Atomic Energy Science and Technology

Vol. 37 ,No. 6 Nov. 2003

Zr₃ V₃O 金属间化合物的制备与物相分析

周晓松,彭述明,郝万立,龙兴贵,李宏发,罗顺忠 (中国工程物理研究院核物理与化学研究所,四川 编阳 621900)

摘要:在惰性气体保护下,经电弧熔炼数次,制备出母相为 Zr₃V₃O 的合金样品。利用 Material Studio 软件建立了 Ti₂Ni 型 相的 Zr₃V₃O 金属间化合物的晶体模型,依据 ASTM 卡片,对所合成的样品及其氘 化物进行了物相分析。结果表明:熔炼所得的铸锭和非饱和氘化的样品物相组成复杂,主相为 Zr₃V₃O 金属间化合物相。

关键词:Zr₃V₃O;金属间化合物;Ti₂Ni型;相 中图分类号:TGI39.7 **文献标识码**:A

文章编号:1000-6931(2003)06-0489-05

Preparation and Phase Structural Characteristics of Oxygen-stabilized -phase Zr₃V₃O

ZHOU Xiao-song, PENG Shurming, HAO Warrli, LONG Xing-gui, LI Hong-fa, LUO Shur-zhong (China Academy of Engineering Physics, Mianyang 621900, China)

Abstract : The oxygen-stabilized -phase Zr_3V_3O was prepared by arc-melting the appropriate quantities of Zr metal, V metal, and V_2O_5 powder in an argon atmosphere. The crystal structure of intermetallic Zr_3V_3O was simulated by Material Studio and the phase structural characteristics of the alloy and its hydride were determined by X-ray powder diffraction. Experimental results show the cast and the hydride contain some amount of other phases as well as -phase.

Key words: Zr_3V_3O ; intermetallic; Ti_2Ni -type structure; -phase

金属间化合物的贮氢性能已经研究较多,但 含氧金属间化合物贮氢材料的研究至今国内未 见报道,国际上也鲜见报道。该类贮氢材料可分 为两类。第一类含氧金属间化合物与无氧二元 金属间化合物均能稳定存在,此类金属间化合物 相能溶解少量氧且对原材料的晶格常数无明显 影响,其代表材料为 Ti₂Ni。Ti₂Ni 能溶解约 14.2%的O,形成分子式为 Ti₄Ni₂O 的化合物,立 方 Ti₂Ni 的晶格常数为 1.131 9 nm,而立方 Ti₄Ni₂O 的晶格常数为 1.132 8 nm,加氧后晶格 仅膨胀了 0.08%。第二类含氧金属间 化合物相不存在纯的二元相,它们必须有非金

收稿日期:2003-03-27;修回日期:2003-04-11

基金项目:国家自然科学基金重点项目(50121050)

作者简介:周晓松(1977 ---),男,重庆人,硕士研究生,核燃料循环与材料专业

属原子才能稳定存在,其代表是 Ti₄Fe₂O_x、 Zr₃V₃O_x。立方 Ti₂Fe 和 ZrV 合金不能制备,但 加入约6%的O即能制备立方相晶格常数为 1.134 7 nm的 Ti₄Fe₂O_{0.5},进一步加 O 能制得晶 格常数为 1.133 1 nm 的 Ti₄Fe₂O 化合物:在 Zr-V 系中加入约 9.1%的 O 能制得立方相晶格常数 为1.216 1 nm的 Zr₃V₃O_{0.6},再加入 O 能制得晶 格常数为 1.217 03 nm 的 Zr₃V₃O 金属间化合 物^[1]。但迄今对三元 相金属间化合物 Zr₃V₃O 的合成报道很少。Rotella 等^[2]报道,Zr₃V₃O的 晶体结构为 Ti₂Ni 型 相结构,与 - Fe₃W₃C 晶体 结构相同,其点阵类型为立方,空间群为 Fd3m, 晶胞中有 112 个原子, 晶格常数 a = 1.217 03 nm,其原子坐标分别为:Zr 的规则八面 体中心位于 Fd3m 的 8a 位置; V(V2)的四面体中 心位于 8b 位置: V(V1) 原子则位于 16d 位置及 其面心平移操作位置(V1、V2 说明 V 居 2 种位 置);O原子位于16c位置及其面心平移操作位 置。据ASTM卡片^[3]报道,Zr₃V₃O金属间化合 物的晶体结构为立方 相结构,空间群为 Fd3m, 晶格常数 a = 1.215 95(6) nm。本工作利用 MSI 公司的 Material Studio 软件结合上述报道建立了 Ti₂Ni型相的 Zr₃V₃O 金属间化合物的晶体模 型。Zavaliy 等^[4]报道,在形成 相 Zr₃V₃O 的同 时,极易生成 -Zr 和 2相,Zr₃V₃O 的相组成较 复杂,尚未获得单相的铸锭。

