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ABSTRACT

A theory for determining the dynamic effect of intense rain on water waves is established, based on momentum
exchange. The theory takes into account the rain intensity, angle of incidence and fall velocity, and the wave
amplitude, frequency and water depth. It is found that the rain induces a uniform increase of pressure in the
water column and a uniform mass transport in a thin boundary layer affected by the momentum exchange.
The rain also induces a fluctuating pressure and shear stress on the free surface. For vertical or near vertical
rainfall, these fluctuating free surface forces are responsible for a non-negligible wave amplitude decay, particularly
in the high frequency range. In the case of high winds, the rain horizontal velocity component is large and the
corresponding stress on the free surface is nearly in phase with free surface slope. Then instead of causing a
decay, the rain adds its effect to the wind and enhances the growth of high frequency waves. It is concluded
that this effect, previously neglected, should be considered for insertion as a sink-source mechanism in advanced

air-sea interaction models.

1. Introduction

Any mariner has observed the changing appearance
of the sea surface upon the arrival of a squall. Despite
the sudden increase of wind, the choppy sea surface is
slowly replaced by an apparently smoother surface, as
the rain interferes with the waves. More difficult to
observe, but nevertheless present, the generation of
wind waves under hurricane or stormy conditions, is
also affected by the intense rain which accompanies
the depression for hours and even days. Therefore, it
would appear that the rain—-wave interaction mecha-
nism should normally be added to the other sink-
sources mechanisms in the radiation-transfer equation
which governs the generation of waves by wind (for
example, sece Hasselman et al. 1976).

This effect is generally neglected in air-sea interac-
tion studies, even though the damping of water waves
by rain was mentioned by Reynolds as early as 1875.
More recently the subject has been investigated by
Manton (1973), Nystuen (1989), Tsimplis and Thorpe
(1989). In all these studies, it is assumed that the main
mechanism for wave damping by rain is the result of
the turbulent dissipation induced by the rain drops
penetrating the free surface of the waves. Philips (1987)
also mentions its relative importance in the case of a
heavy vertical downpour and alludes to the effect of
vertical momentum exchanges.

The purpose of this paper is to establish a theory on
the interaction between rain and water waves, based
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on momentum exchanges and to assess its relative im-
portance regarding the wave prediction models. Only
the dynamical interference of rain by momentum ex-
change with an existing wave field is taken into account.
The collapse of water cavities generated by raindrops
(Le Méhauté et al. 1987) and generation of gravity-
capillary rings resulting from these has been investi-
gated elsewhere (Le Méhauté 1988). The interference
of these cavities and rings with a prevailing wave field
is neglected. Also, the effect of the freshwater rain on
surfactant films and the subsequent variations of wave
damping in the mixed gravity—capillary and pure cap-
illary range is also a subject which remains an open
question,

Initially, the momentum exchange between rain and
water waves is investigated and translated into a free
surface boundary condition. Then a wave damping (or
wave growth ) coefficient is formulated in terms of the
rain and wave parameters. Finally, the formulation is
applied to storm and hurricane conditions, and its rel-
ative importance is assessed.

2. Momentum exchange between rain and water waves

The motion is defined with respect to a clockwise
cartesian coordinate system (ox, 0z). ox is horizontal
positive in the wave traveling direction, oz is vertical
positive upwards from the still wave level (Fig. 1).

Consider a drop of rain of mass (pvol) falling at a
clockwise angle o with the vertical oz at a velocity
V,. The drop reaches the free surface of a liquid of
density p, which moves at a velocity V(u;, ws) where
us and w, are the horizontal and vertical components
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FIG. 1. Notation and sign convention.

of V,, respectively. As soon as the drop reaches the free
surface, its mass is entrained by the current at velocity
Vin a thin boundary layer affected by the momentum
exchange. Therefore, the drop is subjected to a change
of momentum:

AM=pv,ol[_I7:—_I7,]. (1)

