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Peak-to-Peak Gain Minimization

for Uncertain Linear Discrete

Systems: A Matrix Inequality
Approach

JI Xiao-Fu1, 2 SU Hong-Ye1 CHU Jian1

Abstract A matrix inequality approach to peak-to-peak gain
minimization for a class of uncertain linear discrete systems is
studied. We minimize the ∗-norm, which is the best upper bound
on the induced L∞ norm obtained by bounding the reachable
set with inescapable ellipsoids, instead of minimizing the induced
L∞ norm directly. Based on this idea, the problems of robust
peak-to-peak gain minimization and controller synthesis are re-
duced to solving the feasibility problems of a set of matrix in-
equalities. A numerical example is used to demonstrate the fea-
sibility and effectiveness of the presented method.
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1 Introduction

The L1 control theory is of great importance which is
attributed to the fact that design specifications for practi-
cal control problems are often expressed in terms of time-
domain bounds on the amplitude of signals (exogenous dis-
turbances and regulated outputs). For example, there is
typically strict specification on the peak tracking error in
disk-drive servo systems. In [1], Vidyasagar first formu-
lated the L1 optimal control problem. In contrast with
the H∞ control problem, the objective of L1 optimal de-
sign is to minimize the maximum peak-to-peak gain of a
closed-loop system that is driven by bounded amplitude
disturbances. Numerical results on this topic were obtained
in both discrete and continuous contexts, see, e.g., [2∼4].
These results were also extended to uncertain systems in [5]
and [6]. It should be pointed out that the current synthe-
sis approaches to peak-to-peak gain minimization require
solving a sequence of linear programming problems of in-
creasing size and thus suffer due to complexity problems.
The design methods tend to be complex and thus intro-
duce computational problems that must be solved in order
to implement algorithm in engineering.

In this paper, we consider the problem of peak-to-peak
gain minimization for a class of uncertain linear discrete
systems. Based on the idea in [7], we seek to avoid the com-
plexity problems by minimizing the ∗-norm, which is the
upper bound on the induced L∞ norm, rather than mini-
mizing the induced L∞ norm directly. This upper bound
comes from approximating the set of states reachable with
norm-bounded input with inescapable ellipsoids. It will be
shown that the ∗-norm is the tightest upper bound obtain-
able by approximating the reachable set with inescapable
ellipsoids. Based on this method, the solutions to the prob-
lems of robust L∞ gain analysis and robust controller syn-
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thesis are given. The obtained results are proved to be
necessary and sufficient and formulated in terms of matrix
inequalities. When the matrix inequalities are feasible, an
explicit expression of the desired state-feedback control law
is given.

Notations. Throughout this paper, RRRn denotes the set
of all n-dimensional vectors, and RRRm×n represents the set of
real matrices with m rows and n columns. If not explicitly
indicated, the norm is taken to be a 2-norm. Thus, for

xxx ∈ RRRn, ‖xxx‖ =
√

xxxTxxx and for a matrix Q, ‖Q‖ is the largest
singular value of Q. For the signal ωωω(t) : [0,∞) → RRRm, the
L∞ norm is defined as ‖ωωω(t)‖∞ := ess supt≥0‖ωωω(t)‖. Lm

∞
refers to the set of all m-dimensional signal that belongs
to L∞, that is, Lm

∞ = {ωωω ∈ RRRm : ‖ωωω‖∞ ≤ ρ < ∞}. We
also use BLm

∞ to denote the closed unit ball in Lm
∞, that is,

BLm
∞ = {ωωω ∈ Lm

∞ : ‖ωωω‖∞ ≤ 1}.
2 Problem formulation

Consider the following uncertain linear discrete system

xxx(k + 1) = (A + ∆A)xxx(k) + (B + ∆B)uuu(k) + Bωωωω(k)

zzz(k) = Cxxx(k) + Duuu(k) + Dωωωω(k)
(1)

where xxx(k) ∈ RRRn is the state vector, uuu(k) ∈ RRRm is the con-
trol input vector, ωωω(k) ∈ RRRp is the disturbance input vector
that belongs to BLp