本工作选择电弧熔炼法制备 Zr₃V₃O 合金, 结合 ASTM 卡对 Zr₃V₃O 铸锭及其氘化物的 X 射线衍射(XRD)结果分析物相组成。

1 制备方法

按化学计量比称取 Zr 粉、金属 V 和 V₂O₅,混 合均匀,并压制成密实的圆柱样品。金属 Zr 粉纯 度为 99.5%,树脂块状金属 V 纯度为 98.5%~ 99.0%,V₂O₅的化学纯度为 99.9%。将该样品在 真空中加热到 970 K处理一段时间,以熔融 V₂O₅。 将处理后的圆柱样品在氩气保护下电弧熔炼成合 金,翻身熔炼 3次,以保证 Zr₃V₃O 合金成分均匀。

将熔炼后的合金用线切机切割成 0.3 mm 薄 片,在金属氢化物系统上氘化。在 Zr₃V₃O 吸氘 前,将系统抽空至低于 1.5 ×10⁻³ Pa 后充氘。本 工作仅对未吸氘的铸锭、薄片和吸氘量为 1.77(为 单位分子的吸氘量)的氘化物进行分析。

XRD 实验在 Y-4Q 衍射仪上进行,电压为 40 kV,电流 20 mA,CuK 辐射,X射线波长为 0.154 178 nm,扫描范围为 10 ~ 90 °,扫描方式 为连续收谱,扫描步长为 0.03(9/s。

2 结果与讨论

2.1 铸锭及其薄片的物相分析

翻身熔炼 3 次、未经氘化的铸锭及其薄片 样品的 XRD 分析结果示于图 1。

由图 1 可见,未经氘化的合金铸锭和薄片 样品的物相相当复杂。在图 1a 中,峰位(衍射 面间距 d,nm)在 29.500 °(0.302 78)、36.296 ° (0.247 50), 38.533°(0.233 63), 42.169° (0.214 29), 44.740° (0.202 55), 49.690° (0.183 47), 53.830° (0.170 30), 62.567° (0.14846), 65.106° (0.14327), 66.400° (0.14079), 78.070°(0.12240), 79.990° (0.119 94) 和 81.790°(0.117 75) 处的衍射峰 分别对应 Ti₂Ni 型 相的 Zr₃V₃O 金属间化合 物相的 004、224、333、044、244、226、155、337、 066、555、339、0210 和 159 衍射面,实验测定 d 值 与 ASTM 卡片^[3] 的 一 致; 34.585° (0.259 34), 49.690° (0.183 47), 62.567° (0.148 46) 和 63.250 °(0.147 02) 分别为单斜 ZrO2 氧化物相的 020、022、113、311 衍射面的 衍射峰^[5]; 32.020°(0.27951)、47.710° (0.190 61), 56.680° (0.162 39), 63.250° (0.147 02)、68.020°(0.137 82) 和 69.250° (0.135 67) 分别为六方相 -Zr 基固溶体相的 100、102、110、103、112 和 201 衍射面的衍射 $\mathbf{\mu}^{[6]}$; 32. 020 (0. 279 51), 34. 585 (0. 259 34), 47.710 (0.190 61) 和 56.680 (0.162 39) 分别 为 Zr₃O^[7]、ZrO_{0.35}^[8]或 Zr₃O_{1-x}^[9]的衍射峰; 32.020°(0.279 51) 和 89.410°(0.109 59) 为 C14 型 Laves 相 ZrV₂ 的衍射峰^[10]; 28.450° (0.313 71) 衍射峰为 -Zr 基固溶体相^[11]; 42.169°(0.214 29)、77.290°(0.123 44) 为 V 的衍射峰。Zr的氧化物种类较多,有 ZrO、 Zr₃O_{1-x}、Zr₃O、ZrO₂和 ZrO_{0.35}等相结构,相组 成较复杂,且衍射峰位多相互重叠;金属 Zr 的 晶体结构又有 、[12]和 等多种相结构,其固

