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ABSTRACT

Weakly nonlinear longwaves in a horizontally sheared current flowing along a longitudinal boundary in a
two-layer ocean are investigated by using a quasi-geostrophic S-plane model. Under the assumptions that the
depth ratio of two layers is small, the 8 effect is weak and the waves are almost stationary, we obtain a set of
coupled equations similar to that derived previously by Kubokawa for a coastal current with a surface density
front on an fplane. This set of equations contains soliton and cnoidal wave solutions and allows baroclinic
instability to occur.

Considering a perturbation around the marginally stable condition, we obtain an analytic solution of a growing
solitary disturbance with an amplitude larger than a certain critical value in a linearly stable eastward current.
This disturbance propagates eastward, and grows by a baroclinic energy conversion. A numerical computation
on its further evolution shows that after the amplitude exceeds another certain critical value, the disturbance
begins to propagate westward and to radiate Rossby waves. This Rossby wave radiation causes the disturbance
to decay and the propagation speed approaches zero. Nonlinear evolution of linearly unstable waves in an
eastward current is also briefly discussed, The theory is applied to the Kuroshio Current in a qualitative way.
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1. Introduction

The nonlinear dynamics of disturbances in currents
with horizontal shear is an important subject of physical
oceanography, since oceanic currents are horizontally
sheared in general and large amplitude waves are fre-
quently observed. It is well known that weakly nonlin-
ear longwaves in such currents are governed by the
Korteweg-de Vries (KdV) equations or modified KdV
equations (e.g., Long 1964; Redekopp 1977; Hukuda
1979; Flierl 1979; Weideman and Redekopp 1980).
These equations contain solitary wave (soliton) solu-
tions. Although the solitons are stable, many observed
eddies in oceanic currents are unstabie. The main cause
of such an unstable nature can be attributed to baro-
clinic instability (e.g., Tkeda et al. 1984; Griffiths and
Pearce 1985). The primary motive of the present paper
is to extend the weakly nonlinear longwave theory to
the case allowing baroclinic instability to occur.

A closely related work was done by Kubokawa (1988,
referred to as K88 hereafter). Kubokawa investigated
weakly nonlinear longwaves on a density-driven coastal
current with a surface front, which is marginally stable
or unstable to the instability found by Killworth et al.
(1984), and derived a set of coupled evolution equa-
tions. The equation describing the movement of the
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surface front is a KdV equation with an extra term,
and it was numerically shown that disturbances with
amplitudes larger than a certain critical value can be
amplified even if the current is linearly stable.

On the other hand, Yoon and Yasuda (1987) found,
in their numerical experiment on the path of the Ku-
roshio south of Japan, that a baroclinic disturbance
with a finite amplitude grows extracting the energy from
the potential energy of the linearly stable basic current.
This phenomenon seems to be the same one as that
discussed by K88, However, since K88 assumed the
existence of the surface front and the zero potential
vorticity in the upper layer, the application of his theory
is restricted to narrow currents which flow in the di-
rection of propagation of Kelvin wave. In other words,
his theory is not applicable to currents like the Kuro-
shio. Therefore, we reformulate the problem using a
quasi-geostrophic S-plane model and show that the
same dynamics can also be important in this system,
Furthermore, we present an analytic solution of a
growing disturbance in a linearly stable current, and
discuss the effect of 8 on its evolution.

After the derivation of the coupled evolution equa-
tions in the next section, the linear stability and non-
linear wave solutions are examined in section 3. In
section 4, we present an analytic solution of growing
solitary disturbance, and we carry out a numerical
computation on its further evolution. In section 5, the
evolution of linearly unstable waves in an eastward
current is briefly discussed. The theoretical results are
compared with the experimental ones in Yoon and
Yasuda (1987) in a qualitative way in section 6.
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2. Formulation
a. Model and basic equations

1t is assumed throughout that quasi-geostrophic dy-
namics is applicable, and that the model ocean has the
two-layer density structure shown in Fig. 1. We also
assume that a straight coast exists at y = 0 and the
Coriolis parameter is only a function of y. The two-
layer quasi-geostrophic potential vorticity equations are

@ + p1xdy = P, )VDL — 1 + P2 + BY) = 0, (2.1)

(6t + p2xay - p2yax)(v2p2 - 62(172 - pl) + 3}’) = 0;
’ 2.2)

where p; (j = 1 or 2) represent the geostrophic stream-
functions (geostrophic pressures) in the upper layer and
the lower layer, ¢ is time, V is a horizontal differential
operator, (9, 8,), 8 is the y derivative of the Coriolis
parameter at the coast and 8 is the depth ratio H,/H,.
These equations have been nondimensionalized by us-
ing the scales, Lg = (Apgpo 'H,)Vf 7}, for the x, y co-
ordinates, U for the velocity, pof ULR for the pressures
and ULg™? for dfjdy. The details of the derivation of
these equations can be found in Pedlosky (1979).

