited
number of direct flux measurements, are quite uncer-
tain (cf. SZC and references therein, especially Blanc
1987). In many cases they are only taken to be constant
because information is too sparse to allow a more
complicated representation.

Since there is virtually no heat flux data, one cannot
find the empirical constants from a direct comparison
with data. If one had perfect data and a perfect model
for ocean thermodynamics, then the values of these
constants could be determined by finding the heat flux
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required to account for the observed SST changes.
What we are able to do is make optimal estimates of
the empirical constants by considering the heat fluxes
in our model, estimates that take account of model
and data errors.

It should be emphasized at the outset that these
numbers emerge as a byproduct of our work. Qur prin-
ciple objective is to obtain guidance on where to invest
our efforts to improve our model. There are many fea-
tures of the model which obviously lack verisimilitude
and invite elaboration. What is not obvious is whether
or not the considerable effort needed to implement such
“improvements” would pay off in a discernable im-
provement in the model’s raison d etre, the simulation
of tropical SST.

The plan of the remainder of the paper is as follows.
The next section discusses the physical processes in-
cluded in modeling ocean dynamics, ocean thermo-
dynamics, and surface heat flux. In most respects this
follows SZC, but the representation of ocean dynamics
is somewhat new, combining a conventional multi-
mode model with a surface layer in a consistent way
(the representation is worked out in detail in appendix
A). Section 3 explains the statistical method, and sec-
tion 4 presents the results of applying it to the tropical
Atlantic and Pacific climatologies. The final section
gives our conclusions.

2. Ocean model

The ocean model has three major parts: a linear,
wind-driven model for the velocity and pressure fields,
an advective/diffusive SST equation, and a parame-
terization for surface heat flux. The three parts are not
completely interdependent: while SST and heat flux
depend on each other and on the velocity and pressure
fields, the velocity and pressure fields are independent
of both the SST and heat flux fields.

a. Velocity and pressure

This part of the model consists of a surface mixed
layer atop a linear equatorial beta-plane deep ocean.
The motions of the deep ocean are projected onto a
small number, N, of wind-forced vertical modes. The
surface mixed layer adds to the modal circulation a
direct Ekman flow and is of particular interest since it
governs the SST evolution. The N = 1 version of the
deep-ocean part of the model resembles the models of
Cane (1979) and Schopf and Cane (1983), and is es-
sentially that of Zebiak and Cane (1987) and SZC.

Our fundamental dynamical model is set on an
equatorial beta-plane and linearized about a resting
basic state, with stratification purely a function of
depth. These assumptions are those underlying the
usual linear theory which has proven successful in
many applications to equatorial dynamics. Calcula-
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tions employing the linear theory most often find the
solution as a sum over N vertically standing modes.
For some purposes it suffices to take N = 1 (e.g., Bus-
alacchi and O’Brien 1981); for others N is quite large
(e.g., N = 60 in McCreary 1981). In the present paper
we have a model with a surface layer of fixed depth
hmix Plus a small number, N, of vertical modes. The N
= 1 version has been derived in the literature, but to
our knowledge there is no prior discussion of the con-
sistency of this formulation for N > 1. We pursue this
point in appendix A, where it is shown that the surface
layer dynamics are equivalent to summing over all the
higher modes.

The model basin extends from 30°N to 30°S and
otherwise covers the region indicated by the shading
in Figs. 6-10. For the Atlantic, grid spacing is 1° in
longitude and 0.5° in latitude and the timestep is one
week. The model cannot handle all the irregularity of
the Atlantic basin, and its lack of geometric fidelity
makes it inappropriate for simulation of currents near
the coasts. In the Pacific, grid spacing is 2° in longitude
and 0.5° in latitude and the timestep is 10 days. In the
Atlantic /1, = 35 m; the mixed layer is deeper in the
Pacific, i = 50 m. In order to match SZC, the Pacific
model has one mode with an equivalent depth of 86
cm, a phase speed of 2.9 m s™!, and an effective depth
D, = 150 m. The relatively small value of D, (see Cane
1984) compensates for the missing higher baroclinic
modes. The Atlantic model has 5 modes; modal char-
acteristics, based on a mean Atlantic profile, are sum-
marized in Table 1. The values of r,, used for the model
friction (cf. Gent et al. 1983, for a discussion ) are too
small to affect the solutions appreciably. The only re-

'maining adjustable model parameter, the surface layer

friction r,, is assigned the value 0.5 days ~'; its influence
is felt only near the equator for | y| < r,/8 =~ 2.5°.

b. Sea surface temperature

While the ocean model which governs velocity and
pressure is linear and thus excludes the advection terms
in the equations, the SST is determined from a.fully
nonlinear advective equation. The temperature is as-
sumed to be uniform (well mixed) in the layer. The
sea surface temperature 7 is then determined from the

TABLE 1. Dynamical Atlantic mode parameters.

Horizontal
Equivalent  phase Length Time Sea level
depth speed scale scale D, amplitude
Mode  (m) (ms™)  (km) (days) (m) (m)
1 0.568 2.36 322 1.58 348 1.91
2 0.194 1.38 246 206 145 1.02
3 0.083 0.89 199 256 429 0.26
4 0.049 0.69 175 291 603 0.13
5 0.029 0.53 153 3.32 440 0.09
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net balance of horizontal advection, upwelling, and
the surface heat flux:

6t(hmisz) + uTax( hmisz) + vTay(hmisz)
+yw(Ts~Ty)=Q + K(Oxx + ayy)(hmisz) (1)

where T, is a subsurface temperature determined by
the dynamics below the mixed layer. The upwelling
term is usually written as w(7T — T,), where T, is the
temperature of water entrained into the mixed layer.
The two temperatures 7, and 7T, are related by

T.=(0 —v)Ts +vTa. (2)

Because the entrainment efficiency + is less than one,
the temperature of entrained water T, is somewhere
between the sea surface temperature 7, and the deep
temperature 7. The parameterization for the heat loss
due to upwelling of cool water into the surface layer is
thus dependent on an entrainment efficiency vy and a
local deep temperature T, which should be at a depth
beneath the base of the mixed layer [viz., (2)]. The
model assumes the mixed layer is of fixed depth (50
m in the Pacific, 35 m in the Atlantic), and 7 is taken
to be the local temperature at that depth. As in SZC,
T, is parameterized as a function of model thermocline
depth [i.e., depth of the 20°C isotherm z (20°C)]. The
parameterization is done in two parts: first the tem-
perature at the mixed layer depth is fit to the depth of
the 20°C isotherm using the Levitus (1982) dataset,
then the depth of the 20°C isotherm is fit to the model’s
prediction of the thermocline depth 4. This pair of
empirical functions give T, as a function of /.