图 1 未经氘化的铸锭样品 (a) 和薄片样品 (b) 的 XRD 谱 Fig. 1 XRD patterns of casting sample(a) and plate sample(b) without deuteration 谱上数据为 d(nm)值

溶体相组成亦较复杂,在此仅作定性判断。

从薄片样品的 X 射线图谱(图 1b)可看出, 诸峰峰位与铸锭相近,只是氧化物的峰有所增强,这可能是因加工过程中薄片样品被空气部 分氧化所致。

由此可见,翻身熔炼3次、未经氘化的合金物相主要由Ti₂Ni型相的Zr₃V₃O金属间化合物,ZrO₂氧化物,-Zr基固溶体,V,C14型Laves相的金属间化合物ZrV₂,ZrO、Zr₃O_{1-x}、Zr₃O和ZrO_{0.35}等Zr的亚氧化物构成。Ti₂Ni型相的Zr₃V₃O金属间化合物的含量最大,为母相,Zr的氧化物的含量相对较多,-Zr基固溶体和C14型Laves相的金属间化合物ZrV₂的含量较少。因无从查找各物相的吸收因子,故不能准确确定各物相的含量,只能根据衍射峰的相对强度粗略判断各物相的相对含量。

2.2 吸氘后薄片样品的物相分析

翻身熔炼 3 次、吸氘量为 1.77 薄片样品的 物相 XRD 分析结果示于图 2。

物相分析结果表明,与吸氘前衍射图相比, 峰位有一定漂移,峰强有所改变,但氘化后的合 金物相与氘化前的相比并无多大改变,仍由 Ti₂Ni型的 相、Zr 的氧化物、少量 Zr 基固溶 体、少量 V 和少量 C14 型 ZrV₂ 组成,Ti₂Ni 型 的 相仍为样品主相。

表1列出氘化前后样品主相(Ti₂Ni型的 相)各衍射峰的指标化结果,并通过指标化结果 计算了氘化前 Zr₃V₃O 和非饱和氘化后 Zr₃V₃OD_{1.77}两物相的晶格常数。由于扫描步 长较大,峰位对应的2 角存在一定误差,样品 的复杂相组成又使其它物相的衍射峰对 相的 衍射峰位及强度有影响,所以,表1中的结果存 在一定的系统误差。

物相分析得到吸氘前样品主相 Ti₂Ni 型

表 1	気化前后样品主相()	杉、治标化结果和晶格常数
1 (1		

Table 1 Phases composition, indexing results and cell parameters of casting and deuterated samples

				0			*
物相	峰位 2 / °	晶面间距 d	/nm 相对强度/%	h	k	1	晶格常数/nm
Zr ₃ V ₃ O	29.500	0. 302 78	8.8	0	0	4	1.211 12
	36.296	0.247 50	100	2	2	4	1.212 50
	38. 533	0.233 63	78.1	3	3	3	1.213 98
	42.169	0.214 29	46.5	0	4	4	1.212 21
	44.740	0.202 55	6.1	2	4	4	1.215 30
	49.690	0.183 47	5.3	2	2	6	1.217 00
	53.830	0.170 30	9.6	1	5	5	1.216 19
	62.567	0.148 46	14.0	3	3	7	1.215 20
	65.106	0.143 27	26.3	0	6	6	1.215 69
	66.400	0.14079	9.6	5	5	5	1.219 28
	78.070	0.122 40	11.4	3	3	9	1.217 86
	79.990	0.119 94	5.1	0	2	10	1.223 15
	81.790	0.117 75	6.5	1	5	9	1.218 02
							1.215 96 ¹⁾
Zr ₃ V ₃ OD _{1.77}	36.272	0.247 66	97.9	2	2	4	1.213 28
	38.170	0.235 77	14.4	3	3	3	1.225 10
	41.560	0.217 29	13.4	0	4	4	1.229 18
	44.200	0.204 90	8.2	2	4	4	1.229 40
	49.540	0.183 99	10.3	2	2	6	1.220 45
	57.542	0.16016	11.3	1	3	7	1.230 21
	61.450	0.150 88	20.6	3	3	7	1.235 01
	64.240	0.144 99	13.4	0	6	6	1.230 28
	65.830	0.141 87	10.3	5	5	5	1.228 63
	69.220	0.135 72	21.6	1	1	9	1.236 47
	77.140	0.123 65	23.7	3	3	9	1.230 30
	80.710	0.119 05	9.3	1	5	9	1.231 46
							$1.228.31^{1}$