Consider now a flow of raindrops falling at a represen-
tative fall velocity V, with a concentration C,. The ver-
tical discharge per unit area, or precipitation gis (cosa
< 0, sina > 0),

= —C,V, cosa. (2)

Since the surface of the moving fluid has a vertical
component of velocity w;, the discharge which reaches
the free surface varies with w;. For example, in the case
of a water wave, it will be higher on the forward face
of the wave, when the free surface moves upwards ( w;
> 0). It will be smaller on the rear of the wave when
the free surface moves downwards (w; < 0). Therefore,
the amount of rain that is entrained at velocuy V, per
unit of time is

q' = C,[—V,cosa + w]. (3)

Since the momentum transfer in gravity capillary
rings is neglected, the corresponding change of mo-
mentum, or alternately the force exerted per unit area
by the rain on the current is

F=pq[V,- V. (4)
Projected on an horizontal and vertical axis, the forces

components are
F, = pq'[V, sina — us], (5)

F; = pq'[V, cosa — w;]. (6)

Consider now an infinitely long field of uniform plane
(x, z) progressive water waves on a horizontal bottom.
As a result of the rain, it is assumed that the amplitude
of the wave varies exponentially with time. Such a wave
field can then be defined by the linear Airy wave so-
lution where the amplitude (a) is related to an initial
amplitude (ag) at time ¢ = 0. The assumption of lin-
earity implies that the wave field can be considered as
irrotational and defined by a potential function. Such
type of solution can be described by a complex potential
function ¢(x, z, t) such as

coshk(d + z)

il
coshkd Re(~ie),

¢ = (7)

where

D = ayg/or, (8)
g is the gravity acceleration and oy is the real part of
the wave frequency. Water depth d is constant and the
phase # is defined by,

0 =kx — at, 9)

where k is the wavenumber and o is the complex wave
frequency. The complex frequency may be written in
terms of its real and imaginary part as

(10)

where o7 the imaginary part corresponds to the wave
decay (o7 < 0) or wave growth (o1 > 0) coefficient.
Therefore, the wave amplitude a(t) is

o = or + oy,

a(t) = ap exp(oyt). (11)

Differentiating Eq. (7) with respect to x and z at the
free surface (z =~ 0), u, and w, are obtained. Then
inserting these into Egs. (5) and (6), assuming V; <
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V,, and neglecting the nonlinear terms (w2, u,w;), one
finds

F, = pq[V, sina — Dk(1 — i tanhkd tana)e”

+ O(ao’k?), (12)
F, = pq[V, cosa + Dk2i tanhkd "}
+ O(ap’k?), (13)

respectively. Both of these forces can be considered as
the sum of pressure force component p perpendicular
to the free surface and tangential stress component 7
parallel to the free surface. The slope of the free surface
7 (measured positively counterclockwise from ox) is

tanf ~ B =1, = (14)

By changing sign, in order to obtain the reaction of the
current on the rain, and assuming 82 < B(cos ~ 1,
sin 8 =~ B), one obtains

p=—F,cosf + F,sin ~ —F, + F,3, (15)
7=—F,sin8 — F,cos ~ —F,8— F,. (16)

Inserting Eqgs. (12) and (13) into (15) and (16), and
neglecting the nonlinear terms, yields

iagke®.

P = pq[—V,cosa + (iagkV, sina

— 2iDk tanhkd)e®] + O(ag’k?), (17)
1 = pg[—V, sina + (Dk — iDk tanhkd tanca
— iaokV, cosa)e®] + O(ap’k?). (18)

3. Free surface condition

Referring to Egs. (17) and (18), it is seen that p and
T are given by the sum of a steady uniform force and
a fluctuating force varying with 6. Reverting to the di-
rect force of the rain on the current (p* = —p), itis
seen that the ram exerts a steady uniform downward
pressure force p*

p* = pqV, cosa = —pC,V,? cosa, (19)

which is maximum in the case of a vertical rain.

