Vol. 30 No. 2 Jun. 2 0 0 1

Brown 定理的一个组合证明

宋传宁

(上海师范大学 数学科学学院,上海 200234)

摘 要: QUILLEN 利用代数拓扑的方法证明了 Brown 定理,BACLAWSKI 也是用代数 拓扑理论得到公式 $\mu(P)=\mu(Q)-\sum_{y\in Q}\mu(y/f)\mu(0,y)$. 作者先给出 $\mu(P)=\mu(Q)$

 $\sum_{y \in \Omega} \mu(y/f) \mu(\dot{O}, y)$ 的组合证明,然后利用该方法给出了 Brown 定理的组合证明.

关键词: Brown 定理; Mobius 函数;纤维

中图分类号: O157 文献标识码: A 文章编号: 1000-5137(2001)02-0024-04

1 基本概念

设 P 是偏序集,P 中的元 x_0 称为 P 的最大元(最小元),若对任意的 $y \in P$ 有 $y \leq x_0 (y \geq x_0)$. P 中的元 x 称为是 P 的极大元(极小元),若有 P 中的元 y 使得 $y \geq x$ ($y \leq x$),则 y = r. f 称为 P 到 偏序集 Q 的保序映射,若在 P 中有 $x \leq y$,则在 Q 中有 $f(x) \leq f(y)$,偏序集 P 上的 Mobius 函数

偏序集
$$Q$$
 的保序映射,若在 P 中有 $x \le y$,则在 Q 中有 $f(x) \le f(y)$. 偏序集 P 上的 Mobius 函数
$$\mu: \begin{cases} P \times P \to Z \\ (x,y) \to \mu(x,y) = \begin{cases} 0 & x \le y \\ 1 & x = y \\ -\sum_{x \le y} \mu(x,z) & x < y. \end{cases}$$

特别地, $\mu(P) = \mu_P(\hat{0}, \hat{1})$, \hat{P} 为 P 中人为地添加一个最大元 $\hat{1}$ 和最小元 $\hat{0}$. 在不至于混淆的情况下、除特别说明,记 $\mu_P(\hat{0}, x)$ 为 $\mu(\hat{0}, x)$, $\mu_P(x, \hat{1})$ 为 $\mu(x, \hat{1})$.

HALL 有一个深刻的结论,当 P 是有限偏序集时, $\mu(P)=\tilde{x}(|P|)$,(这里 $|P|=\{(x_0,x_1,\cdots,x_n)|x_0< x_1<\cdots< x_n,x_n\in P,\ i=0,1,\cdots,n\}$, $x_0< x_1<\cdots< x_n$ 称为 P 中的 n 维链。),由此说明 Mobius 函数是一个拓扑不变量。QUILLEN 在文[1]中的命题 1. 6 叙述,如果 f/y 是可缩的,那么 f 是同伦等价的。BACLAWSKI 在文[2]中得到 $\mu(P)=\mu(Q)-\sum_{y\in Q}\mu(y/f)\mu(\hat{0},y)$,他是利用代数拓扑的理论来说明这个结论的,本文要对 BACLAWSKI 的这一结论给出一个初等的组合证明,并利用该方法给出 Brown 定理的组合证明。为此,首先引进

引理 1.1 ③ 设 P 是有限偏序集,则 $\mu(P) = \mu(P - \{x\}) + \mu(\hat{0},x)\mu(x,\hat{1})$.

引理 1.2 设 P 为有限偏序集,且 P 有最大元或最小元,则 $\mu(P)=0$.

证明 不妨设x 是P 的最大元,则

$$\mu(P) = -\sum_{y \in P} \mu(\hat{0}, y) - \mu(\hat{0}, \hat{0}) = -\mu(\hat{0}, x) - \sum_{x > y \in P} \mu(0, y) - \mu(0, \hat{0}),$$

收稿日期,2000-10-25

基金项目: 上海市高等学校科学技术发展基金(CL9909)

作者简介: 宋传宁(1962-),女,上海师范大学数学科学学院讲师。

维普资讯 http://www.cqvip.com

而 $\mu(0,x) = -\sum_{y \in \mathcal{Y}} \mu(0,y) - \mu(0,0)$,代人得 $\mu(P) = 0$.

