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A Note on Partial Isometries on Hilbert Space

Xu Qingxiang

Abstract The semi-equivalence for partial isometries is introduced, and it is proved
that for any infinite-dimensional Hilbert space H , there exist two partial isometries
which are semi-equivalent, but not unitarily equivalent-
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Let H be a Hiltert space and B (H ) the algebra of all bounded linea£ operators on { . For »
€ B(H) , v is said to be a partial isometry if | vh | = | % || for any 2 &€ (Kerv)+ , or equiva-
lently , » *v is a projection. For any partial isometry v , we write

' p(v) = dim(ranv), ¢ (v) = dim(ranv)t, and v(v) = dimKerv.
These thréé cardinal numbers are usually called the rank , the co-rank, and the nullity of v respec-
tively. Recall that if » is a partial isometry, then sois »* . Since the initial space of v * is the final
space of v , and vice versa. It follows that

v(@*) = p(v) and p (»*) = v(v).

Definition Let v,, v,be two partial isometries. »,is said to be semi-equivalent to 7, , denoted by
v; ~ v, , if there exist two unitaries # and w such that uvjw = 23 for alln €& N .
Lemma 1 »; ~ v, if and only if the following hold :

(1) p(oy) = p(vy), p (1) = p (vy) and v(v)) = v(vy).

(2) There exists a unitary z = u; €D u, with u; maps isometrically from Kerv, onto Kerv, ,
and u, from (Kerv;)L onto (Ker»,)L , such that vyur, = viu .

Proof ”<=". Suppose the conditions (1) and (2) hold. Let w be a linear transformation that
maps (ranv, )~ isometrically onto (ranv,)1 . For any f € ranv,, we define wf = v,uv{ f , then
as shown in [ 1, Solution 1317, w0 is a unitary and wv, = v,u . Since v,uv; = viu , it is easy to

show by induction that
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wv] =vyu foralln € N,
SO D~V
"=". If there exist two unitaries # and w such that
wv] =vjuforalln & N,
in particular wvu* = v, . Therefore,
dimKerv, = dimKerv,, dimKerv{ = dimKerv; , dim(Kerv,)t= dim (Kerv,)+
i e. v(wy) = v(vy), p(¥;y) = p(v,) and p(v,) = p(v,),
so the condition (1) holds. Since for any f € H , f € (Kervy)l if and only if
lv.f il = || £1 ,it follows that the unitary u will satisfy the condition (2).
Remark Let v; and v, be two partial isometries such that
dimKerv, = dimKerv, and dim (Kerv,)-l = dim(Kerv,)L.
Let u be any unitary which maps Kerv,onto Kerv,and (Kere)Lonto (Kerv, )t . Then since v, ~
uvu”, it follows that »; ~»,if and only ifuv,u* ~ v,, 50 in the following we always assume that
Kerv, = Kerv, .

Now let p = v, vy == v, v, , then with the decomposition H = pH & (1 — p)H , we know

o mn=( )
v, = and v, = ,
z, 0 y2 0

that

wherex; = pvyp, 2, = (1 —plvyp, yy =prypand y, = (1 — p)o,p .
Since y7y1 +ysy2 = p, by Lemma 1, we have the following Lemma
Lemma 2 v, ~ v, if and only if there is a unitary « on p I such that
T, ~,y; and dimKerv, = dimKerv, .

Lemma 3 v, ~,v,if and only if v; ~v,and dimKerz, =dimKery, . (Here we takez, and y
as bounded linear operators from (1 — p)H topH ).
Proof "=". Suppose that there exists a unitary w such that wo,w * = v, . Set

w — (wn w12) . then (wn wlz)(xl 0)= (yl 0)(21)11 wlz)

Wa Wy Wy Wy/\z, 0 y2 0/ \wy wy
w'w =ww* =1landziz, +aie,=p =yry + iy,

It follows that

WLy =YWy Wyl + Wy, = ywy, 1
wp =0, wiw, +wiw, =p, (2)
wahwy =0, whwy, =1—17p, (3
wnwi =p, wyws =0, 4
wawg +wpwy =1-—rp, &)

By (1) and (3), we know that
Ty = WpHYWiy SO T3 = W{1Ys Wy
By (3) and (4), we know that dimKerz; <_dimKery; , which implies by symmetry that

~dimKerx; = dimKery; .
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"=t If vy ~ v, and dimKerz; = dimKery, , then by Lemma 2, there is a unitary %, on
pH such that wyz u =y, .

Define w, : ranz, —> rany, » w,(xui &) = y,& for & € pIH . Since

xixy ‘i, =p =yiy+y:9:
and
WUy =Y,
we know that
yry, =wm@gzydul,
which implies that w; maps isometrically from m onto 77;'—:;/—; , and since dimKerz, =
dimKery; , we kxnow that w, canbe extended as a unitary on (1 — p)H . Letw =u, Pw,.
Then it is easy to show that
wow " = vy,

Theorem If /7 is an infinite-dimensional Hilbert space, ther there exist twe partial isometries
and v, such that v, ~ v, but v, ~¢.m,. £ however II is finite-dimensional, then »; ~ v, if and only
if »; ~, v, .
Proof (1) H is infinite-dimensional. Without loss of generality, we may assume that [/ is
countably infinite-dimensional. Let { ¢;, e;, 73, *=+ } be a basis for I . Let H ((resp. II,) be the
closed subspace of I generated by {e,, e, eg, ==} (resp. {eq, ez, €13, *=+}) ; its projection is de-
noted by p(resp. p) .

Def};le Zys Yo pH — (1 — p)H as follows;

Tolpys = Cypszs k=0, 1, 2, -
2gep =0, k=1,2, 3, -
and yrepqy =euys  k=0,1, 2, -

Yoen = 0, k=1,2,3,

(Pl 0) (P1 0)
v = and vy, = s
Xy 0 Y2 0

Let

then
PV = P = Uy Dy
Since the closed subspace generate;i by {egi2|k =0, 1, 2, ==+ } is contained in Kerv{ [)
Kervy , we know that dimKerv! =4 oo = dim[(érvz* . By Lemma 2, we know that v; ~ v, ,
and since '
dimKerz; =- oo £ 0 = dimKery; ,
it follows from Lemma 3 that v, is not unitarily equivalent to v, .
(2) In the case when H is finite-dimensional, if »; ~ »;, then by Lemma 2 we know that
there exists a unitary # on p H such that uz 2™ = y, . Since
riry F 252, =p =yiy, + ¥ Y2
it follows that
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Yy, =ulzszdu*,
so dimKery, =dimKerz, , which implies dimKery,; =dimKerz; . By Lemma 3, we know that

v, is unitarily equivalent to v, .
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