∞, and zzz(k) ∈ RRRq is the controlled out-
put vector. A, B, Bω, C, D, and Dω are constant matrices
with appropriate dimensions. ∆A and ∆B represent the
admissible parameter uncertainties that has the following
form ˆ

∆A ∆B
˜

= MF (k)
ˆ
Na Nb

˜
(2)

where M , Na and Nb are constant matrices, and F (k) is
unknown but satisfies

FT(k)F (k) ≤ I (3)

For simplicity, we first study system (1) with uuu(k) = 0
and F (k) = 0, that is,

xxx(k + 1) = Axxx(k) + Bωωωω(k)

zzz(k) = Cxxx(k) + Dωωωω(k)
(4)

The induced L∞ norm of system (4) can be defined
as ‖G(z)‖i∞ = ess supωωω(k)∈BL

p
∞‖G(z)ωωω(k)‖, where G(z)

is the transform function of system (4), that is, G(z) =
C(zI − A)−1Bω + Dω. It is easy to see that ‖G(z)‖i∞ =
ess supxxx(k)∈Φ‖Cxxx(k)+Dωωωω(k)‖, where Φ is a reachable set
defined as the set of all states reachable from the origin
in finite time by some input ωωω(k) ∈ BLp

∞. This reach-
able set obviously is an example of an inescapable set.
A set Ω is said to be inescapable if 1) Ω contains the
origin and 2) xxx(0) ∈ Ω and ωωω(k) ∈ BLp

∞ implies that
xxx(k) ∈ Ω for all future time k > 0. It can be easily shown
that any inescapable set must contain a reachable set and
thus any inescapable set Ω gives rise to the upper bound
ess supxxx(k)∈Ω‖Cxxx(k) + Dωωωω(k)‖ on the induced L∞ norm

of G(z). Then, we can consider the upper bounds on the
induced L∞ norm obtained from a certain inescapable set
and this tightest upper bound is defined as ∗-norm, that is,

‖G(s)‖∗ = inf max
xxx(k)∈Ω

‖Cxxx(k) + Dωωωω(k)‖ (5)

The following lemma is required in the proof of our main
results.
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Lemma 1[8]. Given a symmetric matrix Ω and matrices
Γ and Ξ with appropriate dimensions

Ω + ΓFΞ + ΞTFTΓT < 0

for any matrix F satisfying FTF ≤ I, if and only if there
exists a scalar ε > 0 such that

Ω + ε−1ΓΓT + εΞTΞ < 0.

3 Main results
In this section, the result for the peak-to-peak minimiza-

tion problem is given. First, we present the following theo-
rem that will play a key role in the derivation of our main
results.

Theorem 1. Consider the discrete system (4). Let P ∈
RRRn×n be symmetric positive-definite. The closed ellipsoid
Ω = {xxx(k) ∈ RRRn : xxxT(k)Pxxx(k) ≤ 1} is inescapable if and
only if there exists a scalar α ≥ 0 such that

2
4
−P + αP 0 ATP

0 −αI BT
ω P

PA PBω −P

3
5 ≤ 0 (6)

Proof.
Sufficiency. Suppose that there exists a scalar α ≥

0 such that (6) holds. First, we define the functional
V (xxx(k)) = xxxT(k)Pxxx(k) and prove that the forward differ-
ence of V (xxx(k)) satisfies ∆V (xxx(k)) ≤ 0 whenever ωωω(k) ∈
BLp

∞ and xxxT(k)Pxxx(k) ≥ 1. By using Schur complement,
it follows from (6) that

ψ(xxx(k),ωωω(k)) = xxxT(k)(ATPA− P )xxx(k)+

2xxxT(k)ATPBωωωω(k) + ωωωT(k)BT
ω PBωωωω(k)

≤ α
`
ωωωT(k)ωωω(k)− xxxT(k)Pxxx(k)

´
(7)

and thus the forward difference of V (xxx(k)) along the tra-
jectory of system (4) satisfies

∆V (xxx(k)) = xxxT(k + 1)Pxxx(k + 1)− xxxT(k)Pxxx(k)

≤ α
`
ωωωT(k)ωωω(k)− xxxT(k)Pxxx(k)

´

≤ 0

(8)