Although p, for the basic current in the model con-
figuration shown in Fig. 1 is negative, (2.1) and (2.2)
are invariable for the transformation of y - —y and
p; = —p;. Therefore, results for the present model are
also applicable to a current with positive p;.

b. Weakly nonlinear wave equations

In the present paper, we consider the case in which
6% is much smaller than unity, i.e., A, > H, and § is
of the order 4% In such a situation, since the potential
vorticity gradient in the lower layer is of order % the
baroclinic instability can occur only to a disturbance

T ()

FiG. 1. Model configuration.
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whose phase speed is much lower than unity. If we
assume the wavelength to be much longer than Lg, we
can introduce the new longshore coordinate X and time
scale T

X=068x, T=2é4

Assuming the amplitude of the disturbance to be of
order 8% we expand p; and p; in powers of 5%

P|=‘f§

n=0

©
Z 62n‘b2 (n)’
n=1

i (dy + T 87,

n=1

I

D

where Y 6°"i1,(y) represents the basic current which
permits the existence of a longwave with low phase
speed, and approaches zero as y = —o0.

To the lowest order in 8°, (2.1) and (2.2) become

By + V2V — dop¥ix =0 (2.3)

(Or + YR8, — Y505y, + B¥ixr =0,  (2.4)

where 8 =628, We can easily find that Y, = O is a
trivial solution of (2.4). Since our interest is in the cou-

pled motion of the two layers, we set ¥," to be zero.
Then, (2.3) becomes
i = g(Me(X, T),
Uoyy
-——8= 0,
A g
g=0 at y=0, g—>0 as y—>—oo.

8yy

(2.5)

This equation with the boundary conditions implies
that, if 7, vanishes at the coast, a stationary longwave
solution g(y) = tie(y) exists. Therefore, we assume that
the velocity of the basic current at the coast is of order
8%, i.e., %(0) = 0, and g(¥) = ().

To the next order, (2.1) becomes

(ﬁoyy - 720)¢T + (ﬁl ﬁOyy - ‘Zlyy’zo + ﬂﬁo)¢x
+ (fotloyyy — thoytloy)bbx + fo(foPxxx + Vor)
= o ¥id — dobipx. (2.6)

Integrating (2.6) respect to y from —oo to 0, we get

: ° _ @, _
or+ (o + qP)dx — rdxxx — § » tloYaxdy = 0,

(27D
where
0
Co = _(ﬁOyal |y=0 +8 J‘_w ﬁod}’)/
(Q(0) — O(~)), (2.8a)
g = (ilgy)*| y=0/(Q(0) — O(—0)), (2.8b)
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O |
r= [ & dn@o - o), (2.80)

5 = 1(Q(0) — O(—0)). (2.8d)

In these equations, Q(y) is the potential vorticity of
the basic current:

Q = _ﬁo,v + f wody.
On the other hand, to this order, (2.2) becomes

(yy + Uo@)r — (ilo — BWx = O (2.10)

where the subscript 2 and superscript (2) were dropped
for simplicity. The boundary condition at the coast
(y = 0)is Yx = 0, and the boundary condition at infinity
is that ¢ is finite there.

(2.9)

3. Linear stability and nonlinear wave solutions
a. Linear stability and neutral waves

In order to examine the linear stability of the basic
flow, we linearize (2.7) and consider a solutlon of the
form

(¢ ¥) = (¢, dA(¥)) explik(X — cT)],  (3.1)
where cis the complex phase speed (¢ = ¢, + ic;). Equa-
tions (2.7) and (2.10) become

0
—c+ o+ rk® — sf ipAdy =0, (3.2)

~c(yy + ) ~ (@ — B4 =0.  (3.3)

Since i, = 0 as y = —o0, A(y) oc exp[(B/c)'*y] for
|¥] > 1. When B/c is real and negative, the solution
behaves as a Rossby wave at infinity. Otherwise, the
boundary condition for A at infinity can be written as
A4,=0.