In the Pacific, the empirical fit for 7 (50 m) as a
function of z (20°C) is taken from SZC—it is given
in the upper part of Fig. 1a. In the Atlantic, the fit for
T (35 m) as a function of z (20°C) is computed as a
best-fit cubic: it is given in the upper part of Fig. 1b.
In both cases the fit is done with data from 5°N to 5°S.
This narrow band was chosen because the depth of the
20°C isotherm ceases to be a good predictor of mixed
layer depth temperature if data from a wider latitude
band is included. While the fit is good in the equatorial
band, it is rather poor for the basin as a whole. This is
not necessarily a problem, however, because to the ex-
tent that upwelling occurs primarily on the equator the
errors in deep temperature away from the equator are
unimportant. If necessary, a spatial dependence could

FIG. 1. (a) Pacific deep temperature (7,) parameterization. Top:
Points show the observed temperature at 50 m vs the observed depth
of'the 20°C isotherm in the equatorial Pacific, 5°S-5°N, in all months.
The line is the best fit of temperature as a function of depth. Bottom:
The model calculated depth of the 20°C isotherm vs the observed
depth for all points from 20°S to 20°N, together with the best fit
quadratic curve. The fits are as in SCZ; all data is from Levitus (1982).
(b) Atlantic deep temperature (7,) parameterization. As in Panel
(a), but for the Atlantic. The fit of temperature to depth is a cubic.
Calculated 20°C depth is based on the 5 mode model.



JUNE 1989

be added to the parameterization of 7T, without oth-
erwise revising the model’s structure.

Unlike the empirical fit for 7 (50 m) and 7 (35 m)
as a function of 20°C isotherm depth z (20°C), the fit
of the model 20°C isotherm depth to the Levitus 20°C
isotherm depth is quite good over a wide latitude range.
The lower part of Fig. 1b shows the fit for a 5 mode
Atlantic model for seasonal points between 20°N and
20°S. The fit is mostly within 20 m except for some
poorly matched coastal points (the model thermocline
shoals while the data thermocline does not). Note also
that there is little curvature in the best fit line, especially
when compared with the one mode Pacific model fit
shown in the lower part of Fig. 1a. The difference in
curvature is primarily due to extra modes in the At-

lantic model, rather than any differences between the

two oceans.

¢. Surface heat flux

The surface heat flux parameterization is the same
as in SZC. As SZC point out, since this surface heat
flux parameterization is a forcing term for the SST
evolution equation, it should only include effects that
are truly externally imposed on the SST. Since the air
temperature to a large extent is fixed by the SST, it has
been eliminated as a parameter. This leaves wind speed
and cloud cover as the only measurements in the heat
flux calculation.

The surface heat flux is the sum of the solar flux,
latent heat, sensible heat flux and back radiation. The
clear sky solar flux Qp is determined from a formula
that accounts for latitude and time of year. At the
ocean’s surface it is reduced by the effects of a constant
surface albedo (0.06), measured cloud cover C, and
the absorption and reflection of the atmosphere, which
depends on solar angle « (cf. Weare et al. 1980). The
latent heat flux is computed from the standard bulk
formula using a fixed percentage ary of the saturation
humidity ¢,( 7) as the evaporation potential ¢ = g4( T)
— gs( Tir). The sensible heat flux and back radiation
are modeled together as being proportional to the dif-
ference between the sea surface temperature 7 and a
reference temperature T,. This term is small relative
to the solar and latent heat fluxes (Weare et al. 1980),
having a variability of less than 20 W m ™2 over the
tropical Pacific, so an imprecise parameterization of
this term does not significantly affect the results. The
net surface heat flux is thus given by

Q0 =1(0.94)0y(1 — acC + a,x)

— paCeL|V|arugs(Ts) — a(Ts — To). (3)

As discussed in SZC, |v| is not allowed to fall below
4 m s~! in order to compensate for the loss of variability
in using monthly winds.

This paper differs from SZC in that the parameters
(ac, a., ary, ass, To) are altered to optimize the mod-
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el’s reproduction of the climatological SST data. (We
also tried varying the albedo and the minimum wind
speed, but since these parameters were not altered by
our procedures they will not be considered further.)
The potential for optimization to improve parameter
choices can be gauged by examining the relative im-
portance of the different heat flux terms. Plotted in Fig.
2 are the mean values and doubled standard deviations
for most of the model heat flux terms. The primary
balance is between the solar input and the combined
effects of cloudiness and latent heat flux. Consequently
the coefficients of those terms are best determined by
the optimization. The procedure for determining op-
timal parameter values and their significance in the
presence of noise are discussed in the following sections.

3. Best fit of heat flux parameters

We wish to test whether the present model physics
are adequate to model the SST data. The observed val-
ues of both forcing and verification data are imprecisely
known and possibly in error. If the model agrees with
the data to within expected error, it will be judged ad-
equate. But a number of model parameters are not
known precisely from experiment or theory, and the
model should not be judged a failure because the pa-
rameter values are poorly chosen. At the same time,
we do have some notion of the parameter values, so
we do not wish to let them vary unconstrained. We
thus perform a best-fit calculation, allowing the un-
certain parameters to vary within their uncertainties,
and then evaluate the remaining discrepancies between
the model and data. This procedure only alters the

Relative Size and Variation of Heat Flux Terms
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FIG. 2. Relative size and variation of heat flux terms in the surface
heat balance, 20°S-20°N. On average, the solar input is balanced
primarily by the effects of clouds and the latent heat loss to the at-
mosphere. The mean value of each term over the basin is given by
the heavy dot and the rms deviations are given by the error bars.
The solid lines are for the Pacific and the dotted lines are for the
Atlantic.
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values of the parameters if their a priori uncertainties
are greater than the uncertainties due to the data. As
it turns out, the results are mixed: some parameters

are altered, reducing the discrepancy between model -

and data, and some parameters are not, leaving the
discrepancy unchanged.

