A Note on Partial Isometries on Hilbert Space

Xu Qingxiang

Abstract The semi-equivalence for partial isometries is introduced, and it is proved that for any infinite-dimensional Hilbert space H, there exist two partial isometries which are semi-equivalent, but not unitarily equivalent.

Key words Hilbert space; partial isometry; semi-equivalence; unitary equivalence

Let H be a Hilbert space and B(H) the algebra of all bounded linear operators on H. For $v \in B(H)$, v is said to be a partial isometry if ||vh|| = ||h|| for any $h \in (Kerv)^{\perp}$, or equivalently, v^*v is a projection. For any partial isometry v, we write

$$\rho(v) = \dim(ranv), \ \rho'(v) = \dim(ranv)^{\perp}, \ \text{and} \ v(v) = \dim Kerv.$$

These thrée cardinal numbers are usually called the rank, the co-rank, and the nullity of v respectively. Recall that if v is a partial isometry, then so is v^* . Since the initial space of v^* is the final space of v, and vice versa. It follows that

$$v(v^*) = \rho(v)$$
 and $\rho(v^*) = v(v)$.

Definition Let v_1 , v_2 be two partial isometries. v_1 is said to be semi-equivalent to v_2 , denoted by $v_1 \sim v_2$, if there exist two unitaries μ and w such that $\mu v_1^n w = v_2^n$ for all $n \in N$.

Lemma 1 $v_1 \sim v_2$ if and only if the following hold:

- (1) $\rho(v_1) = \rho(v_2)$, $\rho'(v_1) = \rho'(v_2)$ and $v(v_1) = v(v_2)$.
- (2) There exists a unitary $\mu=\mu_1\bigoplus\mu_2$ with μ_1 maps isometrically from $Kerv_1$ onto $Kerv_2$, and μ_2 from $(Kerv_1)^{\perp}$ onto $(Kerv_2)^{\perp}$, such that $v_2\mu v_1=v_2^2\mu$.

Proof " \Leftarrow ". Suppose the conditions (1) and (2) hold. Let w be a linear transformation that maps $(ranv_1)^{\perp}$ isometrically onto $(ranv_2)^{\perp}$. For any $f \in ranv_1$, we define $wf = v_2\mu v_1^*f$, then as shown in [1, Solution 131], w is a unitary and $wv_1 = v_2\mu$. Since $v_2\mu v_1 = v_2^2\mu$, it is easy to show by induction that

Received: 1997-02-17

Author Xu Qinxiang, male, lecturer. Department of Mathematics. Shanghai Teachers University, Shanghai, 200234

$$wv_1^n = v_2^n \mu \text{ for all } n \in N$$
, $v_1 \sim v_2$.

SO

" \Rightarrow ". If there exist two unitaries μ and w such that

$$wv_1^n = v_2^n \mu$$
 for all $n \in N$,

in particular $w v_1 \mu^* = v_2$. Therefore,

 $\dim Kerv_1 = \dim Kerv_2$, $\dim Kerv_1^* = \dim Kerv_2^*$, $\dim (Kerv_1)^{\perp} = \dim (Kerv_2)^{\perp}$

i. e.
$$v(v_1) = v(v_2)$$
, $\rho'(v_1) = \rho'(v_2)$ and $\rho(v_1) = \rho(v_2)$,

so the condition (1) holds. Since for any $f \in H$, $f \in (Kerv_1)^{\perp}$ if and only if $\|v_1f\| = \|f\|$, it follows that the unitary μ will satisfy the condition (2).

Remark Let v_1 and v_2 be two partial isometries such that

$$\dim Kerv_1 = \dim Kerv_2$$
 and $\dim (Kerv_1)^{\perp} = \dim (Kerv_2)^{\perp}$.

Let u be any unitary which maps $Kerv_1$ onto $Kerv_2$ and $(Kerv_1)^{\perp}$ onto $(Kerv_2)^{\perp}$. Then since $v_1 \sim uv_1u^*$, it follows that $v_1 \sim v_2$ if and only if $uv_1u^* \sim v_2$, so in the following we always assume that $Kerv_1 = Kerv_2$.

Now let $p=v_1^*v_1=v_2^*v_2$, then with the decomposition $H=pH\bigoplus (1-p)H$, we know that

$$v_1 = \begin{pmatrix} x_1 & 0 \\ x_2 & 0 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} y_1 & 0 \\ y_2 & 0 \end{pmatrix}$,

where $x_1 = pv_1p$, $x_2 = (1 - p)v_1p$, $y_1 = pv_2p$ and $y_2 = (1 - p)v_2p$.

Since $y_1^*y_1 + y_2^*y_2 = p$, by Lemma 1, we have the following Lemma:

Lemma 2 $v_1 \sim v_2$ if and only if there is a unitary u on pH such that

$$x_1 \sim_{\mu} y_1$$
 and $\dim Kerv_2^* = \dim Kerv_2^*$.

Lemma 3 $v_1 \sim_u v_2$ if and only if $v_1 \sim v_2$ and $\dim Kerx_2^* = \dim Kery_2^*$. (Here we take x_2^* and y_2^* as bounded linear operators from (1-p)H to pH).