Integrating (3.3) from y = —co to 0 after multiplying
by the complex conjugate of 4 and using (3.2), we get

-2 [ @-plara =0 o4
for ¢; # 0. Since sis 1/(Q(0) — O(—0)) and the potential
vorticity gradient in the lower layer is 8 — i4, this
equation implies that the two layers must have opposite
gradients of potential vorticity for instability. This
condition is, of course, that for baroclinic instability
(e.g., see Pedlosky 1979).

From (3.2) and (3.3), we find that when 8 and @z,(»)
are specified, ¢ is determined by a single parameter +:

3.5

If we consider the limit of |y| = oo, ¢p + rk?in (3.2)
balances with ¢ or s ﬁw o Ady. Therefore, at this
limit,

y=1¢+ rk?.

c=co+ rk? 3.6)
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Equation (3.6) coincides with the dispersion relation
of a shear wave in a one-layer reduced gravity model,
while (3.7) represents the phase speed of a longwave
in a fluid with potential vorticity gradient of 8 — i
and for this mode |4] > 1. Since the latter wave is
similar to a topographic Rossby wave, we can expect
that there are many discrete modes when 8/c = 0. For
simplicity, we call the former wave U-mode and the
latter wave L,-modes (n = 1, 2, 3, -+ - -). The instability
possibly occurs when the U- and L,-modes couple.

3.7

c=

b. Examples of the dispersion diagram

In order to calculate the phase speed, we must specify
the current profilé, Since (2.7) and (2.10) do not include
terms with y-derivatives of #%, the qualitative features
are expected to be independent of the detailed structure
of is(y). Then, we assume a simple current profile
composed of a piecewise uniform potential vorticity:

_ 0, for y<-L
Q= (3.8)
. 1, for 0>y=—L.
From (2.9) we obtain
a sinhL exp(y), for y<-—-L
wy) =1 . - (3.9)
—sinhy exp(—L), for 0> y> —L.
The coeflicients, ¢, ¢, ¥ and s become
¢ = i;(0)e™t — B(1 — &™), (3.10a)
q=e¢% (3.10b)
r= % [eLsinhL — Le™],  (3.10c)
s=1. (3.10d)

In this case, 8°¢ represents the displacement of the
discontinuous surface of potential vorticity (potential
vorticity front). The dynamics of the potential vorticity
front has extensively been investigated by Pratt and
Stern (1986), Stern (1986), etc. In their theories, the
strongly nonlinear evolution in a one-layer system was
discussed, while the present study deals with the weakly
nonlinear dynamics of a two-layer system.

Figure 2 shows the dependence of ¢ on vy for § = 0,
0.1 and —0.1 with L = 1. When 8= 0, the U-and L,-
modes couple and the instability occurs within a finite
range of . One of the critical values of y which separate
stable from unstable waves is zero, and we write the
other critical value as v.. Since k? is positive, this means
that the current is stable when ¢, is larger than v.. In
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(Q) 3- U-mode, (b) 3 U-mmode () 34
2- 21 21
c c c
14 1 &
L,-mode
™ \\\ Lemode 1L Lrmode [T
T Y% i 4%y & o4 Y i

FIG. 2. Real and imaginary parts of the phase speed as a function of y at (a) 8 = 0, (b) 8
= (0.1 and (c) 8 = ~0.1. The solid and the dashed lines denote the real and imaginary parts
of ¢, respectively. v is co + rk?, the phase speed of the U-mode in the one-layer reduced gravity
model. Curves with real ¢ also represent the propagation speeds of solitons and cnoidal waves.
In this case, v is the propagation speed of the nonlinear U-mode in the reduced gravity model

and is given in the text [see Eq. (3.13)].

other words, since ¢, is proportional to #,(0), the current
with high speed is stable. For positive 8, U-mode with
negative ¢ does not exist; waves with negative ¢ cannot
be trapped near the coast and are radiated as Rossby
waves. It follows from (3.4) and (3.7) that if 8 is larger
than the maximum value of %, (=0.432), there is no
L,-mode with positive ¢ and the instability does not
occur. On the other hand, for the westward current
(i.e., B < 0) there is no discrete L,-mode (L,-mode
becomes the continuous Rossby mode), and the current
is always unstable. This unstable mode is a radiating
mode that is wavy in y and penetrates far into ocean
interior (see Talley 1983).

