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Optimal Rate Control for Transporting VBR Video over
QoS-assured Channels

LI Chun-Wen1, 2 ZHU Peng1

Abstract In this paper we discuss how to select appropriate source and channel rate for transporting variable bit-rate (VBR)
compressed video over QoS (quality of service)-assured channels. We first formulate it as an optimal control problem of discrete
linear time-delay system. Then the discrete maximum principle is used to get the optimal control. Compared to traditional solutions,
the proposed algorithm is designed for the coder with continuous output rate, and can work without special requirements for the
encoder and decoder buffer sizes. Theoretical analysis and experimental results show that the proposed algorithm has lower space
and time complexity. Our solution can be used in both off-line and on-line coding.
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1 Introduction

Networked applications (e.g. networked multimedia, net-
worked robots) are more and more popular with the in-
creasing use of communication networks. From the point
of view of system and control, such applications always can
be formulated as time-delay systems, because there exists
delay in transporting data over networks. In this paper we
use the control theory of time-delay system to solve the op-
timal rate control problem for transporting VBR video over
QoS-assured channels. This problem is important, because
in streaming video applications, the output generated by
the video coder will intrinsically be VBR video for most
practical compression algorithms, and on the other hand,
compared to the best effort channels, QoS-assured chan-
nels can provide better QoS support for streaming video
applications[1].

Traditionally, this problem is formulated as an optimiza-
tion problem, and the goal is to minimize the average dis-
tortion of all the frames to achieve good video quality. A
Lagrange-multiplier-based algorithm was proposed[2] to get
the optimal solution for constant bit-rate (CBR) channels,
but it only can get sub-optimal solution for VBR channels.
A deterministic-dynamic-programming-based algorithm[3]

was proposed to get the optimal solution for CBR chan-
nels, and then was extended to VBR channels[1]. However,
it was mainly designed for the coder with discrete output
rates (i.e. using frame quantization), and it has special re-
quirements for buffer sizes, i.e., both the encoder and de-
coder buffer sizes are required to be sufficiently large. This
is costly especially in a multicast scenario or when the
server resource is scarce. In addition, it has very high space
and time complexity. The above algorithms are mainly for
wired channels. Deterministic dynamic programming was
also applied to wireless channels which can be modelled as
a Markov chain[4]. Stochastic dynamic programming was
used to reduce the on-line computational cost[5]. Then the
algorithm was extended to interframe video coders[6].

In this paper we mainly discuss how to select appropri-
ate source and channel rate for transporting VBR video
over wired CBR and VBR channels. We first formulate the
problems under different channels in a unified form — an
optimal control problem for discrete linear time-delay sys-
tem. Then we apply the discrete maximum principle to get
the optimal control with the form of a two-point boundary
value problem, which can be solved by a computational
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Fig. 1 The simplified VBR video system

algorithm[7]. Our solution is for the coder with continuous
output rates, and imposes no constraint on buffer sizes.
Theoretical analysis and experimental results show that it
has lower space and time complexity than the well-known
dynamical programming approach — the Viterbi algorithm
(VA) proposed in [1]. Our solution can be used in both off-
line and on-line coding.

2 Problem formulation

A simplified VBR video system, which is the same as the
model in [1], is shown in Fig. 1. Let′s adopt the discrete
time model, and the time k is the time when frame k (with
size Rs(k)) is to be placed into the encoder buffer (with size
BE). The data in the encoder buffer is packaged and then
fed into the network with the channel rate C(k) (in bits
per frame period). For CBR channels, C(k) is fixed, while
for VBR channels, C(k) is variable with the constraint de-

fined by some policing mechanism[8]. The sent package will
arrive at the decoder buffer (with size BD) after a trans-
mission delay ∆Tc, and then will be sent to the decoder
at the prescribed time. The end-to-end delay of one frame
(denoted as L1 frame periods) is assumed to be constant.

To make the problem tractable, we need to simplify the
problem as in [1]. Firstly, let us suppose that there is no
packet loss in the channel. This assumption is reasonable
because the packet loss ratio is a very small value (even
0) and can be neglected in the QoS-assured channels. Sec-
ondly, the transmission delay ∆Tc is usually variable due to
both scheduling and routing, but the delay variations can
be assumed to be small and disregarded, or alternatively
absorbed by overdimensioning the decoder buffer in QoS-
assured channels[1]. So we can regard ∆Tc as a constant.
Further we can “eliminate” the transmission delay by shift-
ing the encoder and decoder clocks by an amount equal to
∆Tc[1], thus the nominal end-to-end delay L is equal to
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L1 −∆Tc, which is actually the delay in the encoder and
decoder buffers. Then we have the following basic system
model

Be(k + 1) = Be(k) + Rs(k)− C(k) (1)

Bd(k + 1) = Bd(k) + C(k)−Rs(k − L)

where Be(k) and Bd(k) are the encoder and decoder buffer
fullness at time k, respectively.

