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ABSTRACT

In this paper we discuss the conditions under which a free solution of the steady, one-layer, quasi-geostrophic
equation on a S-plane is realized in the inviscid limit. We restrict attention to the case where no body force is
applied and the fluid moves under a stress prescribed at the boundary of the closed domain. We show that,
depending on the geometrical configuration of the boundary where the stress is prescribed, either a frictional
solution or a free inertial solution is found in the limit of infinitesimal dissipation.

1. Introduction

Despite its simplicity the steady, one-layer, wind-
driven quasigeostrophic equation on a S8-plane in the
presence of lateral friction exhibits a rather rich be-
havior and can, in general, only be solved numerically.
To gain insight through analytic exploration, a classical
simplification is to neglect the advection of relative
vorticity. If no velocity or stress is prescribed at the
(closed) boundary then the amplitude of this linear
solution is proportional to the forcing provided by the
wind stress curl. Alternatively, the opposite limit of
nonlinear, “weakly forced and dissipative” flow has
been studied. Thus, the right hand side of the vorticity
equation

T £+ ) = RE
where { = V% is, to a first approximation, neglected
in comparison with the left hand side. In the oceano-
graphic literature the classical reference is Fofonoff
(1954). The solutions that satisfy the vorticity equation
in the absence of forcing and dissipation are commonly
termed “free” flows and have the property that { + 8y
= F(¢¥). The function ¥ is determined by requiring
that the circulation integrals be satisfied. Integrating
(1.1) over the area A(y) enclosed by any streamline
(in a closed container all the streamlines must be

(1.1)

* Permanent affiliation: Istituto FISBAT-CNR, Bologna (Italy).

Corresponding author address: Dr. Paola Cessi, Scripps Institution
of Oceanography, University of California at San Diego, Mail Code
A-030, La Jolla, CA 92093.

© 1990 American Meteorological Society

closed) the advection term on the lhs vanishes exactly
and
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where C(y) is the streamline bounding the area A(y').
In the instance where no velocity or stress is applied
at the boundary the amplitude of the free solution is
proportional to the forcing and inversely proportional
to the frictional coefficient «. Fofonoff (1954) examined
the case where the function F (y) is linear and, assum-
ing bottom drag as the dissipative mechanism, Niiler
(1966) constructed an appropriate wind forcing that
satisfies the integral constraint (1.2) and give rise to
the linear function suggested by Fofonoff. In general,
for a prescribed forcing it is very difficult to find the
function F from ( 1.2) (see Mestel 1989, for an iterative
numerical procedure), and even more difficult to de-
termine whether such a free solution is realized in the
first place. Indeed Griffa and Salmon (1989 ) show that
the realization of free, Fofonoff-like solutions in the
weakly forced and dissipative limit (in the presence of
bottom drag), crucially depends on the geometry of
the forcing. In particular, when the wind-stress curl is
downward in the subtropical gyre and upward in the
subpolar gyre a free solution cannot be realized, while
a simple reversal in the sign of the forcing leads to a
solution with two counterrotating Fofonoff-like gyres
filling the whole basin. Nevertheless, in the cases where
a free solution is not possible over the whole basin, a
Fofonoff-like solution can be achieved in a subbasin
scale region. In wind-driven numerical models such as
Griffa and Salmon’s (1989) we can identify a region
in which potential vorticity is approximately conserved,

(1.2)



1868

located near the zero wind-stress curl line, where the
western boundary current leaves the coast. The flow
in this region is termed “inertial recirculation” and is
characterized by a very large transport.