引理 1.3 设 P 是有限偏序集,若存在 P 上的保序映射 f ,使得对任意 $x \in P$ 有 $x \le f(x) \ge x_0$ x_0 是 P 中一定元,则 $\mu(P) = 0$.

证明 由文[2]的定理 4.1 指出,一个有限偏序集 P 是不可约可拆的充要条件为存在 P 的保序映射 f_1, f_2, \cdots, f_n 使 $x \le f_1(x) \ge \cdots \le f_n(x) \ge x_0$. 特别地,当 n=1 时,即 $x \le f(x) \ge x_0$ 时,P 存在不可约元 x_{i+1} ,这就是说 x_{i+1} 只覆盖一个元 x_i ,又由引理 1.1,有 $\mu(P) = \mu(P - \{x_{i+1}\}) + \mu(0, x_{i+1}) \mu(x_{i+1}, 1)$. 设 $P' = \{x \mid 0 \le x \le x_{i+1}\}$,则 $\mu(0, x_{i+1}) = \mu(P')$,又因为 P'有最大元 x_i ,由引理 1.2 知, $\mu(P') = 0$.

另一方面,在 $P-\{x_{i+1}\}$ 中,令 $f'(x)=\begin{cases} f(x) & f(x)\neq x_{i+1} \\ x_i & f(x)=x_{i+1} \end{cases}$,则在 $P-\{x_{i+1}\}$ 中仍存在保序映射 f',使 $x\leqslant f'(x)\geqslant x'_0$, $x'_0=\begin{cases} x_0 & x_0\neq x_{i+1} \\ x_i & x_0\neq x_{i+1} \end{cases}$. 故 $\mu(P-\{x_{i+1}\})=0$. 因此 $\mu(P)=0$.

2 BACLAWSKI 公式的组合证明

这一节对 BACLAWSKI 的公式 $\mu(P) = \mu(Q) - \sum_{y \in Q} \mu(f/y) \mu(0,y)$ 给出一个组合证明.

设 f 是偏序集 P 到 Q 的一个保序映射,y 是 Q 中的一个元素,P 的子集 $f/y = (x \in P | f(x) \le y)$ 与 $y/f = \{x | f(x) \ge y\}$ 分别称为 y 下的纤维与 y上的纤维,为证明第二节的 Brown 定理,需要利用"对任意 $y \in Q$,若 $\mu(y/f) = 0$,则 $\mu(P) = \mu(Q)$ "这个定理,而此定理是 BACLAWSKI K 公式的一个推论,现在给出 BACLAWSKI 公式的一个组合证明,这就是

定理 2.1 设 f 是偏序集 P 到偏序集 Q 的保序映射,则 $\mu(P) = \mu(Q) - \sum_{y \in I} \mu(y/f) \mu(0,y)$.

证明 对 Q 的元素个数利用数学归纳法。当 Q={y}时, $\mu(0,y)=-1,\mu(y/f)=\mu(P)$, $\mu(Q)=0$,此时有 $\mu(P)=\mu(Q)-\mu(y/f)\mu(0,y)$. 不妨设当 Q 的元素个数小于 n 时,公式成立.

讨论当Q的元素个数为n时,设yt是Q的一个极小元,则由引理1.1得

 $\mu(Q) = \mu(Q - \{y_1\}) + \mu(\hat{0}, y_1)\mu(y_1, 1) = \mu(Q - \{y_1\}) - \mu(y_1, \hat{1})(*)(\mu(\hat{0}, y_1) = -\mu(0, 0) = -1).$ 设 P_1 为 y_1 的在保序映射 f 之下的原象的集合,则 $\mu(P) = \mu(P - P_1) - \sum_{x' \in P_1} \mu(x', \hat{1})$ (每次都去除极小元)。同样,在 y_1 上的纤维 y_1/f 中,有 $\mu(y_1/f) = \mu(y_1/f - P_1) - \sum_{x' \in P_1} \mu_{y_1/f}(x', \hat{1})$. 又由于在 P 中,如果 $x' \leq x, x' P_1$,则 $f(x') \leq f(x)$,即 $f(x) \geqslant y$,因此 $x \in y_1/f$,这样有 $\sum_{x' \in P_1} \mu_{F}(x', \hat{1}) = \sum_{x' \in P_1} \mu_{y_1/f}(x', \hat{1})$,所以

