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Existence Condition on Solutions

to the Algebraic Riccati

Equation

NI Mao-Lin1

Abstract First, the existence conditions on the solutions to
the algebraic Riccati equation are reviewed. Then, a strict proof
is presented for a necessary and sufficient condition on the exis-
tence of a unique optimal positive definite solution to this equa-
tion. By using this condition, some untrue results on the design
of robust decentralized controllers are corrected.

Key words Riccati equation, optimal control, robust control,
stability, decentralized control

1 Introduction
The algebraic Riccati equation (ARE) has been widely

used in control system syntheses[1−2], especially in opti-
mal control[3−5] , robust control[6−7] and the LMI-based
design[7−8]. As the solution to this equation may not be
unique[9], the existence conditions of solutions have been
considerably investigated[10−15]. In [15], we proposed a nec-
essary and sufficient condition on the existence of a unique
optimal positive definite solution to this equation. But the
proof given in [15] is not strict. Moreover, with using this
equation, quite a few results published before are found to
be incorrect (See [16], for example).

First, this note reviews the existence conditions on the
solutions to the ARE. Then, we present a strict proof for
a necessary and sufficient condition on the existence of a
unique optimal positive definite solution. Some wrong re-
sults appearing in [16] are also corrected.

2 Existence condition on solutions to the
ARE

Consider the algebraic Riccati equation

ATP + PA− PBBTP + Q = 0, Q ≥ 0 (1)

where A and B are n × n and n × m real matrices, re-
spectively. Q ≥ 0 means that Q is a positive semidefi-
nite real symmetric matrix. Without loss of generality, let
Q = CTC, where C is a p×n matrix. It is well known that
(1) is associated with the following linear system:

ẋxx(t) = Axxx(t) + Buuu(t)

xxx(0) = xxx0 (2)

with the state feedback control

uuu(t) = −Kxxx(t), K = BTP (3)

and the performance index

J =

∫ ∞

0

(xxxTQxxx + uuuTuuu)dt (4)
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For convenience, the following terms[12] are employed in
this note: 1) the stabilizing solution Ps is defined as the
positive semidefinite solution P ≥ 0 to (1) such that the
closed-loop system matrix A − BK is asymptotically sta-
ble; 2) the optimal solution P0 is defined as the positive
semidefinite solution P ≥ 0 to (1) such that control (3) is
optimal with respect to index (4). Further, we introduce
the 2n× 2n Hamiltonian matrix

M =

[
A −BBT

−CTC −AT

]
(5)

Firstly, we review some existence conditions on solutions
to the ARE (1), which are useful and fundamental for es-
tablishing the necessary and sufficient condition on the ex-
istence of a unique optimal positive definite solution (The-
orem 1).

Lemma 1[10−11]. If (A,B) is stabilizable, then there
exists a positive semidefinite solution P ≥ 0 to (1).

Lemma 2[11−12]. (1) has a positive semidefinite solution
P ≥ 0 which is the stabilizing one if and only if (A,B)
is stabilizable and Reλ 6= 0 for every eigenvalue λ of the
Hamiltonian matrix M.

Lemma 3[13]. Reλ 6= 0 for every eigenvalue λ of M if
and only if every eigenvalue β of A satisfying Reβ = 0 is
a controllable mode of (A,B) and an observable mode of
(C,A) .

Lemma 4[12]. (1) has a unique positive semidefinite
solution P ≥ 0 and the solution is the optimal one as well
as the stabilizing one if and only if (A,B) is stabilizable
and (C,A) is detectable.

Lemma 5[10−11]. If (A,B) is stabilizable and (C,A) is
observable, then there is a unique positive definite solution
P > 0 to (1) and it is the stabilizing one.

Lemma 6[14]. (1) has a positive definite solution P > 0
and the solution is the stabilizing one if and only if (A,B)
is stabilizable and (C,−A) is detectable.

Secondly, we present a strict proof for the result proposed
in [15] in the following.

Theorem 1. (1) has a unique positive definite solution
P > 0 and the solution is the optimal one as well as the
stabilizing one if and only if (A,B) is stabilizable and (C,A)
is observable.

Proof.
1) Sufficiency
Since (A,B) is stabilizable and (C,A) is observable, it fol-

lows from Lemma 5 that the ARE (1) has a unique positive
definite solution P+ > 0 and the solution is the stabilizing
one. Meanwhile, one can see that the conditions of Lemma
4 are satisfied as well in this case. From Lemma 4, we know
that the positive definite solution P+ > 0 above is also the
unique positive semidefinite solution P ≥ 0 to the ARE (1)
and it is the optimal one as well as the stabilizing one.

2) Necessity
Since the ARE (1) has a positive definite solution P > 0

and the solution is the stabilizing one, we know from
Lemma 6 that (A,B) is stabilizable and (C,−A) is de-
tectable.