注:1) 两物相晶格常数的平均值

9

相的晶格常数 a = 1.215 96 nm,与 ASTM 卡 片^[3]的值(a = 1.215 95(6) nm)一致。样品非 饱和吸氘(吸氘量 1.77)后,主相结构仍保持为 Ti₂Ni 型 相,仅晶格常数变大(a =1.228 31 nm)。这表明,Ti₂Ni型 相结构的 Zr₃V₃O具有贮氢能力。该种金属间化合物的 理论饱和吸氘量可达 5.5^[13],因此,尚需进一 步研究 Zr₃V₃OD_x的物相组成及氘含量对其物 相、晶体结构的影响。

3 结论

 1) 未氘化的合金铸锭的物相主要由 Ti₂Ni 型 相的 Zr₃V₃O 金属间化合物,ZrO₂ 氧化物, ZrO、Zr₃O_{1-x}、Zr₃O 和 ZrO_{0.35}等 Zr 的亚氧化 物,-Zr 基固溶体,V,-Zr 基固溶体,-Zr 基固 溶体和 C14 型 Laves 相的金属间化合物 ZrV₂ 等构成。

 2) 非饱和吸氘量为 1.77 的样品的物相与 铸锭相同,其主相为 Ti₂Ni型相的 Zr₃V₃OD_{1.77}氘化物;与铸锭相比,该相结构未 发生改变,仅晶格常数有所变大。这表明, Ti₂Ni型相结构的 Zr₃V₃O 具有贮氢能力。

感谢沈阳金属研究所王隆保教授、刘实博 士等在熔炼 Zr₃V₃O 金属间化合物方面和四川 大学朱居木教授在 XRD 分析方面所提供的帮 助。

参考文献:

2

[1] Mendelsohn MH. Hydrides of Oxygen-stabilized

Intermetallic Phase: CONF-820605-27 [R]. USA: Pasadena CA, 1982.

- [2] Rotella FJ, Flotow HE, Gruen DM, et al. Deur terium Site Occupation in the Oxygen stabilized carbides Zr₃V₃OD_x I Preparation and Neutron Powder Diffraction[J]. J Chem Phys, 1983, 79: 4 522~4 531.
- [3] ASTM. ASTM X-ray Diffraction Files: 45-79[S].
- [4] Zavaliy IY, Riabov AB, Yartys VA. Hydrogen Absorbtion and Phase Structural Characteristics of Oxygen-containing Zr-V Alloys Substituted by Hf, Ti, Nb, Fe [J]. J Alloys Compounds, 1995, 219: 34~37.
- [5] ASTM. ASTM X-ray Diffraction Files: 36-420 [S].
- [6] ASTM. ASTM X-ray Diffraction Files: 5-0655 [S].
- [7] ASTM. ASTM X-ray Diffraction Files: 22-1025 [S].
- [8] ASTM. ASTM X-ray Diffraction Files: 17-0385 [S].
- [9] ASTM. ASTM X-ray Diffraction Files: 21-1498 [S].
- [10] ASTM. ASTM X-ray Diffraction Files: 20-1387 [S].
- [11] ASTM. ASTM X-ray Diffraction Files: 26-1399 [S].
- [12] ASTM. ASTM X-ray Diffraction Files: 34-0657 [S].
- [13] Westlake D.G. Deuterium Site Occupation in the Oxygen-stabilized -carbides $Zr_3V_3OD_x$ Application of a Geometric Model [J]. J Chem Phys, 1983, 79: 4 532 ~ 4 538.