$$\mu(P) = \mu(P - P_1) + \mu(y_1/f) - \mu(y_1/f - P_1). \tag{1}$$

下面看偏序集 $P-P_1$ 与偏序集 $Q-\{y_1\}$. 在偏序集 $P-P_1$ 与偏序集 $Q-\{y_1\}$ 中, f 在 $P-P_1$ 上的限制仍是 $P-P_1$ 到 $Q-\{y_1\}$ 的保序映射, 仍记为 f, 由归纳假设得

$$\mu(P - P_1) = \mu(Q - \{y_1\}) - \sum_{j \in Q - \{y_1\}} \mu(y/f) \mu(\dot{0}, y)$$

代入到(1)式,得到

$$\mu(P) = \mu(Q - \{y_1\}) - \sum_{y \in Q - \{y_1\}} \mu(y/f) \mu(0, y) + \mu(y_1/f) - \mu(y_1/f - P_1).$$

又由于 $\mu_0(0,y) = \mu_{y_1,y_1}(0,y) + \mu(0,y_1)\mu(y_1,y)$ ($y \neq y_1$). 故

$$\mu(P) = \mu(Q - \{y_1\}) - \sum_{y_1 \le y} \mu(y/f) [\mu_Q(0, y) + \mu(y_1, y)] -$$

$$\sum_{\substack{y_1, y \in \mathbb{Z} \\ \emptyset}} \mu(y/f) \mu(\hat{0}, y) - \mu(y_1/f) \mu(\hat{0}, y_1) - \mu(y_1/f - P_1) \stackrel{\star}{=}$$

$$\mu(Q) - \mu(y_1, 1) - \sum_{\substack{y_1 < y \\ y_1 \neq y}} \mu(y/f) \mu(\hat{0}, y) - \sum_{\substack{y_1 < y \\ y_1 \neq y}} \mu(y/f) \mu(\hat{0}, y) - \mu(y_1/f) \mu(\hat{0}, y_1) - \mu(y_1/f - P_1) =$$

$$\mu(Q) - \sum_{\substack{y_1 < y \neq y \\ y \in Q}} \mu(y/f) \mu(\hat{0}, y) - \sum_{\substack{y_1 < y \\ y_1 \neq y}} \mu(y/f) \mu(\hat{0}, y) - \sum_{\substack{y_1 < y \\ y_1 \neq y}} \mu(y/f) \mu(y_1, y_1) - \mu(y_1/f - P_1) + \mu(y_1, \hat{1}),$$

$$(2)$$

而在上式的最后 3 项中,令 $P_2=y_1/f-P_1$, $Q_1=(y_1,1)=\{y_1|y_1< y<1\}$,则 f 在 P_2 上的限制是保序映射、且 Q_2 的个数小于 n、由归纳假设得 $\mu(y_1/f-P_1)=\mu(y_1,1)-\sum_{y_1< y}\mu(y/f)\mu(y_1,y)$. 代人(2)

式,得到
$$\mu(P) = \mu(Q) - \sum_{y \in Q} \mu(y/f) \mu(\hat{0}, y)$$
.

由定理 2.1.马上可得到在以后的证明中相应有用的

推论 2.2 设 f 是偏序集 P 到 Q 的一个保序映射, y 是 Q 中任一元素, 满足 $\mu(y/f)=0$, 则 $\mu(P)=\mu(Q)$. 对 y 下的纤维同样成立.