¢. Nownlinear wave solutions

Equations (2.7) and (2.10) contains nonlinear wave
solutions of the soliton and cnoidal wave. The cnoidal
wave solution can be written as

¢ = ¢o — acn’{ky'(ag/12n"*(X — cT)\k,}, (3.11a)

¥ = ¢A(y), 3.11b)

where a is the amplitude, ¢, is the value of ¢ at the
trough and k, is the modulus of the Jacobian elliptic
function denoted by cn. The wavelength can be written
as

A = 2k, (12r/qa)'*F(k,),

where Fis the complete integral of the first kind. Since
the zonal average of ¢ should be zero [see Eq. (2.7)],
¢o may be chosen as satisfying the relation:

1~
'):J; ¢dX = 0.

On the other hand, A(y) and ¢ are determined by
(3.3) and

0
c+ sf i Ady = o + qdo — ‘—§ a2 - k). (3.12)
That is, if we set v to be

¥ = o+ ado — § a2-k?,  (3.13)

the propagation speeds of nonlinear waves are also
represented by Fig. 2. However, since the above non-
linear solution is valid only when ¢ is a real number,
there is no U-mode cnoidal wave with + lying between
0 and v, even if the current is linearly stable (co > ).
The amplitudes corresponding to ¥ = vy, and 0 are

4. = % (co + ado — ¥)2 — k3D, (3.148)

o, = %(Co + gbo)2 — ki), (3.14b)

respectively. Although there is no U-mode solution
with an amplitude larger than a, when 8 > 0, a sta-
tionary solution with a = a; exists. For this solution,
A(y) is zero, and it can also be found from (3.12) and
(3.13) that s [ iloAdy is negative for L,-modes with
a> a,.

If we set k, to be unity, A becomes infinity, ¢, van-
ishes and (3.11a) becomes the soliton solution:

¢ = —a sech?[(ag/12r)'"*(X — cT)]. (3.15)
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The critical amplitudes for soliton solutions are

3 3
a.=—(Co— Yc), ac=—=Co. .
¢ P (Co— ) ac p Co (3.16a,b)
Kubokawa (1988) derived a set of coupled equations
similar to (2.7) and (2.10) for a coastal current with a
surface density front on an f-plane. The above results
in the case of 8 = 0 are qualitatively the same as those
in K88. Therefore, we can expect that nonlinear dis-
turbances on an f-plane in our model behave in a man-
ner similar to those numerically computed by K88. In
the present paper, we derive an analytic solution of a
disturbance with an amplitude larger than a. under the
linearly stable condition, and discuss the effect of 8 on
the evolution of nonlinear disturbances in eastward
currents.

4. Nonlinear growth of a solitary disturbance in a lin-
early stable current

a. Analytic solution

In order to seek an analytic solution with an am-
plitude larger than a. on a linearly stable current, we
assume that the amplitude and the value of ¢ — y. are
much smaller than unity and introduce new coordi-
nates with long time and length scales:

@S9 = S e bm Vo)

n=1

- y.=én, (4.1)

E=eX—a,T), r = éT,

where ¢; = ¢(y.)and € < 1.
To the lowest order in ¢ (2.7) and (2.10) become

4.2)

Comcoie—s [ dobedy =0, @3

(@4)

—ciW1yy + Hho®1): — (tho — BW1; = 0.
15"
104
G
54
0 01 02
0 . p .

G, 3. Value of the coefficient G in (4.13) as a function of §
' for the current specified by (3.9) with L = 1.
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These equations imply that we may write

Y1 = (€, MA(Y).
To the next order, (2.7) and (2.10) become

(4.5)

0
brot Co—cbu—s [ dobaudy =0, (46)

e\(ayy + o 2): — (o — B2 = 0.
4.7

From (4.4), (4.5) and (4.7) we can find that for ¢, # 0,

(Ayy + tlo)pr- —

1 —S—J'O 7 — B)A%dy = 0 (4.8)
—6‘12 ‘__w(uo B)A“dy = 0. .