This force acts throughout the water column and is
balanced by the force of the seafloor on the water. It
does not have any dynamic effect on the wave, except
for changing the Bernoulli constant.

The permanent horizontal shear stress 7 induces a
uniform mass transport in a near surface thin boundary
layer § affected by the transfer of momentum from the
rain. The average value of & is constant, so that the
mass transfer velocity U in the ox direction is

] )
l7=f Tdz,
0

(20)
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where

(21)

7 = —pg[—V,sina] = pV,? sina cosa.

7 and U are nil in the case of a vertical rain.

This uniform layer 8 is equivalent in its effects on
the waves, to an additional uniform pressure force ép
= pgd on the upper surface. Therefore it does not affect
the wave dynamic either.

Consider further the shearing force 7 given by Eq.
(18). This can still be written as:

i(6+y)
b

(22)

r=7+7=7+T10
where
T = quk, (23)

and
vy = tan"[—(tanhkd tana + _0_;5 V, cosa)] . (24)

Following an approach developed by Longuet-Hig-
gins (1968) on the effect of wind stress on water waves,
let #’ denote the fluctuating component of boundary
layer velocity and m’ the corresponding mass flux over
a variable boundary layer thickness &', such as

5
m = f pu'dz.
L]

Then by conservation of momentum parallel to the
boundary, we have ’

(25)

1
om’ _ 7,610,

at

Note & is conceived as always consisting of the same
marked particles. If w' denotes the additional com-
ponent of velocity normal to the boundary layer, i.e.,
normal to the free surface, then

’ 3! 8’
ﬁ =[w]= f whdz = —f udz, (27)
L)

(26)

by continuity. If C is the phase velocity, and since

d 14
= 2
ox Ca’ (28)
hence, inserting Eqs. (25) and (26) into Eq. (27):
g 190 1 om’ 7MY
— == 'dz = ——=~—. (29
a Cads P Car oC (29)

Integrating with respect to time, it follows that the
thickness of the fluctuating boundary layer &' is

T ei(0+'y)

v =

+ const. (30)

—iorpC
The phase of 7’ being (8 + v), it follows that the total
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boundary layer thickness (6 + &) is in phase with (i7'),
i.e., with [8 + v + (7w/2)]. As in the case of the steady
part of the boundary layer §, the fluctuating part of
boundary layer thickness &' is equivalent, in its effect
on waves, to an additional pressure ép’, acting on the
upper surface of the wave. Therefore, from Eq. (30)
neglecting the constant, the significance of which is
irrelevant here, and since

C ~ £ tanhkd, (31)
OR
we can write
i
op' = pgd’ (32)

~ tanhkd

In other words, a fluctuating tangential stress applied
to the free surface is dynamically equivalent to a normal
pressure fluctuation given by equation (32) which has
a phase difference of 7 /2 with the shearing stress. Since
the 7 value which is derived is the reaction force, the
applied force is 7* = —7. Therefore, the total pressure
force acting on the free surface is

pr=p+ (—71)e'™'? cothkd
= p + 7e7 /D cothkd. (33)

The free surface boundary condition is obtained by
the linearized Bernoulli equation, where the pressure
pris now given by Eq. (33). Differentiating with respect
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to ¢, and inserting the linearized kinematic condition
at the free surface (n, = ¢.), one obtains the free surface
condition

.psd)tt + psg¢: + P =0, (34)

where p; is the density of the sea water.