The surface heat flux parameterizations are quite
uncertain, and uncertainties in the wind and cloud data
would add noise to the estimates of surface heat flux
even if the parameterizations were perfect. Relatively
speaking, SST is well measured. From a data point of
view, then, it makes sense to use the time evolution of
SST to refine estimates of surface heat flux rather than
use uncertain surface heat flux parameterizations to
predict SST. Our a priori values for the model param-
eters to be varied (ac, a,, 6, asst, Ty, v, Cp, ) are taken
from the literature; i.e., the values are from a mixture
of theory and heat flux measurements. These a priori
values are somewhat uncertain. The best-fit procedure
varies the parameters within those uncertainties to re-
duce the corrective heat flux, the corrective heat flux

being the heat flux necessary to make the model SST'

match the data SST exactly. As can be seen in Fig. 3,
large corrective heat fluxes tend to precede large dif-
ferences in SST.

Corrective flux
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FIG. 3. Top, corrective heat flux (W m ~2), Bottom, data — model
SST difference in the equatorial (5°S-5°N) Atlantic. Note the slight
lag between the SST difference and the corrective heat flux necessary

_to force the model to track the data exactly.
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a. Model equations

In the SST evolution equation’s standard interpre-
tation, horizontal advection, upwelling, and surface
heat fluxes give the time evolution of the SST. Here
we rewrite (1) as the following equation for the cor-
rective heat flux:

AQ = Q — yW(Ts — Ty) — udx(hTy) — vay(hTs)
- al(hTs) + «(Oxx + ayy)(hTs)a 4)

where T is the SST given by the data, horizontal ad-
vection and upwelling are determined by the model
circulation (which is determined by the wind forcing),
and surface heat flux Q is determined via the param-
eterization (3) from wind data, cloud data, and SST
data. An optimal set of model parameters is calculated
by minimizing the rms AQ.

We are interested in how the corrective heat flux,
AQ, depends on the parameters which are allowed to
vary. An expression for this dependence at each point
in space and time is obtained from (4) [with Q given
by (3)], retaining only the terms that are affected by
parameter changes. This determines a set of linear
equations for éq, the corrective heat flux at all space/
time points:

(5)

where the ith row of M (written m;T) represents the
equation at the ith space/time point. Here m;T and éa
are given explicitly by

B —0.94Q,C; 7]
0.94Q0‘.Cl,'
2aCEe| Vil gs( T:)
T

l 3

~wW(Ts— Tg)
—'uax(hTs) - vay(hTs) - 7W( Tsi - Td)

(3xx + 3y) (A T)

5(1(;
éa,
0aru
0as
d(asxTo)
oy
601)
[ o
where dap represents the percentage change in the
(wind) drag coeflicient Cp, and a term proportional
to éapdy has been dropped to linearize the model.

4q = Moa,

m; =

L

-

(6)

éa =

b. Best-fit procedure

Optimal estimates of the heat flux parameters are
calculated from a best-fit procedure derived and dis-
cussed in Menke (1984), which combines the linear
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model M with error information. The solution found
is optimal given that the errors can be considered
Gaussian and statistically independent. The cast of this
statistical production is fairly large, so we would like
to introduce each in turn:

M s the true model matrix corresponding to M.

a%  are the a priori values of the model parameters—
our initial notion of what the parameter values
should be.

q%  are the corresponding a priori values of the heat

flux, % = Ma“.

a are the true values of the parameters—this is

what we would like to estimate.

q are the correctly modeled values of the heat
flux—they result from the true values of the
model parameters using the true model q
= Mg,

are the current values of the heat flux; they are
given by q% + d&q, where dq are calculated
according to (4) using a%,

is the error covariance of the a priori model pa-
rameters, i.e., the uncertainty of those values.

is the error covariance of the difference between
q and q““—it characterizes the variability in
q“ that is external to the model M, e.g.,
subgrid scale phenomena, errors in the cal-
culation of 6q. We will refer to this as the ir-
reducible uncertainty: because it is external to
the model, it cannot be reduced by model
tuning and once the differences 6q are that
size we consider the model successful. Equiv-
alently, we do not expect the parameterization
to be more accurate than the level of error R,.

is the error covariance of the model matrix M
projected onto the a priori values of the model
parameters a?, i.e., it is only the portion of
the error covariance tensor of M that affects
the calculation. The errors in M are primarily
due to the data that is used to calculate its
elements.

cur

Rma

By considering the probability distributions that
correspond to those quantities, we can construct an
optimal estimator for the parameters a. Let P(a), P(q),
P(q|a) be the probability distributions for the model
parameters a, corrective flux q, and q given a respec-
tively:

P(a) o« exp[—(a — a®) R, "'(a — a®)/2]
P(q) oc exp[—(q — )R, (q — q™)/2]

P(q|a) oc exp[—(q — Ma)"Rma(q — Ma)/2]. (7)

We assume that the errors represented by R, are in-
dependent of the errors represented by Ry,, something
that is not necessarily true in practice.

The best-fit solution combines the model equations
(5) according to the uncertainties given in the three
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probability distributions. In matrix form the solution
can be written as (Menke 1984, p. 93)

da = Bdq, (8)

where

B = [MT(R, + Ry) 'M + R, ']7'MT(R, + Ruma) ™"
(9)

The parameter changes presented in Fig. 4 are calcu-
lated using (8).

As noted above, three sources of uncertainty enter
the best-fit procedure: uncertainties in the model pa-
rameters a, uncertainties in the model matrix M, and
irreducible uncertainties in the corrective heat flux éq.
The best-fit procedure uses the three different sorts of
uncertainties in different ways. The model parameter
uncertainties R, are used to allocate between unre-
solved parameters: e.g., if there are two parameters that
cannot be distinguished from each other by using the

Heat Flux Parameters
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indicate poorly resolved parameters.
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model M, then the best-fit makes a larger change in the
more uncertain parameter. The sum of the model un-
certainties Rua and the irreducible uncertainties in the
corrective fluxes R, determine the uncertainty of each
equation R = R, + Ry, and thus set the relative weight
each space-time data point has in determining the new
values of the parameters. Thus in computing the pa-
rameter correction estimates éa the uncertainties in the
model and the uncertainties in the data are indistin-
guishable; viz., (9).