This condition is automatically satisfied since ¢, = c(v,)

[see Eq. (3.4)].
To third order in ¢, (2.7) and (2.10) become

udi + % ¢t — rérgee + d2. + (Co — )3

0 |
s [ dyxay=0, 49

Cn(%yy + tod3);
— (tho — B} = 0. (4.10)

Eliminating ¢3 and ¢ in (4.9) and (4. 10) by the use of
(4.3)-(4.8), we obtain

(¢2yy + IZO¢2)7 -

([, o= pxens ~ avy]

- ‘S' D1 T UD1 T+ % @t — rd1gee = 0. (4.11)

Equatlons (4.6) and (4.7) imply that we may put

¢ = x¢ln ¢2E = B()’)¢'11 (4 12a, b)
Then, we get
Gdree — UPree — ‘% Wl + e = 0, (4.13)
where

c

G= [l +— f (i — B)A(B — xA)dy] (4.14)
1

B — XA in (4.14) can be calculated numerically from
the following equation, which is obtained from (4.4)
and (4.7):

8-, + B x)
_ (ao";ﬁ)A’ 4.15)
1
B—-x4=0 at y=0,
(B—x4),—>0 as y-»—oo.
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From (4.3) and (4.6) we can find that B — XA satisfies

0
f (B — xA)dy = 1/s. (4.16)
The value of G is shown in Fig. 3 as a function of 8
for the current specified by (3.9) with L = 1. Here G
increases with 8, and we can expect that G becomes
infinity as 8 approaches the maximum value of #,.
Since ¢;, oc G2 [see Eq. (4.13)], the evolution is
slow when g is large.

If we linearize (4.13) and consider the wavelike per-
turbation represented by (3.1), we get

¢ = %[(u + rk?/G]'7, 4.17)

where ¢ is the phase speed on the coordinates defined
by (4.2) and the positive and negative signs correspond
to the U-mode and L,-mode, respectively. This equa-
tion represent the dispersion relation around vy = «,.
When p is positive, i.e., ¢¢ — v > 0, the current is
linearly stable, and the soliton solutions of U- and L-
modes exist. Their propagation speeds are

¢ = £[(u — ga/3)/G)">. (4.18)

Evidently, their amplitudes should be smaller than a,
= 3u/q, and from (4.1), we can easily find that €,
coincides with that for the soliton in the preceding sec-
tion. Similar results can also be obtained for the cnoidal
wave solution.

On the other hand, a solution with an amplitude
larger than a. was found by Yajima et al. (1983), who
studied nonlinear waves in an ion-beam plasma system,
using Hirota’s method (e.g., see leota 1973). The so-
lution can be written as

a(l — a(7) coshK§)
(coshK§ — a(r))* ’

¢ =— (4.19)

where
»

o(r) = e sinh{(r—(;‘)—m [Z% a- a/4ac)]”21} :

\

%lnl(l ~ a/4ac)1 ~ afa)”'l,

= ( a/lzr)'/2

a.<a<da,.
This solution was obtained by considering the inter-
action between U- and L;-mode solitons with ampli-
. tude a/4. Therefore, if we take the limit of 7 = ~c0
in (4.19), the solution separates into two solitons. In
other words, disturbances with an amplitude larger than
a.can be produced by the collision of U- and L,-mode
solitons. B

At 7 = 0, (4.19) takes the same form as the soliton
with the amplitude a. For 7 > 0, the disturbance grows.
When

3
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_(rG)l/Z a ({ _a 12 2 2
-9 [4@(1 4ac)] Infe? + (€% + 1),
(4.20)

o(7) becomes 1, and the amplitude becomes infinity.
The temporal change of the amplitude [= —¢, (¢ = 0)]
normalized by the initial one is shown in Fig. 4 for
various values of a/a..

From (4.1), (4.12) and (4.16), we get

0 0
J:w (Y — ¢A)dy = €3¢17J. (B — XA)dy

+ O(e") = €57 'y, + O(e") (4.21)

This equation implies that there is a phase difference
between ¢ and ¢ for the growing disturbance in which
¢1, does not vanish at the peak in ¢, where ¢,; = 0.
That is, the growing disturbance, (4.19), also extracts
energy from the potential energy of the basic current
in the same manner as the linearly unstable mode.