On the other hand, it is shown in [12] that if more than
one solution P ≥ 0 to the ARE (1) exist, then we always
have

Ps ≥ P0 , Ps 6= P0

where Ps ≥ P0 means that Ps − P0 ≥ 0 , or Ps − P0 is



86 ACTA AUTOMATICA SINICA Vol. 34

a positive semidefinite real symmetric matrix. Now, since
the positive definite solution P+ is the optimal one P0 as
well as the stabilizing one Ps, i.e.,

P0 = Ps = P+

it is necessitated[12] that the ARE (1) has only one positive
semidefinite solution P1. Clearly,

P1 = P+

Thus, it is concluded that the ARE (1) has a unique posi-
tive semidefinite solution P+ and it is the optimal one P0 as
well as the stabilizing one Ps. From Lemma 4, it is straight-
forward that (A,B) is stabilizable and (C,A) is detectable.

Now, if one can show that (C,A) is observable from the
results above, i.e., both (C,A) and (C,−A) are detectable,
the proof will be completed immediately.

In fact, it is known[12] that (C, A) is detectable if and
only if every unobservable mode of (C,A) is necessarily as-
sociated with an asymptotically stable eigenvalue of matrix
A . Under the conditions that both (C,−A) and (C, A) are
detectable, we assume that (C,A) is not observable. Then
there exists at least one eigenvalue λ of matrix A and the
corresponding eigenvector ξξξ 6= 0 satisfying

Aξξξ = λξξξ

Cξξξ = 000

Obviously, this will contradict the condition that (C, A)
is detectable in the case of Reλ ≥ 0 or that (C,−A) is de-
tectable in the case of Reλ < 0 or Re(−λ) > 0. It is noted
that −λ is an eigenvalue of matrix −A, and ξξξ is the corre-
sponding eigenvector. Therefore, under the conditions that
both (C,−A) and (C,A) are detectable, (C,A) is necessar-
ily observable.

This completes the proof. ¤

3 Application to the decentralized control

To show the significance of the necessary and sufficient
condition, we use Theorem 1 to correct some results ap-
pearing in a decentralized control scheme for interconnected
systems presented by [16].

In Section 3 of [16], the following extended system is
employed ((17) therein):

˙̄XXXi(t) = ĀiX̄XXi(t) + B̄iŪUU i(t) (6)

where

Āi =




Ai Ii −L̃i

0 Azi 0

0 0 Ãi




B̄i =




Bi 0
0 Ii

0 0


 (7)

with the pair (Āi, B̄i) being stabilizable.
The associated performance index is

Ji =
1

2

∫ ∞

0

[X̄XX
T
i (t)Q̄iX̄XXi(t) + ŪUU

T
i (t)R̄iŪUU i(t)]dt (8)

where

Q̄i =




Qi 0 0
0 Qui 0
0 0 0




R̄i =

[
Ri 0
0 Rvi

]
(9)

where Q̄i = D̄T
i D̄i is a positive semidefinite matrix with

(D̄i, Āi) being detectable and R̄i is a positive definite one.
The optimal control with respect to index (8) is given by

ŪUU i(t) = −ḠiX̄XXi(t) (10)

where

Ḡi = R̄−1
i B̄T

i P̄i =[
Gi1 Gi2 Gi3

Hi1 Hi2 Hi3

]
(11)

and P̄i is a steady state solution of the following Riccati
equation:

ĀT
i P̄i + P̄iĀi − P̄iB̄iR̄

−1
i B̄T

i P̄i + Q̄i = 0 (12)

Based on (10)∼(12), a decentralized controller is devel-
oped in [16], as shown in Fig. 1. Then, a sufficient condi-
tion, Theorem 1, on the system stability is presented. How-
ever, in the proof for this theorem, the following is used as
a candidate Lyapunov function

V [XXX(t)] =

s∑
i=1

Vi[XXXi(t)] =

s∑
i=1

XXXT
i (t)P̄iXXXi(t) (13)

where the matrix P̄i is the same as that in (11), namely the
optimal solution of the ARE (12).

It is noticed that, in view of the structure of Q̄i in (9),
(D̄i, Āi) can be only detectable rather than observable.
Thus, it is impossible for the optimal solution of the ARE
(12) to be positive definite, according to our Theorem 1.
In other words, P̄i in (13) is not a positive definite matrix.
V [XXX(t)] is not a Lyapunov function, either. Obviously, the
proof presented in [16] for Theorem 1 therein is wrong.

To fix the problem above, according to our Theorem 1,
one must manage to choose such a matrix Q̄i in (9) that
(D̄i, Āi) is observable. Yet, since there exist some more
incorrect results in the proof of [16], we conclude that The-
orem 1 of [16] is not true.
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