Overflow and underflow of both encoder and decoder
buffers should be avoided, because buffer overflow will lead
to packet loss, while the decoder buffer underflow will inter-
rupt the playback of the application, and the the encoder
buffer underflow means that the available bandwidth is not
fully utilized. So it is required that

0 ≤ Be(k) ≤ BE and 0 ≤ Bd(k) ≤ BD (2)

2.1 Problem formulation for CBR chan-
nels

For CBR channels, channel rates are fixed to a constant
C. It can be easily derived from (1) that

Be(k) + Bd(k + L) = L ∗ C (3)

One can refer to [1] to see the exact derivation1. Combining
(2) and (3), we have

max(L ∗ C −BD, 0) ≤ Be(k) ≤ min(L ∗ C, BE) (4)

So for avoiding overflow and underflow of both encoder and
decoder buffers, we only need to control the encoder buffer
to meet (4) by selecting appropriate source rate Rs(k).

Suppose the total number of the frames which are to be
streamed is N . Writing this system in the standard form
of discrete linear system, we have

xxx(k + 1) = xxx(k) + uuu(k), k = 0, 1, · · · , N − 1 (5)

where the state vector is represented by xxx(k) = Beee(k) with
the initial condition xxx(0) = 000, and the control parameters
are taken as u(k) = Rs(k)− C.

According to (4), the following state constraints need to
be introduced:

x(k) ∈ D = {y|max(L ∗ C −BD, 0) ≤ y ≤ min(L ∗ C,

BE)}, for i = 1, 2, ..., N (6)

Based on the above established dynamical model, we will
seek the optimal control which minimizes the following cost
function2

Cost(u) =

N−1X

k=0

d(u(k), k) (7)

over the admissible control set

u(k) ∈ Ωk = {y| − C ≤ y ≤ ω(k)− C}, for i = 0, 1, 2, ...,

N − 1 (8)

where d(u(k), k) is the convex rate-distortion function of
frame k, and ω(k) is the possibly maximum size of frame
k. To get d(u(k), k), we use the interpolation method in
[9], i.e., first get some pairs of rate and distortion values of
frame k by using quantization, then get the rate-distortion
function through cubic spline interpolation.

1Note that (3) imposes a constraint for the parameter setting.
Combining (3) and (2), we can easily get BE + BD ≥ L ∗ C. This
means that the encoder and decoder buffer sizes should increase with
the increase of the end-to-end delay.

2This kind of cost function suggests that frames should be inde-
pendently coded, because there is no relationship between the R-D
function of different frames.

2.2 Problem formulation for VBR chan-
nels

We suppose that the policing mechanism of VBR chan-
nels is the well known leaky bucket mechanism[8], which
can be formulated as the following model:

LB(k + 1) = LB(k) + C(k)−Rm (9)

where LB(k) is the leaky bucket (with size LB) fullness at
time k, and Rm is the sustainable rate of the leaky bucket.
According to the policing mechanism[8], it is required that

0 ≤ LB(k) ≤ LB (10)

C(k) ≤ P

where P is the peak rate defined by the leaky bucket mech-
anism.

Then combining the system model (1) and (9), and writ-
ing them in the standard form of discrete linear time-delay
system, we have

xxx(k + 1) = Axxx(k) + B0uuu(k) + B1uuu(k − L),

k = 0, 1, · · · , N + L− 1 (11)

where the state vector is xxx(k) = [Be(k), LB(k), Bd(k)]T

with initial condition xxx(0) = [0, 0, 0]T, the control param-
eters are uuu(k) = [Rs(k) − Rm, C(k) − Rm]T with initial
condition uuu(k) = [−Rm,−Rm]T, k = −L,−L + 1, · · · ,−1,
and the system matrices are

A =

2
4

1 0 0
0 1 0
0 0 1

3
5 , B0 =

2
4

1 −1
0 1
0 1

3
5 , B1 =

2
4

0 0
0 0
−1 0

3
5

According to (2) and (10), we need to introduce the fol-
lowing state constraint

xxx(k) ∈ D = {xxx|0 ≤ x1 ≤ BE, 0 ≤ x2 ≤ LB, 0 ≤ x3 ≤ BD},
k = 1, 2, · · · , N + L (12)

Then based on the above model, we will seek the optimal
control which minimizes the cost function Cost(u1) defined
in (7) over the admissible control set

Ωk =

8
>><
>>:

{uuu| −Rm ≤ u1 ≤ ω(k)−Rm,−Rm ≤ u2 ≤
P −Rm}, 0 ≤ k < N
{uuu|u1 = −Rm,−Rm ≤ u2 ≤ P −Rm},
N ≤ k < N + L

(13)
where ω(k) is the possible maximum size of frame k.

