第31卷第2期 1997年3月

A tom ic Energy Science and Technology

人血清白蛋白与锌离子缔合效应 的中子小角散射研究^{*}

贺 健 徐延平 杨同华

(中国原子能科学研究院核物理研究所,北京,102413)

贺进田 李连之 周永洽

(南开大学化学系,天津,300071)

采用中子小角散射谱仪对系列溶液样品进行测量,直接获得锌离子-人血清白蛋白分子配位体的亚微观结构参数。结合平衡透析法实验结果和其它已知条件,定量地描述了锌离子与人血清 白蛋白在不同条件下相互作用的微观过程,其结果与传统化学和生化方法所得结果相吻合。

关键词 人血清白蛋白 锌离子 缔合 中子小角散射

人血清白蛋白分子是血清中的主要可溶性蛋白组份。其多种的物理生化性质,使之对血液 渗透压,不同金属离子和其它配位体的输运、分布及其代谢都有着极为重要的影响。另一方面, 锌又是人体生长发育、DNA 和蛋白质合成中不可缺的元素;人体血液中 98% 的可交换锌是 与 HSA 相结合的^[1]。研究锌离子(Zn²⁺)-HSA 配位体有很大的现实意义。鉴于以往对 Zn²⁺-HSA 的研究方法集中于普通化学方法,如平衡透析等,难于获得其微观结构的直接信息。若结 合中子小角散射,即可全面地了解 Zn²⁺ 与 HSA 分子的相互作用及其微观结构。

1 样品

实验所用人血清白蛋白 (H SA) 样品为北京红十字血液中心的市售产品, 电泳纯, 所含金 属离子杂质质量分数小于 0.03%。缓冲剂为纯度大于 98.5%、浓度为 0.1 mm ol Λ 的 N aCl-T ris-HCl 溶液; pH = 7.43 ± 0.02。实验用 H SA -Zn²⁺ 样品中, 人血清白蛋白浓度 c (H SA) = 0.17 mm ol Λ , 锌离子浓度 c (Zn²⁺) 依次为: 0, 0.00459, 0.0336, 0.198, 0.34, 0.508, 0.85, 1.4 和 7 mm ol Λ , 为去离子水-缓冲剂溶液系列样品。c (H SA) 和 c (Zn²⁺) 的准确数值分别用紫外 分光光度计和 ED TA 滴定法定出。H SA 相对分子量为 65600, 相对较小, 因此未采用重水-缓 冲剂, 避免了 H SA 分子中的氢与重水中的氘在氢-氘交换后对 H SA 分子的分子量和结构, 乃 至缔合规律可能产生的影响^[2]。溶液中大量含氢的结果会使散射强度中的非相干成份较大, 对

^{*}核工业科学基金和国家自然科学基金(NSFC)资助项目

收稿日期: 1996-05-28 收到修改稿日期: 1996-07-24

数据点的信噪比不利。

预先配制不含 H SA 的系列去离子水-缓冲液样品,溶液中 $c(Zn^{2+})$ 仍如上所述。经中子小 角散射测量证实:可忽略 Zn²⁺ 水合离子的中子小角散射效应; H SA -Zn²⁺ 系列实验样品的效应 可视为仅是 H SA 分子的贡献。实验用 H SA -Zn²⁺ 样品在 20±3 下静置 1 h 后开始测量。样 品容器采用对中子透射率接近 100 % 的石英槽。测量时温度均为20±3 。实验在中国原子 能科学研究院和俄罗斯联合核子研究所的中子小角散射谱仪上进行。测量时间依据反应堆中 子通量的不同,每个样品设定为 1 h 或 3 h。

