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Abstract The initial motivation of the lifting technique is to solve the H∞ control problems.
However, the conventional weighted H∞ design does not meet the conditions required by lifting, so
the result often leads to a misjudgement of the design. Two conditions required by using the lifting
technique are presented based on the basic formulae of the lifting. It is pointed out that only the
H∞ disturbance attenuation problem with no weighting functions can meet these conditions, hence,
the application of the lifting technique is quite limited.
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1 Introduction

Because the intersample behavior can be taken into account and the L2-induced norm of the system

can be obtained, the lifting technique now becomes the main tool for the H∞ design of sampled-data

systems. However, conditions that must be met when using the lifting technique have generally been

ignored. This is because the lifting computation deals mostly with matrix exponentials, and if these

conditions are not met, the process of computation can still be continued smoothly. But the performance

resulted from the H∞ synthesis will not be the same as expected if these conditions are violated. And

it may lead to a misjudgement of H∞ design. In this paper we will give a detailed analysis of the

conditions required by the H∞ synthesis via lifting.

2 Lifting computation for sampled-data systems

This section briefly reviews the main steps of the lifting computation, and the formulas listed

below will be used in the discussion.

The lifting can be visualized as breaking up at each sampling time the continuous-time signal f(t)

into an infinite number of consecutive pieces f̂k(t), i.e.,

f̂k(t) = f(τk + t), 0 6 t 6 τ, k = 0, 1, 2, · · ·

The sequences {f̂k} are also discrete-time signals which take values in the function space L2[0, τ ). Let

{f̂k} ∈ l2L2[0,τ). That is an L2[0, τ )-valued sequence whose norm sequence is square summable[1]:

∞X
k=0

‖f̂k‖
2
L2[0,τ) < ∞

Consider a time-continuous system as follows:

ẋ(t) = Ax(t) + B1w(t), z(t) = C1x(t) (1)

The behavior of the state x ∈ R
n under the lifted input {ŵk} is given by

x(kτ + t) = e
At

x(kτ ) +

Z t

0

e
A(t−s)

B1ŵk(s)ds, 0 6 t < τ

Defining the discrete-time state xk := x(kτ ), then we have

xk+1 = e
Aτ

xk +

Z τ

0

e
A(τ−s)

B1ŵk(s)ds (2)
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which can be rewritten in the operator form as[1]

xk+1 = e
Aτ

xk + Φbŵk (3)

where Φb is an operator, Φb : L2[0, τ ) → R
n. For ŵk ∈ L2[0, τ ), we have

Φbŵk =

Z τ

0

e
A(τ−s)

B1ŵk(s)ds

The output equation of the system is

ẑk(t) = C1e
At

xk + C1

Z t

0

e
A(t−s)

B1ŵk(s)ds = Φcxk + Φ11ŵk (4)

where Φ11 : L2[0, τ ) → L2[0, τ ) is the convolution operator and Φc : R
n → L2[0, τ ) is the state transition

operator. For details about the operator equations, please refer to [2].

Notice that, for the generalized plant of sampled-data control systems there are a second input,

namely the control input u, and a second output y (see Fig. 1). They are connected with the discrete-

time controller Kd via the hold H and the sampler S. The relationship between the input uk and

output yk can be established by the general discretization method. By adding this second relationship

to (3) (4), now the operator-valued transfer function of the generalized plant is of the following form[1]:

G̃ =

264 eAτ Φb B2d

Φc Φ11 Φ12

C2 0 0

375 (5)

where B2d corresponding to the second input u ∈ R
m is the input matrix formed by discretization, the

operator Φ12 : R
m → L2[0, τ ), and for u(kτ + t) = uk, 0 6 t 6 τ , we have

Φ12uk = C1(

Z t

0

e
A(t−s)ds)B2uk (6)

Φ11 is a convolution operator (see (4)), which will have a direct effect on conditions discussed in this

paper. This is because Φ11 in (5) must be removed in the lifting computation, and the main lifting

algorithm is developed for this purpose. [1] used the concept of Loop-shifting[3] proposed by Safonov

to remove the operator Φ11. The essential of the loop-shifting approach is to replace the effect of

the feed through operator Φ11 by modifying the input/output operators Φb and Φc. The last step in

the lifting computation is to transform the operator-valued transfer function into a finite-dimensional

matrix-valued transfer function Gd, i.e.,

G̃ =

264 Ad B1d B2d

C1d 0 D12d

C2d 0 0

375 (7)

The resultant Gd is an equivalent discrete-time plant, and the general H∞ synthesis approach can

then be used in the design. The algorithm for the lifting computation now is standard and available

for use[4,5].

Fig. 1 The plant with a sampler and a hold
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3 Conditions for applying the lifting technique

In [1] it was proved that the L2-induced norm of a sampled-dada control system is preserved after

lifting. But this does not indicate any conditions for norm preserving. Only assumed was the following

assumption A1) for discussion of the computation formulas.

A1) (A, B1) is controllable, (C1, A) is observable.

In fact, this A1) is just one of the conditions for norm equivalence. This is because the lifting

transformation involves operations on operators, some of the operators map the input to the state, while

others map the state to the output. If condition of A1) is not met, some states of the plant certainly will

not be included in the mapping chain of the operator transformation, and the resulting input-output

relationship will be incorrect. This assumption has generally been ignored. It is because the lifting

computation deals mostly with matrix exponentials[4], if A1) is violated then only some (matrix) zeros

will appear in the system′s realization, and the process of computation can still be continued smoothly.