The assumption that the inertial recirculation is well
described by free solutions of the quasi-geostrophic
equation has been extensively used in the literature
(Marshall and Nurser 1986, 1988; Greatbatch 1987,
Cessi et al. 1987). Cessi et al. (1987) have proposed
that the free solution realized in the inertial recircu-
lation is the result of mixing the potential vorticity im-
ported by the boundary current with the planetary vor-
ticity present in this region. The potential vorticity im-
ported by the separated boundary current is of southern
(northern) origin in the subtropical (subpolar) gyre,
and is therefore anomalously low (high). In the for-
mulation of Cessi et al. (1987), only the subtropical
gyre is considered and the anomalous potential vorticity
produced by the nonlinear western boundary layer is
simply prescribed at the northern edge of the recircu-
lation gyre. The northern solid boundary mimics the
latitude of separation of the western boundary current.
In models such as that of Schmitz and Holland (1986),
it coincides with the line of symmetry dividing the sub-
polar and subtropical gyre and with the latitude of zero
wind stress curl. Thus, the body force due to the wind
stress is neglected and the following “boundary-driven”
model is used to describe the flow in the inertial recir-
culation region;

J(, VY + By) = «V2¢

. v=0 (1.3)
with on the boundary
§=$

where {,(s) is a prescribed function of the arclength,
s, along the boundary and the boundary itself has a
simple geometry (a rectangle). In Cessi et al. (1987),
{p 1S a negative constant along the northern wall and
vanishes along the southern wall so that the recircu-
lation gyre extends all the way to the eastern wall, but
occupies only a portion of the domain in the meridional
direction, being bounded to the south by a free stream-
line. In the limit of vanishing diffusivity, «, the flow
within the recirculation gyre asymptotes to the inviscid
free solution of (1.3) given by constant potential vor-
ticity. The meridional extent of the boundary driven
gyre and its potential vorticity is independent of «, lin-
early proportional to the anomalous relative vorticity
{pinjected at the northern boundary and inversely pro-
portional to 3. This free solution is realized only in the
northern portion of the domain, while in the rest of
the domain there is a very weak diffusive flow.

Ierley and Young ( 1988, hereafter referred to asIY)
extended these calculations to include longitudinal de-
pendence of the boundary forcing, by making ¢, vanish
in the eastern half of the northern wall as well as on

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 20

the southern wall. In this case, the recirculating gyre
does not fill the domain in the east-west direction and
instead is bounded by a free streamline to the south
and the east. The solution found by IY is interesting
because both the streamfunction maximum and the
gyre width decrease as the diffusivity, «, is decreased,
and yet diffusion remains subdominant in the interior
of the gyre. In the interior of the gyre the “free” solution
of the vorticity equation ( 1.3) with constant potential
vorticity is obtained, but the constant value of the po-
tential vorticity depends to first order on the diffusivity
k. The free solutions found in the region of homoge-
nized potential vorticity owe their structure to the
presence of the planetary vorticity gradient, 8, which
is erased by the relative vorticity gradient of the free
flow. Both the case examined by I'Y and that considered
by Cessi et al. are nongeneric because the forcing is
applied along a latitude circle and thus along a line
parallel to the lines of constant planetary vorticity, 8y.
We will show that when the geometry of the boundary-
driven model examined by IY is varied by an infini-
tesimal amount the free inertial mode is no longer nec-
essarily the asymptotic solution in the limit x = 0. Just
as in the wind-driven model (1.1), a free solution can
be realized only for certain geometries of the wind
forcing, in the boundary-driven model ( 1.3) a free so-
lution is found only for certain geometries of the
boundary. ‘

It is the goal of this work to examine which geo-
metrical configurations allow the realization of a free
solution in the inviscid limit. To do so, the geometry
examined by IY is altered by rotating the boundary of
the domain with respect to the lines of constant po-
tential vorticity (see Fig. 1). This study shows that for
any counterclockwise rotation (# > 0 in Fig. 1) the
free inertial mode is no longer realized as the inviscid
limit of the vorticity equation (1.3), and instead a
nonlinear frictional solution is obtained.

2. Formulation of the model

Changes in the geometrical configuration of the
boundary-driven model (1.3) are introduced through
a single parameter, #, which measures the rotation of
the planetary vorticity contours with respect to the

ﬁoﬂ“ x"_.
e

FIG. 1. Contours of planetary potential vorticity for different values
of the angle 6: # < 0° in the leftmost panel, # = 0° in the center
panel, and # > 0° in the rightmost panel. In all cases the stress is
applied at the upper left-hand corner of the boundary.