2 化学实验结果

在 *c*(Zn²⁺)较低时,人血清白蛋白分子(HSA)单体是心脏形生物分子(图1)。*c*(Zn²⁺)升高 至一定水平后,HSA 分子形状会逐渐由心形展开为L 形。研究表明^[3]:HSA 分子上金属离子 的最可几结合位置在空间构形彼此相同的子链 II、III 上的疏水基空隙处。处于心形底部的子 链 I 是金属离子最后的结合位置。由于子链 I 的折叠程度远大于子链 II 和 III,金属离子结 合位置的数目会小于子链 II 或 III 上的值。HSA 单体中金属离子可能的结合位置,在其表面 上仅在 10 个左右。

根据由平衡透析所得 HSA 缔合反应平衡常数推算^[1], 在室温下, 当 pH = 7.43, c(HSA) = 1.7×10⁻⁴mol/L, 且 c(Zn²⁺)₁= 5.1×10⁻⁴mol/L, c(Zn²⁺)₁= 5.1×10⁻⁶mol/L 时, 有 $K_b = c(Zn^{2+})_b/c(HSA) = [c(Zn^{2+})_1 - c(Zn^{2+})_1]/c(HSA) = 2.97 3$ (1)

$$K_{t} = c(Zn^{2+})_{t}/c(HSA) = 3$$
 (2)

其中: $c(Zn^{2+})$,是溶液中 Zn^{2+} 的总浓度; $c(Zn^{2+})_b$ 和 $c(Zn^{2+})_f$ 分别是溶液中结合 Zn^{2+} 和自由 Zn^{2+} 的浓度; K_i 和 K_b 依次是 HSA 分子与 Zn^{2+} 的总投入比和平均结合比。反应中 K_i 和 K_b 数 值极为接近,如无特殊说明则不予以区别。图2中曲线在 K_b 3 和 K_b 8 处有拐点。这说明拐 点前后 K_b 与 $c(Zn^{2+})_i$ 间的宏观依赖关系以及对应的微观结构均可能有变化。

concentration $c(Zn^{2+})$ profile

2

(4)

3 中子小角散射实验结果与分子构象

2M + K = N

实验结果以强度 $I(\Theta - 角度 \Theta)$ 的形式给出, 再经标准数据处理软件计算出 HSA -Zn²⁺ 配位 体 在不同 $c(Zn^{2+})$ 下的回转半径 R_g 值和外推出的零角度散射强度 I(0) (图3)。根据 R_g 和 I(0) 与微观结构的, 不同的函数关系得到有关结论。

若给 HSA 分子中的每个原子都附带上一个等于其核散射长度 f_i 值的系数, 取这些点集 的公共散射重心 A_c 为参考点, 根据各个原子到 A_c 的距离 $\overline{A_cA_i}$ 可得 $R_g^2 = f_i(\overline{A_cA_i})^2 / f_s$ 。 可见, R_g 不仅仅是个简单的几何概念, 还包含有其它结构参量。由 R_g 数值反推 HSA 分子构象 的具体的几何参数还需要其它条件。但在本文所涉及的反应中, 由于 HSA 分子中的子链结构 均保持相对稳定, 所以从 R_g 数值的变化能够判断出 HSA 分子空间延展程度的改变。例如, 当 HSA 单体由心形展开为 L 形(单体形变)或发生缔合反应时, R_g 升高。反之亦然。需要注意: (1) R_g 值可直接由中子小角散射曲线算出, 无需对 HSA 的结构和形状做任何预先假定; 仅通 过 R_g 的变化不能直接区分单体形变和缔合。(2) 在溶液中存在着多组份溶质分子, 如心形或 L 形 HSA 分子单体和双体(缔合二聚体), 乃至更高聚体等的情况下, 本文所测的 R_g 是各组份单 $-R_g$ 值对各组份百分含量的加权平均值。

反映 I(0) 与分子构象的关系, 比 R_{g} 更为直接, 它反映了 H SA 分子的体积。式(3) 为以 H SA 单体和双体二组份体系为例给出的 I(0) 的表达式。假设 H SA 双体体积为单体的 2 倍, 忽略 Zn^{2+} 的散射效应, 则

$$(0) = M (2 \bullet f_{i} - \rho_{0} \bullet 2V)^{2} + K (f_{i} - \rho_{0} \bullet V)^{2}$$