Proof " \Rightarrow ". Suppose that there exists a unitary w such that $wv_1w^* = v_2$. Set

$$\begin{split} w &= \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \text{, then } \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} x_1 & 0 \\ x_2 & 0 \end{pmatrix} = \begin{pmatrix} y_1 & 0 \\ y_2 & 0 \end{pmatrix} \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \\ w^* w &= w w^* = 1 \text{ and } x_1^* x_1 + x_2^* x_2 = p = y_1^* y_1 + y_2^* y_2. \end{split}$$

It follows that

$$w_{11}x_1 = y_1w_{11}, w_{21}x_1 + w_{22}x_2 = y_2w_{11},$$
(1)

$$w_{12} = 0, \ w_{11}^* w_{11} + w_{21}^* w_{21} = p, \tag{2}$$

$$w_{21}^*w_{22} = 0, w_{22}^*w_{22} = 1 - p, (3)$$

$$w_{11}w_{11}^* = p, w_{11}w_{21}^* = 0, \tag{4}$$

$$w_{21}w_{21}^* + w_{22}w_{22}^* = 1 - p, (5)$$

By (1) and (3), we know that

$$x_2 = w_{22}^* y_2 w_{11}$$
, so $x_2^* = w_{11}^* y_2^* w_{22}$.

By (3) and (4), we know that $\dim Kerx_2^* \leq \dim Kery_2^*$, which implies by symmetry that $\dim Kerx_2^* = \dim Kery_2^*$.

" \Leftarrow ". If $v_1 \sim v_2$ and dim $Kerx_2^* = \dim Kery_2^*$, then by Lemma 2, there is a unitary u_1 on pH such that $u_1x_1u_1^* = y_1$.

Define
$$w_1: \overline{ranx_2} \rightarrow \overline{rany_2}$$
, $w_1(x_2u_1^*\zeta) = y_2\zeta$ for $\zeta \in pH$. Since
$$x_1^*x_1 + x_2^*x_2 = p = y_1^*y_1 + y_2^*y_2$$

and

$$u_1x_1u_1^* = y_1,$$

we know that

$$y_2^* y_2 = u_1(x_2^* x_2)u_1^*,$$

which implies that w_1 maps isometrically from $\overline{ranx_2}$ onto $\overline{rany_2}$, and since $\dim Kerx_2^* = \dim Kery_2^*$, we know that w_1 canbe extended as a unitary on (1-p)H. Let $w = u_1 \bigoplus w_2$. Then it is easy to show that

$$w v_1 w^* = v_2$$
.

Theorem If H is an infinite-dimensional Hilbert space, then there exist two partial isometries v_1 and v_2 such that $v_1 \sim v_2$ but $v_1 \not\sim_v v_2$. If however H is finite-dimensional, then $v_1 \sim v_2$ if and only if $v_1 \sim_v v_2$.

Proof (1) H is infinite-dimensional. Without loss of generality, we may assume that H is countably infinite-dimensional. Let $\{e_1, e_2, e_3, \cdots\}$ be a basis for H. Let $H_0(resp. H_1)$ be the closed subspace of H generated by $\{e_2, e_4, e_6, \cdots\}(resp. \{e_4, e_8, e_{12}, \cdots\})$; its projection is denoted by $p(resp. p_1)$.

Define
$$x_2$$
, y_2 : $pH \rightarrow (1-p)H$ as follows:
$$x_2e_{4k+2} = e_{4k+3}, \quad k = 0, 1, 2, \cdots$$
$$x_2e_{4k} = 0, \quad k = 1, 2, 3, \cdots$$
and $y_2e_{4k+2} = e_{2k+1}, \quad k = 0, 1, 2, \cdots$
$$y_2e_{4k} = 0, \quad k = 1, 2, 3, \cdots$$

Let

$$v_1=egin{pmatrix} p_1&0\cr x_2&0\cr\end{pmatrix}$$
 and $v_2=egin{pmatrix} p_1&0\cr y_2&0\cr\end{pmatrix}$,

then

$$v_1^* v_1 = p = v_2^* v_2.$$

Since the closed subspace generated by $\{e_{4k+2}|k=0,1,2,\cdots\}$ is contained in $Kerv_1^*\cap Kerv_2^*$, we know that $\dim Kerv_1^*=+\infty=\dim Kerv_2^*$. By Lemma 2, we know that $v_1\sim v_2$, and since

$$\dim Kerx^* = +\infty \neq 0 = \dim Kery^*$$
,

it follows from Lemma 3 that v_1 is not unitarily equivalent to v_2 .

(2) In the case when H is finite-dimensional, if $v_1 \sim v_2$, then by Lemma 2 we know that there exists a unitary u on pH such that $ux_1u^* = y_1$. Since

$$x_1^*x_1 + x_2^*x_2 = p = y_1^*y_1 + y_2^*y_2,$$

it follows that

 $y_{2}^{*}y_{2} = u(x_{2}^{*}x_{2})u^{*},$

so $\dim Kery_2 = \dim Kerx_2$, which implies $\dim Kery_2^* = \dim Kerx_2^*$. By Lemma 3, we know that v_1 is unitarily equivalent to v_2 .

References

1 Halmos P. A Hilbert space problem book. Springer-Verlag, New York, 1982

关于 Hilbert 空间中部分等距算子的一点注记

许庆祥

提 要 引进 Hilbert 空间中部分等距算子的半等价关系,证明了在任意的无限维 Hilbert 空间中,存在两个部分等距算子,它们为半等价,但不为酉等价。

关键词 Hilbert 空间;部分等距;半等价; 酉等价