North
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boundary where the forcing is specified. In this case
the “boundary-driven” model is
J(W, q) = kV?¢, q= ¢+ Bycosd + Bx sind
(2.1)
¥v=0
=6

The geometry of the domain and the lines of constant
planetary vorticity are shown in Fig. 1. The y coordi-
nate goes from — L to 0 and the x coordinate from 0
to L/a, so that « is the aspect ratio of the box. The
forcing { is identical to that used by I'Y:

( {[tanh(20ax/L — 10) —1]/2 at y=0
J[tanh2(y + L)/L
tanh?2

with ] on the boundary.

—-2(y+ L)/L
$p = 9

at x=0

L 0 otherwise.
(2.2)

A graph of the boundary forcing {} as a function of the
arclength along the boundary is shown in Fig. 2. The
forcing is essentially zero except in the upper left hand
corner of the domain (y = 0, x < L/2a).

For 6 < 0° the forcing is effectively applied at the
northeast corner of the domain, for § = 0° at the
northwest corner, and for # > 0° at the southwest cor-
ner. For convenience we will from now on refer to the
boundary y = 0 as the “northern wall.”

In the wind driven model (1.1) the wind stress curl
generates vorticity in the interior of the domain and,
thus, the circulation occupies the whole box. In the
boundary-driven model (2.1) and (2.2), in the limit
k = 0, the vorticity prescribed at the wall may spread
in the interior of the domain or may be confined to a
thin diffusive boundary layer close to the forced

South szo

FIG. 2. A perspective plot of the boundary forcing ¢, (dashed line).
The forcing vanishes everywhere except at the northwest corner of
the domain and is essentially constant on the westernmost half of
the northern wall.
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boundary, depending on the sign of 6. The specification
of negative relative vorticity (positive shear d,u) on the
northern boundary drives an eastward flow along the
wall. The negative vorticity is advected eastward and
diffused towards the interior of the domain where the
mass is returned. Typical solutions for small diffusivity
and two different geometries (# < 0° and § > 0°) are
shown in Fig. 3. For negative 6 the flow extends con-
siderably into the interior and its amplitude is large,
while for positive 8 the flow is confined to a thin,
boundary layer near the northern wall and its ampli-
tude is small. The solutions shown in Fig. 3 were found
numerically using a spectral code, developed by G. R.
Ierley, that solves (2.1) using Newton’s method. A brief
description of the method of solution can be found in
Cessi et al. (1987).

In the following we examine how the characteristics
of the gyre such as its longitudinal and latitudinal ex-
tent, its transport and velocity depend on the param-
eters of the problem: the diffusivity «, the amplitude
of the forcing ¢, the geometry of the boundary ex-
pressed by the angle #, and the length of the forcing
region L/a. The symbols for the characteristic scale of
the gyre’s features are defined in the following and in
Fig. 4, they will be used throughout the rest of the
paper. We define

[ the latitudinal width of the gyre
L the longitudinal width of the gyre

U the zonal velocity of the gyre. (2.3)

To determine whether the solution of the vorticity
equation (2.1) asymptotes, in the inviscid limit, to a
free solution we use the Reynolds number as a diag-
nostic: '

R= Laifr
tadv
where
tag=I*/x
tav=L/U. (2.4)

If the Reynolds number tends to infinity in the limit
k = 0 then we decree that a free solution is obtained
in the inviscid limit. For example, in the case examined
by IY [obtained by setting § = 0 in (2.1)] the scale of
the meridional width, /, is (kL/a{)'/¢({/8)"/?, the
scale of the zonal velocity U is §/2, and the scale for
the gyre length L is the length of the forcing L/a.
Then the Reynolds number is R = (a{*/B83«L)'/? and
becomes infinite in the inviscid limit. The prediction
for the Reynolds number obtained by 1Y is confirmed
by the numerical results shown in Fig. 5 (the experi-
ments for § = 0 are indicated by the symbol X). The
Reynolds number in the numerical experiments is cal-