= $(4M + K) (f_{i} - \rho_{0} \bullet V)^{2}$ (3)

N 为反应起始时 H SA 单体总数;*M* 和 *K* 则分别是某 $c(Zn^{2+})$ 下缔合平衡时 H SA 二聚体和 单体数目; f;是构成 H SA 单体的全部原子的核散射长度之和; ρ_0 是溶剂(水)的散射长度密 度, $\rho_0 < 0$; *V* 是 H SA 单体(排开水)的体积。其它更复杂的情况可由上式外推。由于 4M + K2M + K,所以缔合将可明显增大 I(0)。反之亦然。

 R_s 和 I(0) 反映分子空间构象的角度不同, 可简单地理解为: R_s 是分子的最大线度值, I(0) 是分子体积。两者对"单体形变"、"络合"、"缔合"和"解缔合"等效应的敏感程度也有所差 异。例如 H SA 单体形变的情形: 忽略 Zn²⁺ 的散射效应后, H SA 单体的 f_i 可视为不变; 由于 单体形变对子链结构影响较小, V 不变。由式(3)、(4)可知, H SA 单体形变使得 R_s 有较大增 长, 同时 I(0) 则变化不明显。而缔合效应对 I(0)的影响可用因子(4M + K)/(2M + K)表征, 影响却很明显。这是本文得到微观结构唯一解的基础, 也是本实验的关键。

4 讨论

对每个 H SA 分子的平均效果而言, 水合锌离子将优先连接在 H SA 分子的子链 II 和 III 上, 称为" 络合 " Zn^{2+} , 不起分子间的连接器作用。由图 3 可知, 在 0 $c(Zn^{2+})_{\iota}$ 3.4 × 10⁻⁴ mol¹/L 范围内, R_{g} 和 I(0)基本不变。此时 H SA "络合 "单体 R_{g} = 3.7±0.2 nm, I(0)= 0.43± 0.03(相对单位)。

在3.4×10⁴mol/L $c(Zn^{2+})$, 5.1×10⁴mol/L 范围内, R_s 和 I(0) 急剧增加, 因缔合 效应使 HSA 分子的空间延展程度和分子体积大幅度地同步增加。新加入的水合锌离子则充 © 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r

当 H SA 分子单体间的连接器,称为"缔合"Zn²⁺。平衡透析无法区别"缔合"Zn²⁺和"络合" Zn²⁺,因此不能判别"缔合"效应是否发生。H SA 缔合二聚体中,"缔合"Zn²⁺的4条结合键由于 子链 II 和 III 上结合位已占满,将只能跨接在两单体的子链 I 上。每个 H SA 缔合二聚体将 按"对底连接"的空间构型共同拥有5个锌离子。而以单体形式存在的(并非全部 H SA 分子都 缔合成二聚体)每个 H SA 分子则含3个锌离子。

 $K_{t}=3$ 时,由平衡常数计算,可忽略三聚体的数目,得到M/N = 0.3, K/N = 0.4,并可计 算出 HSA 双体 $R_{g}=5.4\pm0.2$ nm, $I(0)=0.70\pm0.04$ (相对单位)。而 0.70/0.43= 1.6,此数 值与 $(4M + K)/(2M + K) = (0.3 \times 4 + 0.4)/(0.3 \times 2 + 0.4) = 1.6$ 相等,说明 HSA 双体体积 等于单体体积 2 倍的假设成立,缔合并未使二单体间发生体积重叠。这可部分解释以下解聚 合过程发生的原因。 $K_{b}=0.3 \times 5 + 0.4 \times 3$ 3。对比图3 中 R_{g} - $c(Zn^{2+})_{t}$ 曲线在 $c(Zn^{2+})_{t}=5.1$ × 10⁻⁴ mol/L,即 K_{b} 3 附近有唯一的峰值,说明由中子小角散射所得微观过程与化学实验 所得结果非常符合。