However this condition of A1) usually can not be met by most H∞ design problems, so we must re-

emphasise it here. Notice that the matrix A of the generalized plant (see (1)) certainly includes the

antialiasing filter of the system. But the output of the filter is connected to the discrete-time controller

Kd, so the states of the filter are not observable from the system (performance) output z. This means

that the observability condition of (C1, A) is not met in all these cases. But the time constants of the

filter are pretty small, and neglecting them will have little effect on the final result. So the antialiasing

filter will be excluded in the verification of the condition A1).

As an example of application of the condition A1), let us consider a typical H∞ design problem

— robust stability problem (Fig. 2), where P is the nominal plant, W is the weighting function of the

multiplicative uncertainty, F is the antialiasing filter, and Kd is the discrete controller. The remaining

part of Fig. 2 with the exclusion of Kd and ∆ is the generalized plant of the problem, where inputs and

outputs of the plant are w, uk, and z, yk, respectively (see also Fig. 1). As can be seen from Fig. 2, the

states of P and W are not controllable from the first input w of the generalized plant, i.e., (A,B1) is

not controllable. Because this robust stability problem does not meet the condition of A1), so the norm

of the system is not preserved under lifting. Indeed, the result of H∞ robust stability design by lifting

is incorrect, as has been shown by using the small gain theorem[6].

Fig. 2 Robust stability problem of the sampled-data system

In addition to the condition A1), there is a second condition that must be considered for norm

equivalence. It is as follows.

A2) (C2, A) is observable.

Where C2 is the output matrix associated with the second output y. The observability of (C2, A)

is problematic for the system with weighting functions. It is because the weighting functions are located

outside the closed-loop and are not observable from the second output y, i.e., (C2, A) is not observable.

This means that the states of the weighting functions are not fully included in the lifting transformation

process, and the result of the H∞ lifting design is questionable. This problem can further be illustrated

with the following examples.

For the disturbance attenuation problem (Fig. 3(a)), the states of the weighting function W1 are



794 ACTA AUTOMATICA SINICA Vol. 32

not observable from y. Suppose that the plant and the weighting function in this example are

P (s) =
20 − s

(5s + 1)(s + 20)
, W1(s) =

0.01π

s + 0.01π

Let the sampling period τ = 0.1 sec. Lifting the generalized plant of the system, an equivalent discrete-

time plant Gd (see (7)) can be obtained as follows.

Gd =

266666666666664
0.1353 −0.0002 −0.1084 6.2664 −0.0000 0.0000 1.7293

0.0085 0.9802 −0.0007 −0.0074 −0.0309 −0.0000 0.0027

0.0000 0.0031 0.9969 −0.0000 −0.0000 0.0000 −0.0000

−0.0000 −0.0005 −0.3157 0 0 0 −9.753e − 007

−0.0000 0.0003 −0.0000 0 0 0 −5.335e − 007

−0.0000 0.0000 −0.0000 0 0 0 −1.566e − 007

−0.0000 0.0000 −0.0000 0 0 0 0.966e − 007

0 1.0000 0 0 0 0 0

377777777777775 (8)

By using the MATLAB function dhinflmi to solve the H∞ optimization problem, the resulting H∞

controller is

K(z) =
8.3868(z − 0.918)(z − 0.1246)

(z − 0.9998)(z + 0.07344)
(9)

The corresponding L2-induced norm is

γ = 0.0058 (10)

(a) (b)

Fig. 3 Typical H∞ problems: (a) the disturbance attenuation problem, and (b) the sensitivity problem

For verification, notice that the static gain of the controller from (9) is

K(z)|z=1 = 2849.2

And the steady-state disturbance attenuation value is

1

1 + K(ej0)P (j0)
=

1

1 + 2849.2
= 0.00035 (11)

Equation (11) is just the real disturbance attenuation performance γ of the system, which obviously

differs from the lifting result of (10).

As for the sensitivity problem (Fig. 3(b)), the states of the plant P are not controllable from the

first input w, i.e., (A, B1) is not controllable. And (C2, A) is also not observable as in the first example.

However, the lifting computation can still be continued. But the gain of the H∞ controller obtained is

quite low, and the resulting performance of the system is very poor (numerical examples are omitted).

Such a design is useless.

4 H∞ design with no weighting functions

According to the requirements of conditions A1) and A2), the system shown in Fig. 4 is the only

sampled-data system that can meet these conditions. Fig. 4 represents the disturbance attenuation

problem in H∞ design but with no weighting functions.
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Fig. 4 The sampled-data control system satisfying the lifting conditions

Using weighting functions is the soul of the H∞ design, which is based on the loop shaping

concept. Although the disturbance attenuation problem without the weighting function (Fig. 4) can

still be designed, it is not a loop shaping design and can achieve only a mild performance. Because

weighting functions can not be used in the lifting design, the lifting technique can not be used in the

H∞ sensitivity problem or the robust stability problem, so the application of the lifting technique is

quite limited.

5 Conclusions

1) The conditions A1) and A2) presented in this paper are the conditions required to meet for

the H∞ design by lifting. Because of the peculiarity of the lifting computation (matrix exponential

calculations), even if these conditions are not met, the lifting transformation can still be continued, but

the design result will not be the result expected by the synthesis, and sometimes the result may be

useless.

2) For H∞ design, only the disturbance attenuation problem without weighting functions can

meet all the conditions of A1) and A2). So the limitation of the lifting technique is clear. The lifting

technique was originally proposed for the demand of H∞ design, but in fact it is not suitable for the

H∞ optimal design. For H∞ design of the sampled-data control system it seems better to start directly

from the frequency response of the sampled-data system[7], and this is our next topic.
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