4. Dispersion relationship and wave amplitude varia-
tion coefficient

Inserting Eqs. (7), (33) with Egs. (17) and (18) into
Eq. (34), and eliminating 6, one obtains after some
arithmetic, the linear dispersion relationship:

o? = gk tanhkd + ok £ g[F, + F, + F,.], (35)
Ps
where the F; functions result from the relative effects

of the free surface slope 7, and the free surface velocity
components, u; and w as follows:

oV, . . '
F, =+ i (sina + i cosa cothkd), (36)
F, = —icothkd, (37)
F, = —2itanhkd — tana. (38)

Expressing o in terms of og and ¢ [Eq. (10)], the
real and imaginary parts can be separated. Then a set
of two equations with two unknowns, or and oy, is
obtained:

vV, .
or? — 01° = gk tanhkd — L qk[; [(12 — or?) cosa cothkd + 2ogroy sina]

Ps

+ kog tana — o1(2 tanhkd + cothkd)] , (39)

v, .
2opor = £ qk[g [(gr? — 01%) sina — 20go; cosa cothkd] — or(2 tanhkd + cothkd) — ik tana] . (40)
p

S

These two equations cannot be solved analytically.
Numerical solutions have been obtained iteratively for
or and o7 without neglecting any terms. They show
that oy is very little influenced by the rain, and that
for all practical purposes

o1 < or ~ (gk tanhkd)'/?. (41)

Referring to Eq. (40), and neglecting o1k tano (which -

implies that the result is not applicable to nearly hor-
izontal rain), one finds that

13 q_k V, sina cothkd

~ or — tanhkd —
ps Den 2g a

, (42)

o]

where

N .
D, =1+ LA cothkdV, cosa.

Ps

(43)

In most cases D,, =~ 1. In shallow water this reduces

“to

p 4
o> ——=

44
02d’ (44)

regardless of the rain angle. In deep water it becomes

o =ﬁqk[z’(lf)l/z sina —3], (45)
Ps 2 \g 2
which has a minimum for a value of k, given by
2 1/2

and in the case of vertical rain in deep water, Eq. (45)
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reduces simply to

01=_—_qk.

20 (47)

It is found that the horizontal change of momentum
due to u, is half of the vertical change of momentum
due to w;. In the case where the vertical change of
momentum only is taken into account, [Eq. (38)],
then o; =~ —gk, a result already mentioned by Phillips
(1987) in reference to a communication by F. L.
Bliven.

Referring to Eq. (11), and inserting the values of o,
given by Eqgs. (42), (44), (45) or (47), the variation
of the wave amplitude at a given point as a function
of time is obtained.

5. Physical interpretation and applications

A detailed investigation on the relative influence of
rain-sea interaction under various meteorological
conditions, and its incorporation in the radiation
transfer equation which governs the evolution of wind
waves are beyond the scope of the present paper. Nev-
ertheless, the determination of the sign of ¢; and its
relative importance is pertinent. This is achieved by
inserting the magnitude of typically observed physical
parameters.

Referring to Eq. (42), it is seen that o7 could either
be positive or negative, depending upon the sign of the
sum of the terms within the bracket. In the former
case, the wave height increases with time, in the latter
it decreases {Eq. (11)]. For example in deep water,
the wave grows with time when [Eq. (45)]

172
K'(i‘) sina > 1, (48)
31\¢g

In the general case [Eq. (42)], the first term in the
bracket is generally positive and contributes to wave
growth. It would be negative in the case of a wind
blowing in the opposite direction to wave travel (sina
< 0), an unlikely occurrence. This term is related to
F,, resulting from the horizontal component of mo-
mentum transfer acting on the wave slope in the wave
travel direction.

The two other terms in the bracket are always neg-
ative and contribute to wave decay. They are related
to F, and F, [Egs. (37)and (38)], and they translate
the forces required to entrain the mass of the rain drops
at the wave particle velocities. In order to assess their
relative importance, one has to resort to quantitative
values of various parameters.

The value of the precipitation varies considerably.
There is a considerable amount of data inland, less at
sea. Values as high as 600 mm h~! have been quoted
in Hong Kong (Cline 1926). The monsoon produces
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torrential rain everywhere it occurs. More recently
Willis et al. (1989) measured 429 mm h~! in Miami
during a tropical depression. Precipitations larger than
100 mm h~! are frequently recorded inland.