在5.1×10⁻⁴mol¹/_L $c(Zn^{2+})$ 1.7×10⁻³mol¹/_L 范围内, 区间右边界 $K_{1=}$ 8 是估计值, 但它的准确与否并不改变下述分析。有几种过程同时发生: HSA 心形二聚体解聚合为 HSA 心形单体, 对应 R_{g} 和 I(0) 下降; HSA 心形单体解散变形为 L 形单体, 对应 R_{g} 上升、I(0) 变 化不大; HSA 的 L 形单体发生新的络合反应, 对应 R_{g} 和 I(0) 变化不大, 发生新的缔合反应, 对应 R_{g} 和 I(0) 则上升, 导致图3 中该区间内 R_{g} 和 I(0) 随 $c(Zn^{2+})$ 的非单调变化。这种多重 效应在图2 中已被"平均化"成一条直线, 而图3所示中子小角散射结果明确指出了图2 中 3 段 折线在微观过程本质上的差异。

在 1×10^{-3} mol \pounds $c(Zn^{2+})$ 7×10^{-3} mol \pounds 范围内,可认为溶液中已不存在 HSA 的心 形分子单双体,而仅存 HSA 的L 形单体和L 形多聚体 图2 中 K_b 8 是类同于 K_b 3 的直 线拐点 HSA 分子单体形态从心形向L 形转变的完成,客观上使每个 HSA 分子中有更多的 ② © 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.r 锌离子结合位能与溶液中的水合锌离子在"络合"与"缔合"方式间竞争结合,并可能出现网状 高聚物。由图3 可见,"缔合"方式占优使 R_g有较快的增长,直至 7 mm ol/L 时溶液中出现肉眼 可见的白色絮状沉淀。

中子小角散射结果对图2 曲线的解释显示了定量的一致性和与生化方法在宏观-微观测 量上的互补性。从交叉学科的角度讲,通过系统的对比实验将有望对临床中与之有关的生理、 病理现象做出更有力的解释。

参考文献

- 1 Zhou Yongqia, W ang Yumen, Hu Xuying, et al Equilibrium Dialysis of M ental-serum A lbum in B iophysical Chem istry, 1994, 57: 81.
- Jacrot B. The Study of Biological Structures by Neutron Scattering From Solution Pep Prog Phys, 1976, 39: 911.
- 3 Xiao M inhe, Carter C. A tom ic Structure and Chem istry of Hum an Serum A lbum in N ature, 1992, 358: 209.
- 4 黄胜涛 固体 X 射线衍射学(二). 北京: 高等教育出版社, 1990 327.

THE ASSOCIATION EFFECT OF HUMAN SERUM ALBUM IN UNDER DIFFERENT ZINC ION CONCENTRATIONS STUDIED BY SMALL ANGIE OF NEUTRON SCATTERING

He Jian Xu Yanping Yang Tonghua

(China Institute of A tom ic Energy, P. O. B ox 275-30 B eijing, 102413)

He Jintian Li Lianzhi Zhou Yongqia

(Department of Chemistry, Nankai University, Tianjin, 300071)

ABSTRACT

The m icroscopic parameters of the HSA $-Zn^{2+}$, R_s and I(0), are obtained directedly by small angle of neutron scattering (SANS) under different concentrations of zinc ion Comparing with other relevant experimental results, e g equilibrium dialysis, we can determ ine and distinguish the apparent interactive subsquences into more detailed sub-actions, such as self-association, inter-assosciation, deintegration and deconformation et al , or even certain combination of them, other than some indirect and m icroscopic results Results obtained by SANS can qualitative wly and readily interpret the characteristics of from the view point of m icroscopic process

Key words Human serum album in Zinc ion A ssociation effect Small angle of neutron scattering