In computing the probable error of these estimates,
however, those two uncertainties contribute in different
ways. The covariance matrix corresponding to probable
error in the parameter estimates is

BR,B” + (1 - BM)R,(I — BM)T (10)
(see Menke 1984, p. 93). The first term is a direct
component, the projection onto the parameters of the
irreducible heat flux uncertainty. The second term is
a lack of resolution component, which is the uncer-
tainty remaining after the a priori parameter uncer-
tainty has been reduced by using the available infor-
mation as in (8). By reducing the resolution BM, un-
certainties in the model increase the lack of resolution
component of the probable error; the irreducible un-
certainties both reduce the resolution and contribute
directly through the direct component. Thus model
uncertainties and irreducible uncertainties are some-
what distinguishable.

The a priori uncertainties in the model parameters
R, were chosen to be uncorrelated and to have standard
deviations of roughly 20%-30%; they are given in Fig.
4 (error bars labeled “a priori”).

Because the data that goes into calculating éq and
M is based on gridded versions of coarsely box-averaged
datasets, the noise for neighboring grid points is quite
correlated (the model grid being smaller than the scale
of the noise). Consequently, both R, and Ry, have
nondiagonal structure. We can model this correlation
with a fairly simple form for the noise covariance, the
noise covariance R between two points (x;, ;) and
(x2, y») being given by
R(x1 - X3, V1 — Y2) o 2—Ix1~sz/Lx2—|y1~yz|/Ly’ (11)
where the half-power scales (L, L,) are determined
frorn the box-averaging scales in our case (though more
generally they are determined from the scales of the
noise). In appendix B it is demonstrated that given a
noise covariance of the form (11) there is a diagonal
matrix » ! Rp, which is equivalent to R in the sense
that B and error estimates (10) are essentially un-
changed by using it in place of R. The diagonal ele-
ments of Ry are taken to be the same as those of R.
The error amplitude is then modified by a “degree of
freedom factor” » which is a function of the number
of grid points in an error correlation scale: for grid sizes
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(Ax, Ay), v = u(L,/Ax, L,/ Ay). The determination
of length scale pairs and the corresponding v values is
discussed in appendix B, and the sensitivity of the cal-
culation to v is discussed below.

The uncertainties in the model Ry, have multiple
sources. Blanc (1987) considers the error in estimates
from a single set of ship observations using the bulk
formulae. This differs somewhat from the estimates
used here, since the estimates here are averages over
fairly large areas. But much of Blanc’s analysis is rel-
evant for these large scale averages, since most of the
uncertainty he finds is in the parameterization. As a
rough approximation to the errors in the model matrix,
(5) and the a priori mean values of the parameters
were used to convert uncertainties in the data into un-
certainties in heat flux. Uncertainty in the wind (0.75
m s~ ') leads to an uncertainty of 20 W m™2 in the
latent heat flux and uncertainty in the clouds (0.1)
leads to an uncertainty of 20 W m 2 in the effect of
clouds on heat flux. The variance due to these two
error sources dominate the other terms: The uncer-
tainty in the sum of the other terms is close to 10
Wm™2.

The irreducible uncertainties R, are the error due to
dynamics not included in the model, error that would
exist even if the model coefficients M had no noise: in
these calculations that error was estimated to be 10 W
m 2. Combining the uncertainties in the model coef-
ficients and this remaining corrective flux error gives
an rms equation error of roughly 35 W m 2, This is
somewhat higher than Weare’s (1981) estimates (25
W m~2), mainly because he considers the cloudiness
data to be much more reliable than we do. It is only
slightly smaller than Blanc’s (1987) analysis would
suggest, though our noise estimate does not explicitly
include many of the effects that he discusses.

Here R, is taken to be diagonal: parameter uncer-
tainties are uncorrelated. R, and Ry, have the form
(9) with the correlation scales L, and L, determined
from the averaging scales of the data. As shown in ap-
pendix B, choosing these scales is equivalent to choos-
ing the degree of freedom factor ». Application of the
method provides a check on the choice of v, because
in practice » must be sufficiently large to stabilize the
calculation. Figure 5 illustrates the influence of » on
the estimates of two parameters for a Pacific run. Figure
5a shows the dependence of da.:, a poorly resolved
parameter, while Fig. 5b shows the dependence of ary,
a relatively well resolved parameter. In the case of the
poorly resolved parameter, the estimates are highly de-
pendent on the choice of ». For small values of v the
estimates differ significantly from the range given a
priori as reasonable. As v is increased the estimate
eventually falls within the a priori range, but not before
the error bars also encompass zero. This contrasts with
the well resolved parameter agry, where the estimates
are distinguishable from zero for the entire range of »,
and the error bars are distinctly smaller than the a priori
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range. On the basis of plots like these » in the full-basin
Pacific was chosen to be 200; in the full-basin Atlantic,
100. These choices are consistent with the values cal-
culated from the noise scales in appendix B, O (170)
and O (70) respectively.

4. Results

The tuning procedure is applied to sets of runs in
both the Atlantic and Pacific. The runs require three
sorts of data: wind stress, cloudiness, and SST. In both
oceans the climatological cloudiness is taken from Es-
bensen and Kushnir (1981) (annual cycle), and the
SST is taken from Climate Analysis Center (Reynolds
1982) averaged from 1970 to 1984. The wind stress in
the Atlantic is based on the Hellerman wind product
(Hellerman and Rosenstein 1983): a priori the stress
is reduced by a factor of 0.75 to make the drag coef-
ficient (Cp) closer to that suggested by Large and Pond
1981. (Cp is one of the parameters tuned in the fit: the
results show that 0.75 is indeed a good choice). The
wind ( pseudo)stress in the Pacific is the annual cycle
from the Florida State University wind product (Gol-
denberg and O’Brien 1981) averaged from 1961 to
1984. Runs were first made with the a priori values of
the heat flux parameters. Maps from these runs are
labeled “‘untuned” in Figs. 6-10. Those runs give cor-
rective fluxes which are minimized to make optimal
choices for the parameters. A second set of runs are
then made using the optimal values of the parameters.