On the other hand, when a < a., o(7) in the two-
soliton solution can be written as

2
o(r) = —e*® cosh[(TG‘-L)ﬁ {Ia;c 1- a/4ac)}l/ ‘r] ,
(4.22)

and ¢, is also represented by (4.19). In this case, the
U- and L;-modes cannot couple, and the solution is
separating into two solitons with amplitude a/4.

b. Numerical results

The analytic solution, (4.19), grows explosively when
its initial amplitude is larger than q.. Since this solution
has been derived under the assumption of small am-
plitude, this asymptotic theory breaks down within a
finite time, and in this stage we should return to (2.7)
and (2.10). Therefore, we have numerically integrated
these equations using a finite difference method, to dis-

%‘t
rG
FG. 4. Temporal change of the amplitude of the growing solution,

(4.19). The number attached to each curve denotes the value of
ala..
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cuss further evolution of the nonlinear growing mode.
Since when 8 = 0, we have obtained qualitatively the
same result as that in K88, we present only the result
on a B-plane. :

The current profile for numerical computations are .
taken as the same one considered in section 3b and L
is also set to be unity and a cyclic domain in X is
adopted. The boundary conditions for y are

y=0 at y=0, ¢,=0 at y=y, (423

where y; was set to be —30. In order to remove the
effect of the Rossby waves reflected by the offshore
boundary, we introduce a bottom friction —D(y)y,, on
the right-hand side of (2.10), where D() has the form

0, for y=-20

(4.24)
—0.4(20 + ),

D(y) =
for y<-—-20.
This friction term does not affect disturbances trapped
near the coast but damps only the Rossby waves near
the offshore boundary.
We consider the initial disturbance of the form

¢ = —a sech?’[(ag/12r)'?X], ¢ = @A),

where A4(y) is the eigenfunction of the coupled mode
at v = v.. The computation has been carried out using
the parameters, 8 = 0.1 and ¢y — . = 0.1. In this
situation, a. = 2.22 and a = 21.5 and we have set the
initial amplitude, g, to be 3.33. The results are shown
in Figs. 5, 6 and 7. Panels (a) and (b) in Fig. 5 show
the evolution of ¢ and ¢ at y = —1. Figure 6 shows
temporal changes of the amplitudes in ¢ and ¢ at y
= —1] and their propagation speeds. In this figure, we
also draw the line which represents the change of the

(4.25)
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amplitude predicted by the analytic solution, (4.19).
Figure 7 shows the sequential patterns of the pressure
distribution in the lower layer.

From Fig. 5, we find that the disturbance grows as
expected from the analytic solution. However, the ini-
tial growth rate in the present computation is much

. smaller than that of the analytic solution (see Fig. 6).

The cause of this delay at the initial stage can be at-
tributed to the fact that the phase difference between
¢ and V¥ is implicitly assumed in the analytic solution
while the initial condition (4.25), has no phase differ-
ence. Therefore, the initial adjustment is required be-
fore the rapid growth, and this adjustment process
causes the delay.

After the amplitude exceeds a., the disturbance in
¢ separates from the lower-layer structure, and prop-
agates upstream (westward). When the separation oc-
curs, the lower-layer structure slightly decay but does
not alter drastically, and it excites a second disturbance
in ¢. On an f-plane, the large amplitude disturbance
after separating from the lower-layer structure propa-
gates as a large amplitude U-mode soliton (see K88).
In the present case, there is no U-mode soliton solution
whose amplitude is larger than a., and the disturbance
begins to radiate Rossby waves (Fig. 7). This Rossby
wave radiation makes the disturbance decay. Since the
propagation speed is a function of its amplitude, as the
amplitude decrease its propagation speed approaches
zero (Fig. 6). For T > 31, it is found that the first dis-
turbance in ¢ turns to grow again and the westward
propagation speed increases (Fig. 6). This growth is
caused by the interaction with the second disturbance,
and we may conclude that if the interaction does not
occur, the disturbance approaches the stationary so-
lution with the amplitude ..

=0 _:g}_ . w(x.r)JI _:g} ) W(x.—ug
=25 | . % F —
TS +H —
1275 |————ezcam | — = |
=10 4 4
T=125 | == — — — '
T5 | 4 -
=175 | ——so 5 t —
=20 | 4 < —
1=225 - I = —
T=25 |- AV4 - H < x

— —

— = v"":m“'l

- o

3]

FIG. 5. Temporal evolution of a solitary disturbance on a linearly stable current. ¢, — v,
is 0.1, 815 0.1 and a/a, = 1.5. The left and right panels show ¢(X, T) and ¢(X, —1, T).
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FIG. 6. Temporal changes of the amplitudes in ¢ and ¢ at y = —1
and their propagation speeds corresponding to Fig. 5: (a) values of
¢, (b) values of ¥ at y = —1 and (c) the propagation speeds of the
peak in ¢ (circle) and the peak in ¢ at y = —1 (triangle). The dashed
line in panel (a) indicates the change of the amplitude predicted by
(4.19).