! Terley and Young (1988) had a different definition.
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FIG. 3. Streamfunction and potential vorticity fields resulting from the numerical solution of (2.1) for different geometries:
(a) potential vorticity for 8 = 5°, (b) streamfunction for § = 5°: dashed contours indicate negative values and the contour
interval is 4 X 10~%; (¢) potential vorticity for § = —5°, (d) streamfunction for § = —5°; the contour interval is 3 X 107%,
The potential vorticity field is presented in units of 8L and the streamfunction is units of BL>. For both geometrical
configurations the amplitude of the boundary forcing is ¢ = BL/2, the aspect ratio of the domain is & = 0.3, and the
diffusivity « is 7.5 X 107%8L3, .
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FIG. 4. A schematic view of the gyre forced by the boundary stress.
The characteristic longitudinal extend of the gyre is .L, the charac-
teristic latitudinal extent is /, and the typical zonal velocity of the
gyre is U. The aspect ratio of the domain is & and in all the calculations
presented here « is set equal to 0.3.

culated using the following prescription. We take the
maximum zonal velocity (which always occurs on the
northern wall) as the velocity scale U, we define the
longitudinal scale £ as the distance of the point of
maximum zonal velocity, call it x, from the western
wall (x = 0). Finally the scale of the gyre’s width / is
taken to be the distance from the northern wall of the
point where the streamfunction changes sign at the
longitude x;,.

3. Diffusive dynamics and the breakdown of the invis-
cid solution

As anticipated by the results shown in Figs. 3 and

5, when the planetary vorticity contours are rotated
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clockwise with respect to the forced boundary (8 > 0
in the definition of the potential vorticity 2.1), the flow
is weak and friction is dominant in the limit « = 0. A
symptom of the dominance of viscosity is the fact that
streamlines, shown in Fig. 3b, are crossing lines of con-
stant potential vorticity, shown in Fig. 3a, throughout
the gyre. It should be noted that for the same value of
forcing amplitude, ¢, and diffusivity, «, I'Y found that
when 6 = 0 most of the flow occurs in a region of
homogenized potential vorticity. A more quantitative
measure of the importance of diffusion is the Reynolds
number, which for positive 8, becomes independent of
the diffusivity « (the experiments with 6 > 0 are indi-
cated by the symbols + and O in Fig. 5). In this case,
no matter how small « is, a free solution is never
achieved.

The reason why even an infinitesimal but positive
angle drastically changes the behavior of the solution
as the diffusivity is decreased is simple. Along the
northern wall the negative relative vorticity imposed
at the boundary induces an eastward jet. Unlike the
case examined by IY the planetary vorticity 8y cosf
+ Bx sinf changes along the northern wall; for positive
6 it increases towards the east. If the eastward flow were
to conserve its potential vorticity, then the relative vor-
ticity, {, would decrease to compensate for the increase
in the planetary term. Thus, the shear d,u = ~{ will
increase as the fluid progresses eastward. This incre-
ment can be achieved in two ways. First, the width of
the gyre can decrease, and this results in a reduced
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FiG. 5. Reynolds number as a function of the nondimensional diffusivity «/8L> for different
values of the angle 6. The symbol O denotes the results obtained for 8 = 10°, + is for § = 5°; for
positive # the Reynolds number is independent of the diffusivity x. The symbol X denotes the
results for § = 0° previously analyzed by lerley and Young (1988). The results obtained for 8
= -5° are denoted by the symbol *; in this case the solution in the inviscid limit is independent
of the diffusivity, so the Reynolds number is proportional to « ~!.
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scale separation between the “interior” of the gyre and
the viscous sublayer close to the northern wall. Alter-
natively, the shear d,u can increase if the velocity in-
creases while the width of the gyre remains approxi-
mately constant. If this is the case, then the velocity in
the viscous sublayer must also increase. Because the
vorticity in the viscous sublayer is determined by the
boundary value, the width of the viscous sublayer must
also increase to compensate for the velocity increase,
once again resulting in an enhanced influence of fric-
tion. The same line of reasoning suggests that if the
planetary vorticity decreases eastward (negative ) then
in the interior of the gyre the influence of friction should
be diminished and indeed this is confirmed by the nu-
merical results: the transport of the gyre shown in Fig.
3d is large and its potential vorticity (Fig. 3c) is con-
stant. The results for § < 0 will be discussed in more
detail in section 4.