Now, we prove that any xxx(T ) ∈ Ω will remain in Ω . By
contradiction, we assume that set Ω is escapable, i.e., there
exists an xxx(T ) ∈ Ω such that xxxT(T + 1)Pxxx(T + 1) > 1.
Then, noting (6) and using Schur complement again, we
have

xxxT(T + 1)Pxxx(T + 1) =

»
xxx(T )
ωωω(T )

–T »
ATPA ATPBω

BT
ω PA BT

ω PBω

–
·

»
xxx(T )
ωωω(T )

–
≤
»
xxx(T )
ωωω(T )

–T »
P − αP 0

0 αI

– »
xxx(T )
ωωω(T )

–

(9)

Then

(1− α)xxxT(T )Pxxx(T ) + αωωωT(T )ωωω(T ) > 1 (10)

and therefore

xxxT(T )Pxxx(T ) >
1− αωωωT(T )ωωω(T )

1− α
≥ 1 (11)

which is a contradiction.

Necessity. It is easy to verify that if Ω = {xxx(k) ∈ RRRn :
xxxT(k)Pxxx(k) ≤ 1} is inescapable, then ψ(xxx(k),ωωω(k)) ≤ 0
whenever ωωωT(k)ωωω(k) ≤ xxxT(k)Pxxx(k). Now, assume that
this condition is not true. Then, there exist xxx0 and ωωω0

such that ωωωT
0 ωωω0 ≤ xxxT

0 Pxxx0 but ψ(xxx0,ωωω0) > 0. This implies
that xxx0 6= 0. Otherwise, we have xxxT

0 Pxxx0 = 0 and ωωω0 = 0,
thus ψ(xxx0,ωωω0) = 0. Then, we have xxxT

0 Pxxx0 > 0 and hence
we can define the following vectors

xxx1 =
xxx0p

xxxT
0 Pxxx0

, ωωω1 =
ωωω0p

xxxT
0 Pxxx0

It can be easily verified that xxx1 and ωωω1 satisfy xxx1 ∈ Ω ,
ψ(xxx1,ωωω1) > 0 and ωωωT

1 ωωω1 ≤ xxxT
1 Pxxx1. Consider the following

system

xxx(k + 1) = Axxx(k) + Bωωωω1, xxx(0) = xxx1

And it can be shown that V (xxx(0)) = 1, ∆V (xxx(0)) > 0 and
therefore V (xxx(1)) > 1, which implies xxx(1) 6∈ Ω . Thus, Ω is
escapable.

Obviously, this theorem clearly holds if P = 0. If P 6=
0, there must exist xxx2 and ωωω2 such that ωωωT

2 ωωω2 < xxxT
2 Pxxx2.

This, together with the claim mentioned above, by using
S-procedure in [9], implies that there must exist an α ≥
0 such that ψ(xxx(k),ωωω(k)) ≤ α(ωωωT(k)ωωω(k) − xxxT(k)Pxxx(k)).
This is equivalent to (6) in the sense of Schur complement,
which concludes the proof. ¤

Theorem 2. Consider the discrete system (4). For a
given scalar γ > 0, this system is stable with L∞ gain
less than γ, if and only if there exist a symmetric positive-
definite matrix P and scalars α ≥ 0 and σ > 0 such that
(6) and (12) hold, i.e.,

2
4
−σP 0 CT

0 −(γ2 − σ)I DT
ωωω

C Dωωω −I

3
5 < 0 (12)

Proof. If there exist a symmetric positive-definite ma-
trix P and a scalar α ≥ 0 such that (6) holds, it follows
that Ω = {xxxT(k) ∈ RRR : xxxT(k)Pxxx(k) ≤ 1} is an inescapable
set. Also, by using Schur complement, it follows from (6)
that ATPA − P < 0. Then system (4) with ωωω(k) = 0 is
stable.