5. Nonlinear evolution of linearly unstable waves in an
eastward current

Coupled equations (2.7) and (2.10) can also describe
the nonlinear evolution of linearly unstable modes. In
order to treat this problem, we have set the parameter
¢y to be 0.25 in the numerical model used in the pre-
ceding section, in which 3 was set to be 0.1. For this

~ value of ¢y, the wavenumber giving rise to the most
unstable linear mode is 1.6. First, we consider the evo-
lution of this mode in the cyclic domain of the length
2m/1.6, and the initial amplitude ¢ in (3.1) was set to
be 0.2. In this case, a, and ¢ in (3.14b) are 41 and
11.5, respectively, which have been computed numer-
ically by using the equations in section 3c. The results
are shown in Figs. 8 and 9.
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Figure 8 shows that until the amplitude exceeds
a’, the disturbance grows like that in K88. In K88, it
was reported that after the amplitude exceeds a., the
phase between ¢ and ¥ changes and begins to dampen
in a manner similar to the damping solution, which is
the complex conjugate of the linearly unstable mode,
and a large amplitude vacillation was observed. How-
ever, in the present case when the amplitude exceeds
a., Rossby waves are radiated (Fig. 9). This Rossby
wave radiation causes the zonal wavenumber in ¢ to
increase (Figs. 8 and 9), and after that the strong cou-
pling between two layers does not occur. For T > 20,
the disturbance in ¢ is almost stationary, and its am-
plitude is abouta’.. The slow eastward propagation and
positive pressure in the lower-layer are characters of a
L,-mode cnoidal wave with an amplitude slightly larger
than a..

Kubokawa (1988) also examined the nonlinear evo-
lution of an initial disturbance composed of several
unstable waves with different wavenumbers and re-
ported that solitary disturbances were produced and
the amplitude of each disturbance tended to increase
with time while growth and decay were repeated. In
order to study a similar problem on the 8-plane, we
consider an initial disturbance composed of three un-
stable waves with wavenumbers 1.6/3, 3.2/3 and 1.6.
The result is shown in Fig. 10 where the length of the
cyclic domain is 6w/1.6 and the initial amplitudes of
the three wave components have all been given the
same value of 0.2, For this computation, we have set
y1in (4.23) to be —50, since the radiated Rossby waves
did not die out and returned to near the coast in a
computation with y; = —~30,

In the initial stage, each crest grows like the single
unstable wave in Fig. 8. Around T = 14 ~ 16, the
amplitudes exceed a, for the most unstable wave.

X

T=30

FIG. 7. Sequential patterns of the geostrophic streamfunction in the lower layer, Y(X, »), cor-
responding to Fig. 5. The contour intervals are 2.5 and the shadow indicates the region of positive
¥. The dashed lines superposed on the figure represent the distribution of $(X).
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FIG. 8. Temporal evolution of a linearly unstable mode in an east-
ward current. The initial amplitude is 0.2, ¢y is 0.25 and 8is 0.1. The
left and right panels show ¢(X, T) and ¥(X, —1, T), respectively. The
contour intervals are 5.0 and the shadow indicates the region of pos-
itive values.

When the amplitude decreases, a small amplitude U-
mode (disturbance in ¢) appears on the downstream
side of the crest in ¢, and it propagates eastward at a
great speed. This type of U-mode also occurred in the
case of single unstable wave (Fig. 8), while its amplitude
was very small and was not amplified. In the present
case, this U-mode interacts with both the disturbances
in ¢ and v, and its amplitude becomes large. With an
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increase of crest number, each crest in ¢ tends to be
amplified, since a, and ¢, are functions of the wave-
number. Although the result is similar to that in K88
in general, the Rossby wave radiation is important in
this system, and the propagation speeds of large am-
plitude disturbances are always small.

For westward currents, unstable waves are radiating
modes that penetrate far into ocean interior, and short
waves are always unstable. The domain in y in our
numerical model is too narrow to compute the evo-
lution of the radiating mode correctly, and the growth
of short waves with wavelength comparable to the grid
size must be suppressed artificially. Furthermore, a;
and ¢, for the most unstable linear mode are very large
(e.g., at ~ 190 and ¢ ~ 60 for ¢coc = 0 and 8 = —0.1).
This seems to suggest that the present weakly nonlinear
theory may be inappropriate to discuss the nonlinear
evolution of a westward current in the real ocean. For
these reasons, we did not carry out any numerical
computation on it.