An alternative point of view is provided by Welan-
der’s (1968) “thermal analogy.” The (linear) pathways
for propagation of information depend on the angle 6.
With reference to Fig. 1, it is clear that when 6 is neg-
ative, “westward” is directed away from the forcing
into the interior. Thus, the stress of the boundary is
communicated into the interior and establishes an in-
ertial gyre. On the other hand, for positive 8, infor-
mation propagates towards the boundary where the
forcing is applied and, thus, the response is confined
to a thin region near the wall where diffusion is im-
portant.

For positive 8, away from the region where the flow
is turning, we can make use of the boundary layer ap-
proximation, and the flow is governed by

J(Y, 8,2, ¢) — B sindd, g = 3,y (3.1)
with boundary conditions ¢ = 0 and 9,% = {, at y
= 0. Northward advection of planetary vorticity,
8 cosd, is subdominant because the flow is confined
near a solid wall where the no-normal flow condition
is applied. The length scale in the y direction is given
by / and in the x direction by L/e, the length of the
forcing, while the streamfunction  scales as (/. The
size of each term in (3.1) is given by

J(¥, 8,7, ¥) — Bsindd,y = k3, %y

§la/L tBsindl = k{/12.  (3.2)
Diffusion is important everywhere and the ratio of
the second to the first term on the left-hand side is
BL sinf /(a{') and is small for small 6: the gyre consists
of a nonlinear, viscous flow. If the forcing {3 is a con-
stant, equal to —¢, as the special form (2.2) is in the
westernmost portion of the northern boundary, an ex-
act nonlinear solution of (3.1) can be found for which
the nonlinear term vanishes identically and diffusion
is balanced by eastward advection of planetary vortic-
ity. This solution is
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Y =- ﬁ le?* sin(V3y/20)
(3.3)
K \1/3
where /= (5 sinﬂ)

and is analogous to the Munk solution (Pedlosky
1978), except that here there is no net zonal flow be-
tween y = 0 and y = —oo. Notice that in this special
solution the width of the gyre is independent of the
amplitude of the forcing, ¢, as in the linear case, and
the Reynolds number is R = {a/(BL sinf). The pre-
diction that, for positive 8, the Reynolds number is
inversely proportional to sinf, is confirmed by the nu-
merical results shown in Fig. 5: the Reynolds number
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-0.01 .
-1 0.9 0.8 0.7 06 05 0.4 03 -0.2 0.1 0
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=
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FIG. 6. Nondimensional zonal velocity u/(8L?) as a function of
latitude y/L at the longitude of maximum velocity, xq, resulting
from the numerical solution (solid line) compared with the one-
dimensional Munk solution (3.3) (dashed line). (Top) § = 5°. (Bot-
tom) # = 10°. In both cases x = 7.5 X 107°8L3. The amplitude of
Munk solution has been corrected to allow for the fact that at x
= Xxo the boundary value of relative vorticity, {;, is slightly smaller
than —¢.
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for the experiments with # = 5° (denoted by +) is
about twice the Reynolds number for the experiments
with 6 = 10° (denoted by O). Moreover, the one-di-
mensional solution (3.3) agrees quantitatively with the
numerical solution at the longitude of maximum zonal
velocity x, as shown in Fig. 6. For negative 8 the so-
lution (3.3) is not confined to the wall, the boundary
layer approximation (3.1) fails and an inertial gyre is
established.