Precipitation at sea during tropical cyclone condi-
tions are given by Cline (1927). Rainfall may cover
an area of 200 to 400 n mi diameter, lasting for hours
and even days depending upon their speed of propa-
gation. The highest precipitation in fast moving hur-
ricanes is in the right front quadrant and is of the order
of inches per hour. In the case of a stalling hurricane,
it is at the rear of the cyclone, where the wind has
abated.

Consider initially the simplest case of a vertical rain-
fall in deep water [Eq. (47)]. Then oy is always negative
and the wave height decays with time. Let us assume
a relatively typical precipitation rate, g, of SO mm h ™.
Then by application of Eq. (47), for waves of 1 m, 10
m, 100 m wave length, their amplitude decay to 62%,
95%, 99.5% of their initial values, respectively, after 1
hour duration. If the rain persists for 10 hours, then
the 10 m (100 m) wave decays to 62% (95%) of their
initial values. Therefore, the rain is most likely to affect
the tail of the spectrum (towards the high frequencies)
and in some cases of high precipitation of long dura-
tion, its peak energy frequency.

Similar results would be obtained, if instead of in-
vestigating the variation of wave height at a given lo-
cation as function of time, one investigates its damping
with respect to distance. [It suffices to define the k value
in Eq. (9) as the sum of a real and an imaginary com-
ponent k;, or since the waves are monochromatic and
of constant amplitude, to simply replace ¢ by x/C].
Since the waves propagate in the same direction as the
storm, a long duration of precipitation is the norm.

In the limit of the shallow water case, it is recalled
that Eq. (44) is valid regardless of the rain angle and
frequency. The expression for ¢; can then easily be
retraced to the horizontal velocity component u;, as the
main culprit for wave damping. Consider a water depth
of 3 m for example. It is found that after one hour the
wave heights are reduced to 99% of their initial values
for all frequencies. The interest of this limit case is only
theoretical.

Consider now the case of rain at an angle in deep
water {Eq. (45)]. The vertical fall velocity of water
drops seldom exceeds 9 m s~!. However, when sub-
jected to a strong wind, the wind velocity is added vec-
torially to the free fall velocity. Under hurricane con-
ditions the wind can reach 100 ms™!, then V, is of the
order of the wind velocity. The drops continuing on
their own momentum in the wind boundary layer, sina
is also close to unity. It has already been mentioned
that the theory would not be valid for nearly horizontal
rain. Nevertheless, it indicates a definite trend.

Indeed, in the latter case, g7 is generally positive, the
wave amplitude grows with time and the rain adds pos-
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itively its effect to the wind. In the present example of
g = 50 mm h™', it is found that oy is 12.04, 0.35 and
0.0078 for the 1 m, 10 m, 100 m wavelengths, respec-
tively. Therefore, high frequency waves are found to
grow very rapidly under the added influence of the
rain.

That under certain circumstances rain can contrib-
ute to wave growth is an interesting fact, which deserves
some comments. The first term in brackets in Eq. (42)
or (45) results from the action of the horizontal rain
component acting on a wavy surface. The phase v is
nearly w/2 [Eq. (24)] and the momentum transfer
from the rain is nearly in phase with the free surface
slope, i.e., acts positively on the rear of the wave and
negatively on its front. Therefore, it adds its effects to
the wind-induced pressure field, which is also in phase
with the wave slope (Phillips 1966). The increase of
surface stress due to wind under heavy rainfall has also
been noticed by Van Dorn (1953) and Caldwell and
Elliott (1971).

An order of magnitude of the relative effect of rain
as compared to the wind is obtained as follows. In the
extreme case of a nearly horizontal rain (sina ~ 1, V,
large), the rain horizontal momentum transfer is

TR=—7= oqV,. (49)
The wind shear is
(50)

where p, is the air density and U, the wind shear ve-
locity. Taking, for example, (Wu 1969)

U* =510 X 10_2U10,

Tw = an=2|=-

(51)

and since the wind velocity Uy =~ V,, thén in the pre-
vious example, (¢ = 50 mm h~!) with a wind velocity
Uip = 50 m s}, one finds

TR « 8.4%.