Corresponding maps are labeled “tuned” in Figs.
6-10.

In both oceans thie optimization procedure is applied
to data from only the four months, January, April,
July and October; using all 12 months would add little
independent information. [Runs using 3-month av-
erages gave essentially the same results as the four in-
dividual months.] Three runs are presented: a Pacific
fit based on 20°S-20°N data (“Pacific”’), an Atlantic
fit based on the same range (““Atlantic”), and an At-
lantic fit based on 10°S-10°N data (“Equatorial At-
lantic”’). In the Pacific, the tuning procedure reduced
the corrective heat flux variance from 150% to 110%
of the expected value [a variance which translates
(square root) to an uncertainty of roughly 35 W m—2].
In the Atlantic case, the tuning reduced the variance
from 260% to 130% of the expected value, somewhat
larger than the Pacific, and, as will be seen, more struc-
tured. The Equatorial Atlantic run was then made to
see whether the high residues in the Atlantic indicated
that parameter estimates were poor: the run reduced
the corrective heat flux variance from 220% to 130%
and for the most part gives similar parameter estimates,
suggesting that the high residuals do not greatly influ-
ence most of the parameters.

Figure 4 summarizes the estimates for the parame-
ters. Several of the coefficients were not determined by
the optimization. This is seen in the plot when the
range on the error bars is the same as the range on the
a priori value (e.g., the solar angle parameter a, and
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the back-radiation parameters a; and Toa;). The other
parameters are reasonably well resolved. The optimized
choice for the cloudiness coefficient ac is close in the
two oceans, being somewhat larger than a priori value
of 0.62, which is widely used (e.g., Weare et al. 1980).
Relative evaporation potential agy, is (barely) signif-
icantly different between the two oceans, with the At-
lantic estimates corresponding to drier air. In consid-
ering ary constant, the heat flux model has assumed
that the moisture content of the air has equilibrated to
the sea surface, a reasonable assumption sufficiently
far from the coasts. Close to the coasts, however, when
the wind is offshore, the air has not equilibrated, and
it is somewhat drier than equilibrated air. The differ-
ence in estimates of ary, then, could result from coastal
air being relatively important in the Atlantic, which is
reasonable given that it is so much smaller than the
- Pacific. Note also that the coefficient agy subsumes
changes in the exchange coefficient ¢z as well as true
changes in relative evaporation potential.

In the Pacific, the upwelling efficiency v is somewhat
smaller than the a priori value while the Atlantic values
are essentially unchanged: the two oceans are, however,
consistent with each other. This is not a particularly
strong result: the mixed layer depths and the deep tem-
perature parameterizations differ in the two oceans,
differences that affect the interpretation of v in the two
oceans. :

Drag coefficient changes (ap) were fairly small (15%
reduction) and identical in the two full basin fits. The
a priori value of 1.6 X 1073 includes a stability correc-
tion factor, thus it is somewhat larger than the low
windspeed-neutral stability Large and Pond value
of 1.2 X 1073, The “corrected” drag coefficient is
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1.4(#0.2) X 1073, interpretable as a 20% stability effect,
a reasonable mean tropical value.

The diffusion coefficient estimates («) were the only
ones to differ significantly between the Atlantic and
Equatorial Atlantic runs. Since this term is particularly
large near the coasts, and the Atlantic model is partic-
ularly bad near the coasts, it is likely that much of this
estimate is a reflection of the poor job the model does
near the coast, rather than an improved value of dif-
fusion. The fact that the full basin models agree with
each other and disagree with the Equatorial run suggests
that, to the extent that diffusion can model coastal dy-
namics, a lower diffusion is required in coastal regions
compared to equatorial regions. The conclusion that
we draw, however, is that the model’s ability to model
coastal areas needs to be improved.

As mentioned earlier, in the Pacific the tuning re-
duced the overall corrective heat flux variance from
150% to 110% of expected. The improvement can also
be seen in the difference in SST between data and
model. Figure 6 shows that difference for a typical cli-
matological month ( April ) in the Pacific. The untuned
model has a tendency to be too cool in the north and
the eastern equatorial region. The tuned model, on the
other hand, matches quite well over the entire equa-
torial region, and only has differences as large as 2°C
near coasts (which the model represents poorly) and
near the northern extreme of the plot (which is rea-
sonable given that the model is most correct for equa-
torial regions). The tuned model, then, gives distinctly
better results than before.

Figure 7 shows the heat flux residuals for the Pacific
estimation: this is the heat flux analog of the temper-
ature difference maps in Fig. 6. These residuals can be
interpreted as the changes necessary in the data needed
to make the model and measured heat flux match.
Since the inversion makes no distinctions between the
sources of error in each equation (the total variance
in the equation is the sum of the variances of the
terms), one possible interpretation of the error results
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1 to spread the error equally among all the sources. In
particular, a residual of one standard deviation means
that a change of one standard deviation in each un-
certain variable is sufficient to account for the differ-
ence, e.g., 0.75 m s™! change in wind, 0.1 change in
cloud fraction, 10 W m ~2 in both upwelling and general
heat flux error. This is equivalent to the total equation
error of 35 W m™2,

Figure 8 shows the difference in SST between data
and model as a function of time for an equatorial band
in the Pacific. The difference between tuned and un-
tuned models is less striking from this perspective: the
tuned model is better in the west and over much of
the basin, while the untuned model is slightly better in
the east in winter.