4. The free, inertial solution

A typical solution, in the case where the planetary
vorticity contours are rotated counterclockwise with
respect to the boundary where the forcing is applied
(8 < 0), is shown in Fig. 3c,d. In contrast with the
results for positive 8, the solution of (2.1) with 8 < 0
tends to a free solution in the inviscid limit, the bound-
ary-forced gyre has constant potential vorticity and the
Reynolds number increases as « ™' (the experiments
for § < 0 are denoted by an asterisk in Fig. 5). Unlike
the case analyzed by 1Y, the homogenized value of
potential vorticity does not, to first order, depend on
x and all the quantities characterizing the interior flow
are, to leading order, independent of «. Thus, the
Reynolds number has a steeper dependence on the dif-
fusivity than the configuration analyzed by IY.

This behavior was anticipated by the heuristic ar-
guments presented at the beginning of section 3. For
negative 6 the stress is propagated from the region of
forcing, which is effectively an eastern wall, into the
interior and an inertial gyre is established. In the in-
terior region the flow is governed by

—foma £o,(x, 0)dx + f
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2y +9,% + Bcosly + Bsinfx = g. (4.1)

A simple, exact solution of (4.1) can be found that
satisfies the no-normal flow condition on the northern
wall and has a free streamline at the unknown location
y = l(x). This solution is incomplete because it does
not satisfy the boundary condition of no flow on the
western wall. The expression for the streamfunction,
away from the turning region near the western wall,
is:

v =2 (cost + Voo = 35m0) (v — 1)’

where (4.2)
I = (Vcos?0 — 3 sin — cosf)(x — G /B sinf)/sinb.

Here, g is the value of homogenized potential vorticity
found in the interior which can be calculated using the
“velocity weighted average” proposed by Cessi et al.
(1987) and Mestel (1989):

beIPdl
fu-dl

where the contour integral is performed along the
boundary of the domain. For an elongated gyre the
main contribution to the integrals in (4.3 ) comes from
the velocity along the northern wall, which can be cal-
culated, except for a negligible region near the western
wall, from (4.2). Then the constant value of potential
vorticity is given by

q= (4.3)

g /Bsiné

8 sinfxd,Y(x, 0)dx
0

To obtain (4.4) we have assumed that the relative vor-
ticity specified on the boundary is a constant given by
—¢ for 0 < x < L/2a and vanishes elsewhere. Exploit-
ing the smallness of the angle 8, the expression for the
homogenized potential vorticity, ¢, can be approxi-

mated with
g~ —V-2{B sinfL/«. (4.5)

Notice that in the limit of vanishing § we recover the
I'Y result that the constant value of potential vorticity
vanishes to order «° and that the expression (4.5) is
not valid for positive 0. For arbitrary negative angle g
is of the order of { and the width of the gyre / is of the
order of /B, independent, to leading order, of the dif-
fusivity.

g /Bsing
f d,¥(x, 0)dx
0 .

(4.4)

An example of the free mode solution, (4.2), with
the constant potential vorticity, ¢, given by (4.5) is
shown in Fig. 7. For the parameters’ values o = 0.3,
¢ =BL/2and 8 = —5°, corresponding to parts (¢) and
(d) of Fig. 3, the homogenized value of potential vor-
ticity found numerically is § = —0.488L and this
compares reasonably well with the approximate for-
mula (4.5), which gives § =~ —0.548L. As mentioned
earlier, the solution (4.2) is inadequate near the western
wall because it doesn’t satisfy the no-flow boundary
condition there. Comparison with the numerical so-
lution shown in Fig. 3d suggests that the inertial so-
lution (4.2) is also substantially modified by diffusion
in the region where the inertial flow is the weakest, i.e.,
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FIG. 7. The free mode solution (4.2) in units of L for the parameters’ values « = 0.3, 8 = —5°, { = BL/2. The contour interval
is 1 X 1073, Notice that the meridional scale has been expanded by a factor of two for clarity and the gyre extends up to x = 6.2L

in the x-direction.

in the eastern region of the wedge. Because the velocity
"1in the tip of the wedge is very weak, its value does not
affect the velocity weighted average (4.3), and it is not
surprising that, despite the disagreement in the flow
structure here, the prediction of § given by (4.5) agrees
quite well with the numerical solution in Fig. 3c.