2.3 The unified problem formulation
Note that the problems of CBR and VBR channels have

the similar form of state and control constraints, and the
cost function. In addition, considering that discrete linear
system can be regarded as a special case of discrete linear
time-delay system, the formulated problem of CBR chan-
nels can be translated to the same form as of VBR channels
by setting the delay item L in the time-delay system model
to be 0. So we can formulate the problems of both CBR
and VBR channels as a unified form – the optimal control
problem for discrete linear time-delay system with state
and control constraints, as described in Section 2.2.

3 The solution by discrete ma-
ximum principle

In this section we present the solution for the formulated
optimal control problem in Section 2.2 by the discrete ma-
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ximum principle. Before doing so, we first introduce a C1

convex penalty function

f(xxx, δ) =


0, if xxx ∈ D
δ ×miny∈D

P
i (xi − yi)

8 if xxx /∈ D
(14)

into (7) to remove the state constraints (12), so that there
are only control parameters constrained by the admissible
set (13). Then the modified cost function can be written
as

Cost(uuu) =

N−1X

k=0

d(u1(k), k) +

N+L−1X

k=0

f(xxx(k), δ)+

f(xxx(N + L), δ) (15)

It is not difficult to understand that the possibility that
the optimized state trajectory falls into the constraint set
D will go to 1, when the penalty parameter δ is sufficiently
large (experiments show that the results are satisfying for
δ around 100).

Next, the modified problem can be resolved by the dis-
crete maximum principle3 as proposed in [10].

There exists a nontrivial solution xxx∗(k), qqq∗(k) of the dif-
ference equation

xxx(k + 1) = Axxx(k) + B0uuu(k, q) + B1uuu(k − L, q)

qqq(k) = qqq(k + 1)A− ∂f

∂x
(xxx(k), δ) (16)

under the initial condition xxx(0) = [0, 0, 0]T and the end-
point condition qqq(N + L) = −grad(f(xxx(N + L), δ)), and
the control uuu(k, q) satisfies the maximum principle

− d(uuu(k, q), k) + qqq(k + 1)B0uuu(k, q)+

qqq(k + L + 1)B1uuu(k, q) =

maxu∈Ωk{−d(uuu, k) + qqq(k + 1)B0uuu+

qqq(k + L + 1)B1uuu} ( 0 ≤ k < N)− (17)

d(uuu(k, q), k) + qqq(k + 1)B0uuu(k, q) =

maxu∈Ωk{−d(uuu, k)+

qqq(k + 1)B0uuu} ( N ≤ k < N + L).

An optimal control {uuu∗(k)} is given by uuu∗(k) = uuu(k, q∗).
To see the corresponding proof of this discrete maximum

principle, one can refer to [10∼13]. Obviously, the seeking
of optimal control results in a two-point boundary value
problem. We can obtain the numerical solution by employ-
ing the iteration algorithm proposed in [7], where an itera-
tive precision γ, namely the distance between the resulting
control sequences in two adjacent iterations, is chosen to
regulate the optimality of the solution. The smaller the
iterative precision is, the closer can we get near-optimal
control at the expense of computational resource consump-
tion.

Note that our solution does not impose any special re-
quirements on buffer sizes, and this means that our solu-
tion can work with any setting of the encoder and decoder
buffer sizes. In addition, the admissible control set in the
proposed algorithm is continuous, so opposed to traditional
solutions, our solution allows the video coder to adjust its
output rate continuously.

3In order to make it easy for the readers to understand, we list
discrete maximum principle in the appendix.

4 Complexity analysis

In this paper we use the VBR case to compare space and
time complexity between the proposed algorithm and VA
which was proposed in [1].