For notational simplicity, we define

u = max
xxx∈Ω

ωωω(k)∈BLp
∞

‖Cxxx(k) + Dωωωωωω(k)‖

and
U = {γ : ∃σ ∈ RRR such that (12) holds}

Our objective is to prove that u = inf U .
Note xxxT(k)Pxxx(k) ≤ 1 and ωωωT(k)ωωω(k) ≤ 1. Then, by

using Schur complement again, it follows from (12) that

‖zzz(k)‖2 =

»
xxx(k)
ωωω(k)

–T »
CTC CTDωωω

DT
ωωω C DT

ωωω Dωωω

– »
xxx(k)
ωωω(k)

–

<

»
xxx(k)
ωωω(k)

–T »
σP 0
0 (γ2 − σ)I

– »
xxx(k)
ωωω(k)

–

= σxxxT(k)Pxxx(k) + (γ2 − σ)ωωωT(k)ωωω(k)

≤ σ + (γ2 − σ)

= γ2

(13)

and hence ‖zzz(k)‖ < γ. Thus, u < γ.
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Following the same line as that in the proof of Theorem
2.4 in [7], we can show that u is the least lower bound of
U . This completes the proof. ¤

Based on the result of Theorem 2, we can steadily ob-
tain the following result on robust L∞ gain analysis for the
uncertain discrete system (1) with uuu(k) = 0.

Theorem 3. Consider the uncertain discrete system (1)
with uuu(k) = 0. For a given scalar γ > 0, this system is ro-
bustly stable with L∞ gain less than γ for all admissible
parameter uncertainties, if and only if there exist a sym-
metric positive-definite matrix P and scalars α ≥ 0 and
σ > 0, ε > 0 such that (12) and (14) hold, i.e.,

2
66664

−P + αP 0 ATP 0 εNT
a

0 −αI BT
ω P 0 0

PA PBω −P PM 0
0 0 MTP −εI 0

εNa 0 0 0 −εI

3
77775
≤ 0 (14)

Proof. The desired result follows immediately from the
result of Theorem 3 and Lemma 1. ¤

The result for the robust L1 controller synthesis problem
is summarized in the following theorem.

Theorem 4. Consider the uncertain discrete system
(1). For a given scalar γ > 0, if there exist a symmetric
positive-definite matrix Q, matrix Y , and scalars α ≥ 0,
σ > 0 and µ > 0 such that
2
6666666664

−Q + αQ 0 QAT + Y TBT 0 QNT
a + Y TNT

b

0 −αI BT
ω 0 0

AQ + BY Bω −Q µM 0

0 0 µMT −µI 0

NaQ + NbY 0 0 0 −µI

3
7777777775

≤0

(15a)
2
664

−σQ 0 QCT + Y TDT

0 −(γ2 − σ)I DT
ω

CQ + DY Dω −I

3
775 < 0 (15b)

then, we can construct a state-feedback control law

uuu(k) = Y Q−1xxx(k)

such that the resultant closed-loop system is robustly stable
with L∞ gain less than γ for all admissible uncertainties.

Proof.
Sufficiency. Assume that (15) holds. Substituting the

state-feedback control law uuu(k) = Kxxx(k) to system (1) re-
sults in the following closed-loop system:

xxx(k + 1) = (A + BK + MF (k)(Na + NbK))xxx(k) + Bωωωω(k)

zzz(k) = (C + DK)xxx(k) + Dωωωω(k)
(16)

We multiply both sides of (15a) by diag{Q−1, In, Q−1,
µ−1In, µ−1In}, and both sides of (15b) by
diag{Q−1, In, In}. Defining P = Q−1, ε = µ−1,
K = Y Q−1, and noting (6) and (14), we can show that
system (16) is robustly stable with L∞ gain less than γ.

Necessity. We can show that the result of Theorem 3
can be applied to analysis of the closed-loop system (16) by
replacing A by A+BK and Na by Na +NbK. We multiply
both sides of (6) by diag{P−1, In, In} and both sides of (14)
by diag{P−1, In, P−1, ε−1In, ε−1In}. By replacing A and
Na by A+BK and Na+NbK, respectively, in the resultant
inequalities and by introducing Y = KQ and µ = ε−1, we
can obtain matrix inequalities (15). This completes the
proof. ¤

4 Numerical example
We consider the uncertain linear discrete system (1) with

the following parameters:

A =

2
4

2 1 −1
−1 2 2
1 3 1

3
5 , B =

2
4

1 0
0 1
1 1

3
5 , Bωωω =

2
4

1
1
1

3
5 , M =

2
4

0.1
0.2
0.2

3
5

Na =
ˆ
0.2 0.2 0.2

˜
, Nb =

ˆ
0.1 0.1

˜
, C =

ˆ
0.5 0.5 1

˜

D =
ˆ
0.5 1

˜
, Dωωω = 0.5

For a given L∞ gain level γ = 0.6, it can be easily verified
that the matrix inequalities (15) possess a feasible solution
when α = 0.5, σ = 0.05, and a suitable state-feedback
control law is given by

uuu(k) =

»−2.9780 2.9095 1.9763
0.9860 −1.9436 −1.9857

–
xxx(k)

For the closed-loop system, the trajectories of the distur-
bance input vector ωωω(k) and output vector zzz(t) are shown
in Fig. 1 and Fig. 2, respectively.

Fig. 1 The trajectory of input signal ωωω(k)

Fig. 2 The trajectory of output signal zzz(k)

5 Conclusion
In this paper, we have taken an alternative approach to

the problem of peak-to-peak gain minimization for a class
of uncertain linear discrete systems. Instead of attempting
to minimize the induced L∞ norm directly, we minimized
an upper bound of the ∗-norm obtained by bounding the
reachable set by inescapable ellipsoids. The robust L∞
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gain analysis and controller synthesis problems have been
solved and the obtained results have been proved to be
necessary and sufficient. An illustrative example shows that
the presented method is effective and applicable.

References
1 Vidyasagar M. Optimal rejection of persistent bounded dis-

turbances. IEEE Transactions on Automatic Control, 1986,
31(6): 527∼534

2 Diaz-Bobillo I J, Dahleh M A. State feedback L1 optimal
controllers can be dynamic. Systems & Control Letters, 1992,
19(2): 87∼93

3 Diaz-Bobillo I J. The General L1 Optimal Multiblock Prob-
lem: Exact and Approximate Solutions [Ph.D. dissertation],
Massachusetts Institute of Technology, 1992

4 Bamieh B A, Dahleh M A, Pearson J B. Minimization of the
L1-induced norm for sampled-data systems. IEEE Transac-
tions on Automatic Control, 1993, 38(5): 717∼732

5 Dahleh M A, Pearson J B. Optimal rejection of persistent
disturbances, robust stability and mixed sensitivity mini-
mization. IEEE Transactions on Automatic Control, 1988,
33(8): 721∼733

6 Dahleh M A, Ohta Y. A necessary and sufficient condition
for robust BIBO stability. Systems & Control Letters, 1988,
11(4): 271∼275

7 Abedor J, Nagpal K, Poolla K. A linear matrix inequality
approach to peak-to-peak gain minimization. International
Journal of Robust and Nonlinear Control, 1996, 6(9-10):
899∼927

8 Petersen I R. A stabilization algorithm for a class of uncer-
tain linear systems. Systems & Control Letters, 1987, 8(4):
351∼357

9 Boyd S, Ghaoui L E, Feron E, Balakrishnan V. Linear matrix
inequalities in system and control theory. SIAM Philadel-
phia, Philadelphia, PA: SIAM, 1994

JI Xiao-Fu Received his bachelor degree in computer soft-
ware and application from Gansu University of Technology in
2000, and master degree in control theory and engineering from
Jiangsu University in 2003. He is currently a Ph. D. candidate
in control science and engineering at Zhejiang University. His
research interest covers robust control and filtering, descriptor
systems, and time-delay systems. Corresponding author of this
paper. E-mail: jixf@iipc.zju.edu.cn

SU Hong-Ye Received his B. Sc. degree in industrial au-
tomation from Nanjing University of Chemical Techbology in
1990. Later he received his master and Ph.D. degrees from Zhe-
jiang University in 1993 and 1995, respectively. He is currently
a professor at Institute of Advanced Process Control, Zhejiang
University. His research interest covers robust control, time-
delay systems, and advanced process control theory and appli-
cation.

CHU Jian Graduated from Department of Chemical Engi-
neering, Zhejiang University in 1982. In 1984, he received his
master degree from Zhejiang University. From 1986 to 1989, he
studied at Kyoto University in Japan and completed his Ph.D.
thesis there. Since 1993 he is a professor in industrial process
control. His research interest covers time-delay systems, nonlin-
ear control, and robust control.