5. Conclusions and conjectures on the implications for
the ocean

We have shown that the existence of a free solution
in the inviscid limit of the quasi-geostrophic equation
on a $-plane depends on the geometry of the forcing.
We have examined a particular problem where the flow
is forced by a stress applied on the boundary and the
geometry of the problem is described by a single pa-
rameter: the angle 6 between the planetary vorticity
contours and the boundary where the stress is applied.
In the case where 6 is negative (see Fig. 1) the flow
organizes itself in a gyre whose characteristics are, to
leading order, independent of the diffusivity « and so
the Reynolds number becomes infinite in the inviscid
limit. In the case where 6 is positive the Reynolds num-
ber is independent of the diffusivity, the flow is confined
to a diffusive boundary layer and does not approach a
free solution as k = 0. The case § = 0, previously
analyzed by lerley and Young (1988), is very special
because in the core of the flow diffusivity is negligible
and the Reynolds number diverges in the inviscid limit,
and yet the characteristics of the gyre depend to leading
order on k. Thus, the asymptotic behavior for vanishing
k is discontinuous at the point 6§ = 0. We conclude that
equations ( 1.3) and (2.1) are singular in the limit x —
0, and that, in general, the assumption that a free flow
is obtained in the inviscid limit cannot be taken lightly.

The distinction between the free, inertial response

shown in Fig. 3d and the diffusive gyre shown in Fig.
3b is important because in the former case the transport
of the gyre is much larger than in the latter. The inertial
or diffusive character of the flow is evident only for

small enough values of the diffusivity x, while for mod-
erate viscosity there is little difference between the re-
sults at a small positive angle and those at a small neg-
ative angle. This is why, although we have varied « by
two decades, we have focussed our discussion on the
most inviscid regime. As modelers, we are interested
in the inviscid limit of the vorticity equations as a useful
paradigm of the strongly nonlinear regime. One of the
advantages of the boundary-driven model (2.1) over
a wind-driven model is that it allows a thorough ex-
ploration of the parameter space. Because it is a “re-
gional,” steady model we can afford many experiments
at a rather small value of diffusivity, although we
haven’t yet reached true asymptopia.? The smallest
value of « that we have used is 5.6 X BL3 which, for
L = 1000 km, gives 112 m? s~!, which is as small as
the explicit lateral diffusivity used in very expensive
wind driven eddy resolving general circulation models
(ERGCM ) (the value used by Lozier and Riser (1989)
is 100 m? s7'). Of course in these wind driven
ERGCMs the flow is baroclinic, time dependent, and
the rich eddy field present in the recirculation region
may change the value of the effective diffusivity and
comparison with our steady, boundary driven model
becomes more difficult.

Despite the model’s obvious limitations, our results
are relevant for the recirculation gyres seen in ERGCMs
in which the line where the wind stress curl changes
sign is not aligned with a latitude circle. In this case
the linear, Sverdrup theory predicts that the separated
boundary current flows along a line which is not parallel
to a latitude circle. The literature on wind driven flow
with such a “tilted” wind stress profile is sparse, but
preliminary results of P. B. Rhines and R. Schopp seem
to support that in the nonlinear regime the gyres’ ge-
ometry is preserved (in a time averaged sense ) and the

? Asymptopia: word coined by Glenn R. Ierley to denote the ideal
condition in which even ¢'/!S is much smaller than one.
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anomalous values of potential vorticity produced in
the nonlinear western boundary layer are carried along
a line which is tilted with respect to 8y. The path of
the separated boundary current then plays the role of
the “northern (southern) wall” for the subtropical
(subpolar) gyre along which the relative vorticity is
anomalously low (high). If the path of the separated
boundary current veers northeastward, then the “forced
boundary” is rotated counterclockwise with respect to
a latitude circle in the subtropical gyre, and clockwise
in the subpolar gyre. Our result would then suggest
that in the recirculation gyre generated to the north
potential vorticity is approximately conserved, while
to the south the recirculating gyre is dominated by dif-
fusion. It is possible then that the stability properties
of the recirculating flow are quite different in the two
regions because of the different dynamical balances.
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