6. Discussion and possible oceanic applications

In the present paper, we have shown that a finite
amplitude wave can grow even if the basic current is
linearly stable. This result may be applicable to trigger
the Kuroshio meander. The Kuroshio is well known
as a current which has two remarkable paths; one is a
straight path along the southern coast of Japan and the
other is a meander path. Each path persists for several
years in general. The transition from the straight path
to the meander path drastically occurs within three or
four months (Shoji 1972; Kawabe 1980). In 1959, 1969
and 1975, it was observed that a small meander that
had been generated east of Kyushu propagated east-
ward, and the Kuroshio took the meander path. The
small meander east of Kyushu is thought to be gen-

1.6X on

m
,

FIG. 9. As in Fig. 7, but corresponding to Fig. 8.
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F1G. 10. As in Fig. 8, but the initial disturbance is composed of three unstable waves
with wavenumbers 1.6/3, 3.2/3 and 1.6 and the contour intervals are 10.0.

erated by an increase of the Kuroshio velocity (see Sek-
ine and Toba 1981).

Yoon and Yasuda (1987) performed numerical ex-
periments on the Kuroshio path by using a two-layer
quasi-geostrophic model. They simulated the above
transition process by superposing a upper-layer cyclonic
eddy on the current near the western corner of the
model ocean (i.e., east of Kyushu) in the case of the
straight path. They reported that if the amplitude of
the superposed eddy is larger than a certain critical
value, it begins to grow, and this growth is sustained
by baroclinic energy conversion. These results are con-
sistent with those expected by the present theory.

Yoon and Yasuda also examined the relation be-
tween the amplitude necessary for instability and the
radius of the superposed eddy, and it was shown that
the larger the radius, the smaller the critical amplitude.
This result may also be explainable from the present
theory. For a system with nonlinear and dispersion
terms of the KdV type, when the length scale of the
disturbance is small, the dispersion is strong. That is,
the initial disturbance with small length scale tends to
disperse and amplitude decreases, while a disturbance
with large initial scale steepens and its amplitude tends
to become large. Therefore, the initial amplitude nec-
essary for instability becomes larger as its length scale
becomes smaller.

In dimensional form, time, longshore length, dis-
placement of the current path (the potential vorticity
front) and B can be written as

te = 6 LRUT'T, x4 = 8'LpX, ¢ =0Lro,
B = SULR?B, 6.1

where §* = H,/H, and Lg = (¢'H;)'*f". Yoon and
Yasuda (1987) assumed that H; is 1000 m, H,/H; is
Y, g =2X102ms2f=7X10°s5" and B, = 2
X 107" m™" s7!. These values yield Lg = 63 km, and
if the nondimensional value of 8 is set to be 0.1, the
maximum current velocity in our model becomes
about | m s™!, and the nondimensional time required
for the initial disturbance to grow to the maximum
amplitude in our result corresponds to 40 days in di-
mensional value. This value is close to the transition
time in Yoon and Yasuda’s experiment (about 50
days), though the current profile is different from that
in their model and the time scale also depends on ¢
— 4. and the initial amplitude. In the real Kuroshio,
the transition time seems to be longer than in their
experiment. This quantitative difference might arise
from the neglect of the bottom slope along the coast.
In our model, the lower-layer structure of the grow-
ing disturbance does not decay, and it continues to
excite the disturbances in ¢. Therefore, the stationary
meander does not occur, while each disturbance in ¢
tends to be stationary. In the real Kuroshio, the Izu-
Ogasawara Ridge exists at the eastern end of the south-
ern coast of Japan, and it will strongly affect the east-
ward propagating lower-layer structure. If this ridge
suppresses further excitation of the disturbance in ¢,
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the stationary meander will possibly be established,
though the applicability of the present weakly nonlinear
theory to the large amplitude meander is uncertain.
On the other hand, we have also shown that the prop-
agation speeds of disturbances in ¢ in a linearly unsta-
ble eastward current tends to be zero. This tendency

might be related to the zero phase speed of large am-

plitude frontal waves on the Leeuwin Current south of
Australia observed by Griffiths and Pearce (1985).
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