The tuning procedure also reduced the corrective
heat flux in the Atlantic, from 260% of the expected
noise variance to 130% of the expected noise variance.
This is also seen in the SST differences. Figure 9 shows
the SST difference for a climatological April in the At-
lantic, while Fig. 10 shows the SST difference as a
function of time for an equatorial band. The tuned
model is much better in the equatorial region than the
untuned version, but the results away from the equator
are still poor. In particular, the model is too warm at
the North African coast and near the Brazilian coast
(““Cabo Frio”). The fact that large differences remain
even after tuning shows that no reasonable change in
the heat flux parameters could account for the differ-
ences. The fact that the remaining corrective heat flux
is significantly larger than the expected value shows
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that errors in the data cannot explain the difference
either. We conclude that there must be errors in the
model. This is an important result, for it shows that
the data, problem-ridden that it is, is sufficient to tell
us something useful about the model. There are several
model shortcomings that could account for errors with
the structure shown in the figure. The poor represen-
tation of coastal geometry limits the accuracy of model
surface currents and upwelling. The parameterization
of latent heat flux assumes that the air temperature has
equilibrated with the ocean temperature, which is less
likely to be true at the coasts. Finally, and most easily
corrected, the parameterization for the deep temper-
ature is accurate only near the equator. This is not
significant in the Pacific, where there is relatively little
off-equatorial upwelling, but degrades the simulation
in the Atlantic, where the off-equatorial upwelling is
much more important. This would be correctable by
using a deep temperature parameterization that has
some horizontal dependence.

5. Conclusions

This paper compares an imperfect model with an
imperfect dataset in both the Atlantic and the Pacific.
In the Pacific, the differences between the model SST
and data SST can be explained with changes in the
heat flux that are the same size as the overall uncer-
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tainty in the heat flux, O(35 W m™2). The results
suggest some small changes in the heat flux parameters,
namely that the coefficient for cloudiness a¢ be changed
from 0.62 to 0.76 = 0.1 (95% confidence level) and
that if the relative evaporation potential ary is going
to be constant it should be given a value of 0.22 + 0.02.
In the Atlantic, the differences between the model and
data are so great that they cannot be explained by
modifying the heat flux formulation, and other physical
processes and model problems must be considered.

These results show that while the physics included
in the model are adequate to model SST in the Pacific,
they are not adequate for the Atlantic. Why are the
two oceans different? The Atlantic SST difference pat-
terns (Fig. 9) suggest at least one reason. The patterns
show that the boundary regions are particularly poorly
modeled, especially the west African and southeastern
Brazil coasts. To the extent that the model physics best
represent the open ocean, trouble with boundary re-
gions is not unexpected. Because the Pacific is so much
larger than the Atlantic, the coastal regions are less
influential, and an open ocean model does relatively
well. In subsequent work, then, the effects of changes
in the Atlantic ocean model will be investigated, with
particular attention to coastal regions.

Should the heat flux parameters which emerge as a
byproduct of our model validation procedure be re-
garded as anything more than an artifact of our model’s
idiosyncrasies? Of course, the bulk formulae are also
models which vary from modeler to modeler [ cf. SZC;
one telling example is to compare the widely accepted
drag coeflicient of Hellerman and Rosenstein (1983)
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with the widely accepted version of Large and Pond
(1981)], but the model here is decidedly indirect and
is not even the most complete model available—it
makes many gross simplifications of ocean structure.

While one could argue that our model performs as
well as any other on its chosen problem, and thus is
state-of-the-art, that is not really the point. We accept
the fact that our numbers depend on our particular
formulations of ocean dynamics, ocean thermody-
namics, and surface heat flux, even on the particular
datasets we have used. In fact, we embrace it: we believe
that parameterizations are inherently dependent on the
models and datasets with which they are used. Thus
we recommend that the conventional heat flux for-
mulae be used only as a starting point, from which
modelers should calculate their own parameter values
specific to their models and datasets.

At the same time, we cannot rule out the possibility
that the values found here are more universal than
might first appear. The procedure involves tuning only
a few parameters from a large dataset, and their possible
values are restricted a priori to a physically plausible
range; that is, they are consistent with prior estimates
in the literature to within the uncertainties in the latter.
We do not claim that our formulae are universal; this
possibility can only be evaluated empirically by trying
our technique in the context of other models and other
datasets. Our guess would be that any decent model
would give about the same values if used with the same
forcing and verification data, but that different data
could very well lead to different numbers. In our ex-
perience, differences in surface wind fields are especially
troublesome.

The tuning procedure allowed us to distinguish
problems in the model from uncertainties in the data
and parameterizations. Since all models have tunable
parameters this technique may be applied to any in a
hierarchy of models. We anticipate applying it to a
primitive equation model (Gent and Cane 1988) in
the near future and hope that the experience gained
here will serve us well in a more complicated context.
If the model was good enough, then this technique
would allow us to give a useful estimate of surface heat
fluxes (something we have thus far assiduously
avoided), together with error bars.

It is naive, however, to presume that carrying on
with a more complete ocean model will necessarily
yield better estimates. Our present model sidesteps a
number of potential pitfalls by specifying aspects of the
ocean to be in good agreement with data: it is, in part,
adiagnostic model. For example, we assume a constant
mixed layer depth of 50 m in the Pacific. While not
correct, this is not far from correct anywhere. One
might do worse with a more complete parameterization
which tries to account for depth variations. Perhaps
the mixed layer model would be unable to handle some
situation, or perhaps the demands it makes would be
more than available data can bear. Ultimately, we will
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want to use the most complete GCM, but that day has
not yet arrived.
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APPENDIX A

Summing High Modes to Form a Surface Layer

The variables describing the ocean circulation may
be written as sums of vertically standing eigenmodes;
these expansions for the horizontal velocity compo-
nents and the pressure are written as

u

o) um
Voj(x,y,z,0)= % [ U ](x, Y, D A(2),
1 m=0 ghm
-P
P

(A1)

where 4,,(z) is related to the mth eigensolution of the
vertical structure equation, namely 4,,(z) = 4,G,.(z)
and

N*(z)
Co

(Our notation follows Cane 1984).

We would like to use the special properties of a sur-
face mixed layer to convert the infinite sum of modes
into the sum of a few modes and some mixed layer
dynamics. We will assume that there is a surface mixed
layer of depth #A,,,; in terms of horizontal velocity
structure functions A4,,(z) = A4,,(0) for z > —hpy;x. We
further assume that the stress 7 vanishes below the
mixed layer.