Because VA has too high computational cost, the state
clustering technique is used to reduce complexity[1]. States
within the clustering interval ∆ are clustered to reduce the
node number in each trellis stage. With the smaller clus-
tering interval, the complexity increases, but the solution
we get is closer to the extremum. The optimal solution is
obtained when ∆ is set to 1bit. Because the state of VA
is (Bd(k), LB(k)), for every trellis stage (i.e. one frame)
there are BD

∆
∗ LB

∆
nodes. So the space complexity of VA

is4

SCV A = O(N ∗ BD

∆
∗ LB

∆
) (18)

Suppose the number of quantizers in VA is M . The channel
rate is also clustered by ∆. For every node there are M ∗ P

∆
branches we need to try. So the time complexity of VA is

TCV A = O(N ∗M ∗ BD

∆
∗ LB

∆
∗ P

∆
) (19)

For our proposed algorithm, we only need to save
x(k), u(k) and q(k) in the iteration[7]. So the space com-
plexity of our proposed algorithm is

SCOUR = O(N) (20)

The time complexity of our algorithm depends on the
required number of iterations, say count(γ), which
monotonously increases with the decreasing of γ. The time
complexity also depends on the computational cost of each
iteration that is proportional to N . So the time complexity
of our proposed algorithm is

TCOUR = O(N ∗ count(γ)) (21)

Obviously, VA has a much higher space complexity than
our proposed algorithm by comparing (18) with (20), es-
pecially in the limit that the clustering interval ∆ is set
smaller to get nearer optimal solution.

The reduction of time complexity is not so explicit by
direct comparison of (19) and (21). However, from (19) we
can find that the time complexity of VA climbs up rapidly
with the increasing of the buffer sizes and the peak rate,
and will be very high in high bandwidth scenarios. So we
also compare the time complexity by experiments: if our
algorithm gets better solution than VA within a shorter
period of time, we can assert that our algorithm has lower
time complexity. This is proved by the experimental result
in next section.

5 Experimental results

In our experiments, an MPEG-4 encoder is used in the
intraframe coding mode. In every experiment we try differ-
ent standard video sequences. We also implement VA for
comparisons. The range of frame quantization step in VA
is set from 1 to 31 (M = 31).

For the CBR case, the channel rate C is set to
20kb/frame, the encoder and decoder buffer sizes are both
set to 60kb, and the end-to-end delay L is set to 3 frames.
For the VBR case, we set N = 300, Rm = 60kb/frame,

4We suppose that L ¿ N in this section.
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Table 1 Time complexity comparison under the VBR channel

Our solution VA
Sequence(format, N frames) Total Distortion Time(s) Total Distortion Time(s)

News(CIF,300) 4102.7 2156.3 4132.8 57924.4
Akiyo(CIF,300) 1297.8 2939.3 1304.5 59204.2

Container(CIF,300) 7174.7 1874.5 7206.0 62137.7
Mother&Daughter(CIF,300) 1435.2 2393.2 1445.0 66018.4

Table 2 Optimality comparison under the CBR channel

Sequence(format, N frames) Total distortion(Our solution) Total distortion(VA)
Akiyo(QCIF, 300) 3418.3 3421.1
Clare(QCIF, 150) 394.6 401.9
Suzie(QCIF, 150) 1296.0 1299.1
Miss(QCIF, 50) 137.3 140.1

Table 3 Performance comparison between our solutions with different iterative precisions under the VBR channel

Precision: 0.01bit Precision: 1bit
Sequence(format, N frames) Time(s) PSNR(dB) Time(s) PSNR(dB)

News(CIF,300) 2156.3 36.78 3.2 36.62
Akiyo(CIF,300) 2939.3 41.77 3.1 41.63

Container(CIF,300) 1874.5 34.35 3.1 34.23
Mother&Daughter(CIF,300) 2393.2 41.34 2.5 41.21

P = 360kb/frame, LB = 360kb, L = 30 frames to simu-
late the high bandwidth scenario. In order that VA can be
employed, the buffer size BE and BD are both required to
be larger than LB + L ∗ Rm[1], so we set both of them to
be LB + L ∗Rm = 2160kb.

The experimental results shown in Table 1 are time com-
plexity comparison between our algorithm and VA under
the VBR channel. In the experiments, we set the itera-
tive precision of our algorithm to be 0.01bit, and the buffer
clustering interval of VA to be 10kb. As analyzed in the
last section, VA shows very high time complexity in high
bandwidth scenarios, while our algorithm has lower time
complexity and can use less time to achieve better solu-
tion.

Table 2 shows the experimental results of optimality
comparison between our algorithm and VA under the CBR
channel. In the experiments we set the iterative precision
γ of our algorithm very small (0.001bit) to get the solution
near to the optimal value. The buffer clustering interval ∆
of VA is set 1bit to get the optimal solution. Because the
source rate selection range of our algorithm is continuous
and it covers VA’s range which is discrete, the optimal so-
lution got by our algorithm should be better than that by
VA, and this has been proved by the experimental results.