为证明下一节中的 Brown 定理,我们还须做如下的准备工作. 设偏序集 P 与 Q 的笛卡尔乘积 $P \times Q = \{(x,y) | x \in P, y \in Q\}, P \times Q$ 上有自然的偏序关系 $(x',y') \leq (x,y)$ $\Leftrightarrow x' \leq x$ 且 $y' \leq y$. 称 Z 是 $P \times Q$ 的一个闭子集,如果 $(x,y) \in Z$ 且 $(x',y') \leq (x,y)$ 则 $(x',y') \in Z$. 令 $Z_i = \{y | (x,y) \in Z\}, Z_j = \{x | (x,y) \in Z\}, A$

推论 2.3 对任意的 $x \in P, y \in P$, 强果 $\mu(X_x) = \mu(Z_y) = 0$, 则 $\mu(P) = \mu(Q) = \mu(Z)$.

证明 作保序映射 $p_1: \begin{cases} Z \to P \\ (x,y) \to x \end{cases}$,则 x 上纤维 $x/P_1 = \{(x',y') \in Z \mid x \leqslant x'\}$. 作保序映射 $v: \begin{cases} Z_x \to x/P_1 \\ y \to (x,y) \end{cases}$,则 (x,y)纤维 $v/(x,y) = \{y' \in Z_x \mid y' \leqslant y\} = Z_x$. 由于 $\mu(Z_x) = 0$,故 $\mu(v/(x,y)) = 0$. 由推论 2.2.得 $\mu(Z_x) = \mu(x/P_1) = 0$. 再由推论 2.2.得到 $\mu(Z) = \mu(P)$,同理可证 $\mu(Z) = \mu(Q)$.

3 Brown 定理的证明

众所周知,在群论中有如下的 Brown 定理:设 G 是有限群,P 是 G 的 sylow p-子群,|P|=p'',则由 G 中所有 p-子群按包含关系所组成的链复形的欧拉示性数为 1+kp''. 为证明 Brown 定理,先定义群的一个由包含关系所组成的偏序集. 设 $\varphi_p(G)=\{H|H< G,H$ 是非平凡 p-子群 $\}$, $\varphi_p(G)$ 上的偏序关系为群的包含关系. 这样 $\varphi_p(G)$ 就是由所有的非平凡 p-子群按包含关系作成的偏序集.

命题 3.1 如果群 G 有非平凡的正规 ρ -子群 H,则 $\mu(\varphi_{\bullet}(G))=0$.

证明 由于 $H \in G$ 的正规子群, 所以对 K < G, 有 HK < G. 作映射 $f: \begin{cases} \varphi_p(G) \rightarrow \varphi_p(G) \\ K \rightarrow HK \end{cases}$. 显然 $f: \varphi_p(G)$ 的保序映射, 且满足 $K \le f(K) \ge H$. 由引理 1.3 得 $\mu(\varphi_p(G)) = 0$.

引理 3.2 设
$$Y' = \bigcup_{H \in \varphi_p(P)} |\varphi_p(G)|^H$$
. 其中

$$|\varphi_{j}(G)| = \{y_0 < y_1 < \dots < y_i | y_j \in \varphi_{j}(G), j = 0, 1, \dots, i, i \in N\}$$

是 $\varphi(G)$ 的链复形,简记为 Y.

$$Y^{H} = |\varphi_{\rho}(G)|^{H} = \{y_{0} < y_{1} < \dots < y_{i} | \forall h \in H, h^{-1}y_{i}h = y_{i}, k = 0, 1, \dots, i\},$$

$$\hat{\eta} \mu(Y') = 0.$$

证明 作 $\varphi_r(P) \times Y'$ 的子集 $Z \subseteq \varphi_r(P) \times Y'$, $Z = \{(H, y) | y \in Y^n\}$. 显然 $Z \notin \varphi_r(P) \times Y'$ 的闭子集.

(1) $Z_y = \{H \in \varphi_h(P) | h^{-1}yh = y, \forall h \in H\} = \varphi_h(P_y).$

这里 P_y 是 y 的稳定子,即 $P_y = \{x \in P | x^{-1}yx = y\}$. 由于 P_y 是一个 p-群,所以 P_y 有非平凡的正规子群,由引理 3.1 知, $\mu(q_y(P_y))=0$,即 $\mu(Z_y)=0$. 因此由推论 2.3 得: $\mu(Z)=\mu(Y')$.