Tw

(52)

The values of o7 can be deduced in the deep-water
case from Fig. 2 which presents the value of the a;/¢g
as function of the wavenumber k for various value of
V, sine. Figure 3 is a shallow water case (d = 3 m)
obtained by application of the general equation (42)
with (43). For the value of k larger than 0.6, the water
depth has very little effect, and Fig. 2 is applicable.

6. Conclusion

A theory to determine the dynamic interaction be-
tween rain and water waves has been established. The
theory is based on momentum exchange. It takes into
account the rain intensity, the rain drop fall velocity
and angle, and the water wave characteristics (wave
amplitude, wave frequency and water depth). It is
found that in the general case the rain induces
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FIG. 2. Values of the wave amplitude variation coefficient o7 divided
by the precipitation ¢ (m s™'), as function of the wavenumber k
(m™') and the product of the raindrop velocity ¥, (in m s™') by
sina. « is the clockwise angle of the rainfall velocity vector with the
vertical positive upwards (sine > 0). Deep-water case.

1) a uniform increase .of pressure throughout the
water column

2) a steady mass transport in a thin uniform near
surface layer affected by the momentum exchange

3) a fluctuating pressure on the free surface

4) a fluctuating shearing stress which induces a
fluctuating boundary layer thickness and mass trans-
port. This fluctuating stress multiplied by cothkd is
dynamically equivalent to a pressure force acting with
a phase difference of = /2.

The fluctuating pressure and stress combined allows
us to determine a complex dispersion relationship,
which yields the wave amplitude variation coeffi-
cient ay. :

It is found that in the case of high winds, the rain
contributes to the growth of the amplitude of high fre-
quency waves in addition to the effect of wind (a7 > 0).

In the case of vertical rain, intense rain causes sig-
nificant wave damping, particularly in the high fre-
quency range (o < 0). :
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FIG. 3. Blow-up presentation of ¢;/¢ as function of the wavenumber
k for various value of V, sina in a shallow water case (water depth
d=3m)..

It is concluded that this effect may not be negligible
and, at times, should, be introduced as a sink-source
mechanism in advanced models of the radiation trans-
fer equation, which translates the generation of waves
by wind.
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APPENDIX
Notation

wave phase velocity

rain volume concentration

coefhicient (Eq. 8)

denominator (Eq. 43)

force exerted by the rain on a wave (Eq. 4)

horizontal F component

vertical F component

relative force component due to wave slope ( Eq.
36)
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relative force component due to horizontal ve-
locity (Eq. 37)

relative force component due to vertical velocity
(Eq. 38)

average mass transport velocity in the near sur-
face boundary layer

wind friction velocity

wind velocity

volume of a drop

free surface velocity

raindrop velocity

wave amplitude

wave amplitude at time £ = 0

water depth

gravity acceleration

wavenumber

wavenumber corresponding to the minimum
value of o1 (Eq. 46)

fluctuating mass transport near the free surface
(Eq. 25)

pressure

average rain pressure on the free surface

total pressure [Eq. (33)]

precipitation

rate of rain discharge reaching the free surface
of a water wave

time

horizontal wave free surface velocity component

vertical wave free surface velocity component

horizontal axis (positive in the wave travel di-
rection)

vertical axis (positive upwards from the still wa-
ter level)

potential function

wave phase (kx — ot)

change of momentum of a drop

rainfall angle with the axis oz

free surface slope

phase difference of the shearing stress 7 with 6

increase of pressure due to the fluctuating near
surface boundary layer (equation 32)

complex frequency

real value component of ¢ or wave frequency

imaginary part of ¢ or wave amplitude variation
coefficient

rain drop density

air density

sea water density

shearing stress exerted by the rain on the water
waves

steady component of the shearing stress on the
free surface

amplitude of the fluctuating shear stress at the
free surface

horizontal rain shear stress

wind shear stress
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