The experimental results of Table 3 show that our so-
lution can be used in both off-line and on-line coding by
selecting some appropriate value of the iterative precision
γ. With a smaller iterative precision value (0.01bit in the
experiment), we can obtain a solution nearer to the optimal
control. This means that lower distortion and higher peak
signal-to-noise ratio (PSNR) can be achieved, while the
processing time also becomes long. Therefore, this mode
is suitable for off-line coding. If a larger precision value is
chosen (1bit in the experiment), the solution deviates far-
ther from the optimal control. However, this mode benefits
in the reduction of processing time so that on-line coding
becomes possible.

6 Conclusion and future work

We have proposed a control-theoretic approach to solve
the optimal rate control problem for transporting VBR

video over QoS-assured channels. Our solution is designed
for the coder with continuous output rates, has no special
requirements for encoder and decoder buffer sizes, and has
lower complexity than traditional solutions. The proposed
algorithm can be used in both off-line and on-line coding.

In this paper we only consider the encoder working in
the intraframe coding mode. Our further work is to extend
the proposed algorithm to the interframe coding mode.
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Appendix: The discrete maximum prin-
ciple in [10]

Consider the system

xxx(k + 1) = Ā0(k)xxx(k) + Ā1(k)xxx(k − h1) + B̄0(k)uuu(k)

+ B̄1(k)uuu(k − h2) (A1)

with an initial condition xxx(k) = φφφ(k), k = −h1,−h1 +
1, ..., 0. Here, xxx and uuu are n− and m−dimensional vectors,
respectively; Ā0(k), Ā1(k), B̄0(k), and B̄1(k) are matrices
with compatible dimensions; h1 and h2 are two positive in-
tegers. Then the optimal control problem is to find a con-
trol sequence uuu = {u(−h2), u(−h2 + 1), ..., u(M − 1)} from
a given control restraint set Ω which steers the correspond-
ing response xxx(k) of the system to a given target set G at
k = M and minimizes a given cost functional C(uuu). Here,
M is a given fixed positive integer, Ω is a compact convex
set in the m-dimensional real space Rm, and the target set
G is the whole n-dimensional real space Rn. Suppose the

cost functional C(uuu) is given by

C(uuu) = g(xxx(M)) +

M−1X

k=0

{h(uuu(k), k) + f(xxx(k), k)} (A2)

where g(xxx) is a scalar C1 convex function in xxx, f(xxx, k) is a
scalar non-negative C1 convex function in xxx for each k, and
h(uuu, k) is a scalar non-negative continuous convex function
in uuu for each k.

Then we have the following theorem: there always exists
an optimal control for the above problem, and uuu∗ =
{u∗(−h2), u

∗(−h2 + 1), ..., u∗(M − 1)} ⊂ Ω is an optimal
control if and only if the control uuu∗ satisfies the following
condition.

qqq(k + h2 + 1)B̄1(k + h2)uuu
∗(k)

= maxu∈Ωqqq(k + h2 + 1)B̄1(k + h2)uuu, −h2 ≤ k < 0

q0h(uuu∗(k), k) + qqq(k + 1)B̄0(k)uuu∗(k)+

qqq(k + h2 + 1)B̄1(k + h2)uuu
∗(k) (A3)

= maxu∈Ω{q0h(uuu, k) + qqq(k + 1)B̄0(k)uuu+

qqq(k + h2 + 1)B̄1(k + h2)uuu}, 0 ≤ k < M − h2

q0h(uuu∗(k), k) + qqq(k + 1)B̄0(k)uuu∗(k)

= maxu∈Ω{q0h(uuu, k) + qqq(k + 1)B̄0(k)uuu}, M − h2 ≤ k < M

where q0 is a negative constant, which equals −1 when the
target set G is Rn (i.e., free end point problem)[12], and
qqq(k) is the row vector solution to

qqq(k) =

8
>>>>>><
>>>>>>:

qqq(k + 1)Ā0(k) + qqq(k + h1 + 1)Ā1(k + h1)

+ q0
∂f

∂x
(xxx∗(k), k), 0 ≤ k < M − h1

qqq(k + 1)Ā0(k) + q0
∂f

∂x
(xxx∗(k), k),

M − h1 ≤ k < M (A4)

with end point condition qqq(N) = q0gradg(xxx∗(N)).