Introducing the form (A1) into the zonal momen-
tum equation afier ignoring the barotropic mode m
= ( (see Cane 1984) yields

9::Gm(z) +

G,(z)=0. (A2)

Z OpmAm ~ BY 2 Vmdm +g 2 OxhpmAp,

m=1 m=1 m=1

=07+ 3 uF(4n), (A3)

m=1

where F is an operator, presumed linear, accounting
for vertical mixing. Horizontal mixing is neglected,
though its inclusion would have no effect on our ar-
gument.

By projecting onto individual modes, the single
equation (A3) relating sums can be changed to a series
of equations without sums. To obtain the equation for
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mode n, multiply (A3) by 4,(z), integrate over the
entire water column (depth D), and use the orthogo-
nality of the {A4,(z)}; the result is,

- Byv, + gaxhn = Tn(x) - Z YnmUm,

m

o:uy

n=1,2---, (A4)

where we have made use of the orthogonality condition

1o _
BJ‘_DAn(Z)Am(Z) - 6nm

and have defined

Tn(X) = 7™ 'An(O)/D
1 0
"nm = B An(Z)F[Am(Z)]dz-
-D

We are only interested in applying this projection for
low modes, i.e., n < N. We will assume that forn < N,
I'nm = 0 for m # n and write r, for r,, hereafter. This
assumption is a more general but still artificial variant
of the special treatment of friction in previous linear
modal models (e.g., McCreary 1981 or'‘Gent, O Neill
and Cane 1983); it allows us to recover the familiar
form of (A4), in which friction appears only as Ray-
leigh friction and there is no coupling among different
modes:

A, — Byv, + gosh, = Tn(x) — Faly
n=12+-++,N. (AS)

Define the total velocity contribution from high
modes (n > N) as

(ug, v5) = 2 (tn, ) An(2).
n=N+1
N

The result of subtracting >~ [Eq. (A5)] 4,(0) from
n=1

(A3) can then be written (z > —/,,)

1 N
atus - Byvs + l:; axP — 8 E axhnAn(O)]

n=1
=7 (x)[ !
hmix

-25]

n=1

N
+ {F(us) + 2 un[F(A4,(0)) — r,4,(0)]}, (A6)
where we have written 7,4,(0) = +/D,,, i.e., D, = D/
A,2(0). Note that we have used the relation

oo
1/hmix = 2 Dn_l9
n=1
which follows from projecting a step function onto all
modes and summing. The term in curly brackets on
the rhs accounts for vertical friction and we have few
qualms about treating it cavalierly. In line with previous
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assuraptions we take the term involving the sum to be
negligible. The other term will be written in the simplest
manner possible, as a Rayleigh friction:

F(u) =

The bracketed term on the left-hand side is concerned
with the pressure gradient at the surface, or, equiva-
lently, with the slope of sea level. It has been shown in
a number of contexts (e.g., Cane 1984; Busalacchi and
Cane 1985; duPenhoat and Treguier 1985) that sea
level variations are well represented by a very few
modes; perhaps as few as two. We will take N suffi-
ciently large so that the bracketed term is negligibly
small. After defining

— 75U,

1 1 Yo
—= - —_—, A7
H* hmlx n§l Dn ( )
(A6) can be rewritten
(x)
tus Byvs — IsUs. (Aga)

*

A similar analysis of the meridional momentum equa-
tion leads to

7O

— — ryvs.

0,05 + Byus = H
*

(A8b)

As they stand, Eqgs. (A8a, b) are readily solved for (u;,
v,) given the wind stress. Since we are only interested
in low frequency motion (the wind data is monthly)
the time dependent term is unimportant and may be
neglected. Then (A8a, b) are just the equations for
Ekman transport over an effective layer depth H, . The
Rayleigh friction term is important only near the
equator where By < r,; it is there that the Ekman re-
lations breakdown.

Thus, though the model takes the form of N vertical
modes plus a surface layer, it is equivalent to an ap-
proximate solution of the infinite number of modes
formulation of the standard linear equations (albeit
with a particular form for the friction—but there is no
standard choice here). We have exploited the fact that
the modal series for the surface pressure converges very
rapidly to derive the simple form (A8) for the sum of
the higher modes (n > N) in the surface layer. Note
that the series for u converges less rapidly: the scaling
relation between 4 and u,, is A, = (H,./g)"*u, (cf. Cane
1984), where H,, the equivalent depth, is a decreasing
function of n. The last column of Table 1 indicates the
influence of each mode on sea level and hence on the
surface pressure gradient (cf. Cane 1984). The rapid
decrease with mode number shows that these few
modes account for P. For the low modes the wind
stress is largely balanced by the pressure gradient force,
while for the high modes it is balanced by Coriolis or
friction terms. This qualitative difference was pointed
out by McCreary (1981), who identified the low mode
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number balance with Sverdrup dynamics and the high
n balance with the Yoshida solution.
The numerical procedure for finding

N
ur=u(z=0)=u;+ 2 u,4,(0)

n={

(A9)

consists of solving for 1, from the steady state form of
(A8) and solving for each of the u,, n = 1, N with the
scheme devised by Cane and Patton (1984) as aug-
mented by duPenhoat et al. (1983) to allow a less re-
stricted basin geometry.

APPENDIX B
Interpreting the Degrees of Freedom Factor »

In the body of this paper we have approximated the
data space (equation) covariance R = R; + Ryg as a
diagonal matrix Rp where the diagonal of R, is copied
from the diagonal of R normalized by the factor » which
reduces the resulting excess number of degrees of free-
dom [Rp]i; = ¥[R];;. Here we demonstrate that a rea-
sonable choice of v induces minimal error in the in-
version as represented by the matrix B. We also develop
the connection between » and the correlation scales
implicit in the noise covariance R.

We first note that the resolution matrix BM relates
the true value of the parameters ag to their estimate
2.1, Namely

A = BMay. (B1)
This is based on the idea that, as long as the model is
valid, the true data q¢ can be written in terms of the
true model parameters, qo = May. Thus, we can un-
derstand the effects of using the diagonal covariance
matrix Rp on the inversion by understanding the effect
on the resolution matrix BM. Writing out the resolutlon
matrix explicitly,

BM = [M'R"'M + R,7']"'MTR™'M, (B2)
we see that it only depends on the equation covariance
R through the expression MTR ~'M. It is this expression,
then, that we will use to evaluate choices of ».