(2) $Z_H = \{y | y \in Y^H\} = \{ \text{所有在 } H \text{ 共轭作用下不变的 } p \text{-} 子群链 \}.$

显然,若 $k \in Z_H$,则 $H^{-1}kH = k$, $H^{-1}(Hk)H = kH = Hk$,得 $Hk \in Z_H$. 作保序映射 $f: \begin{cases} Z_H \to Z_H \\ k \to Hk \end{cases}$. 有 $k \le f(k) \ge H$. 由引理 1_* 3 知 $\mu(Z_H) = 0$. 再由引理 2.3 知, $\mu(Z) = \mu(\varphi_p(P))$. 又因为 P 有非平凡正规子群,由引理 3.1 知, $\mu(\mu_p(P)) = 0$.

综合(1),(2)得到 $\mu(Y')=0$.

定理 3.3(Brown 定理) $X(|\varphi_p(G)|) \equiv 1 \mod p^n$.

证明 由同调群的长正合链

$$\cdots \rightarrow H_i(Y^i) \rightarrow H_i(Y) \rightarrow H_i(Y,Y^i) \rightarrow H_{i-1}(Y^i) \rightarrow \cdots$$

得 $\chi(Y) = \chi(Y, Y') + \chi(Y')$. 由 Mobius 函数与欧拉示性数的关系知道 $\chi(Y') = \mu(Y') + 1$, 而 $\mu(Y') = 0$, 得 $\chi(Y) = \chi(Y, Y') + 1$. 再由链复形

$$\cdots \to C_n(Y)/C_n(Y') \to \cdots \to C_r(Y)/C_r(Y') \to \cdots \to C_0(Y)/C_n(Y').$$

对任取 $x \in C_i(Y)/C_i(Y')$, $x = \{y_0 < y_1 < \dots < y_i\}$. 任取 $h \in P$, $h^{-1}xh = \{h^{-1}y_ih < \dots < h^{-1}y_ih\} \neq x$. 因此 P 作用在 $x \in C_i(Y)/C_i(Y')$ 上是自由的,不妨设 S 是 Y 中所有 i 维链的集合, $S = \{x_1, x_2, \dots, x_i\}$, 则 $P^{-1}SP = \{P^{-1}x_1P, \dots, P^{-1}x_iP\}$, 而 $P^{-1}x_jP$ 中 i 维链的个数为 p^n , 所以每项都是 p^n 的倍数,其交错和(欧拉示性数)X(Y,Y')也是 p^n 的倍数,因此有 $\chi(Y,Y') \equiv 0$ modul p^n . 故有 $\chi(Y) \equiv 1$ module p^n , 即 $\chi(|g_p(G)|) \equiv 1$ module p^n .

注记 3.4 在证明 Brown 定理过程中所用到有关 Mobius 函数计算都是初等的, 所以给出了 Brown 定理的一个组合证明.

参考文献:

- [1] QUILLEN D. Homotopy Properties of the Poset of Nontrivial p-Subgroups of a Group[J]. Advance in Math, 1978, 28: 129-137.
- [2] BACLAWSKI K. Galois Connection and Leray Spectral Sequences[J]. Advance in Math., 1977, 25; 191-215.
- [3] STANLEY R. Enumberative Combinatorics[M]. Wadsworth and Broods/cole Monterey CA, 1986.
- [4] BACLAWSKI K, BJORNER A. Fixed Poset in Partially Order Sets[J]. Advances in Math. 1979. 31: 263-287.

A Combinatorial Proof of the Brown Theorem

SONG Chuan-ning

(College of Mathematical Sciences, Shangbar Teachers University, Shangbar 200234, China)

Abstract: QUILLEN used methods of algebraic topology to prove the Brown Theorem. BACLAWSKI used the same theory to obtain a formula $\mu(P) = \mu(Q) + \sum_{y \in Q} \mu(y/f) \mu(0,y)$. This paper offers a combinatorial proof of the formula and uses the same methods to prove the Brown Theorem.

Key words: Brown Theorem; Mobius fuction; fiber