Since we in fact know very little about the structure
of the noise covariance, it is fairly reasonable to choose
a simple exponential form (11),

—»)= 2~ Ix1mxl/Lxy = Iy=y2l/Ly (B3)
We use 2 rather than e so that the length scales (L,
L) are the scales such that the normalized covariance
(squared correlation ) is { /2. If we now grid the model
with an x-coordinate spacing Ax and a y-coordinate
spacing Ay, we can define single gridstep correlation
factors

R(x, — x2,

r=2m8xlhs 5= 2=k, (B4)
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a. One-dimensional grid

Consider for the moment the one-dimensional
problem (coordinate x). Using # as the number of

gridpoints, we can explicitly write the equation noise -

matrix R, and a (one column) model matrix M,

1 m;

r ol m

Re=| T r 1 ,» M= :
’ My—y

S G| my

) (B5)
[Covariance matrices (like R,) are symmetric: here
only the lower triangle of a symmetric matrix is ex-

plicitly written.] R, is easily invertible because of its
special form,

1
q —r 1+
-1 = O —-r
R 1-r | 1+ 72
0 e 0 1

(B6)

The expression R,~! can also be written in a less clear
but more explicit form,

1
(r15' = —= [(1 + r})d; — r’(8udpn
1-r

+ 0injn) — rdiir16i41;].  (B7)

We can now compute the triple matrix product
MR, "'m,

[§n) (1+r*)ym?

i=1

T - —
MR, "M = —;
n-1
= r’(m? + m.?) = 2r 3 mim].
i=1
We would like to compare this to the triple product
computed with the diagonal matrix Rp,

(B8)

1 n
MR, M = -3 m?. (B9)
V=1
The expression (B8) can be simplified somewhat by
making an approximation and a definition. The ap-
proximation is to approximate the boundary term as
a fraction of the mean square, i.c.,

2 n
m?2+m?~ - > mP. (B10)
n=1
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This term is a rather small contribution for large #,
and would get dropped entirely if this approximation
did not result in a simpler expression. We also define
a scale ratio o as

1 - <mimi+l >/<ﬂz"ﬁ>

o= (B11)
1—r
where
n—1
<mimi+1> = 2 MMy
n—1.]
1 n
<mimi> = ; > mim;.
i=1

As can be seen in (B11), o relates the single gridstep
correlation of the model to the single gridstep corre-
lation of the noise (r), such that ¢ < 1 is equivalent to
the model scale being much longer than the noise scale.

We can now calculate what » has to be to make (B8)
and (B9) match; explicitly,

1-(1-=2/m)r 2r(1 —1/n) T
v~ + gl .
14+r 147

(B12)

Note that for r = 0, v = 1, i.e., there is no degree of
freedom reduction if all the data is independent. An-
other interesting limit is r = 1 and ¢ = 0, ie., all the
data is redundant and the model treats all data iden-
tically. In that limit » = n, i.e., the degree of freedom
reduction is complete.

b. Two-dimensional grid

The two-dimensional generalization of the one-di-
mensional result is straightforward. The covariance
matrix R,, can be written as (k X k) matrix whose
elements are the x coordinate matrices R, defined by
(B5);

R,
SR, R,
s’R, sR, R,

R,,

s¥IR, s’R, SR, R,

(B13)
i.e., thisis an (n X k) X (n X k) matrix whose elements

are scalars. Written as a matrix of matrices, however,
makes it clear that the inverse is

R,
{ —sR,7' (1 + sHR,!
R; = 0 —sR,”! Bl4
SO S ) (1+ s)R,™ (B
0 0 —sR' R,
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Proceeding as in the one-dimensional case, it now fol-
lows that the two-dimensional version of v is simply
the product of the one-dimensional versions:

[1 —(1=2/n)r 2r(1 —1/n) }“
v~ + o

B _ _ -1
x[l (1= 2/kys | 201 ”"’«] . (B15)
1+ I+s

One interpretation of these results is that there is an
equivalent v for every pair of noise correlation scales.
Given what we know about the data, we can estimate
these scales and compare the resulting v to that used
in the body of the paper. Since the dominate contrib-
utors to the noise are the wind (through the evaporative

“heat flux term) and the cloudiness (through its reduc-
tion of the solar input), one would expect the scales
in those datasets to dominate ». In the Pacific, the wind
is calculated from the FSU product (Goldenberg and
O’Brien 1981) which is based on an analysis of data
that has been gridded to 10° X 2° boxes. That data
has been contoured and then regridded, so we would
expect the data to be even smoother than the original
10° X 2° might lead us to believe. Using a simplified
version of (B15), which is appropriate for the large
number of grid points and relatively uniform model,

_ 1+rifl+s
"Elr=rl1- s] ’
and knowing that the Pacific model grid is 2° X 0.5°,
we see that the corresponding » would be 170, not much
different than the 200 found by looking at the results
of the inversion. The Atlantic wind data is taken from
the Hellerman wind product (Hellerman and Rosen-
stein 1983): it is based on data box-averaged to a 2°
X 2° grid, with some interpolation done for data poor
regions.. Most of the 20°S to 30°N band modeled in
the Atlantic is not data poor, so except for the 30°S to
20°S range, 2° X 2° is a reasonable choice of scale for
the data. The Atlantic model grid is 1° X 0.5°, so the
corresponding » value is 70, not far from the value
used in the inversion (100), and the correction for the
30°S to 20°S range would reduce the difference. The
cloudiness data for both oceans is taken from Esbensen
and Kushnir (1981): it is based on 5° X 5° gridded
data that has been smoothed using an objective analysis
scheme which averages over all points within a 1100
km radius. Consequently the cloudiness data is much
smoother than the wind data, and the corresponding
v factors are high: a 5° X 5° grid corresponds to »
= 200 in the Pacific and » = 400 in the Atlantic. It is
thus the smaller scales left in the wind that is the source
of the variability which determines the effective number
of degrees of freedom.

(B16)
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