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Output-Feedback Control for a Class of Uncertain
Nonlinear Systems with Linearly Unmeasured States

Dependent Growth

SHANG Fang LIU Yun-Gang

Abstract This paper is devoted to the problem of global stabilization by output-feedback for a class of nonlinear systems with
uncertain control coefficients, stable zero-dynamics and linearly unmeasured states dependent growth. By first introducing two
kinds of appropriate state transformations, the original system is converted into the new system with deterministic virtual control
coefficients and the separated zero-dynamics. Then, a suitable observer based on high-gain K-filters is constructed for the new
system, and the backstepping design approach is successfully proposed to the output-feedback controller. It is shown that the global
asymptotic stability of the closed-loop system can be guaranteed by the appropriate choice of the design parameters. A simulation
example is also provided to show the correctness of the theoretical results and the effectiveness of the proposed approach.
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Because that the system states are incompletely mea-
surable, the problem of output-feedback control is more
challenging and difficult than that of state-feedback
control[1∼5]. Unlike linear systems, the separation prin-
ciple is invalid for most nonlinear systems, and hence the
observer and controller should be designed and analyzed to-
gether. The objective of control design based on observer is
to guarantee not only the stability of the closed-loop system
but also the convergence of the estimation error. Because
the theory of observer develops slowly[6∼9], the output-
feedback control based on observer is far from maturity,
and there are still many problems remaining unsolved[2, 10].
For example, a foundational question is what the sufficient
and necessary conditions are to output-feedback stabilize
nonlinear systems. It has been pointed out in the remark-
able paper [11] that if the power of the nonlinearity growth
with respect to unmeasured states is greater than 2, there
are counterexamples for which no output-feedback controls
exist.

Recently, the problem of output-feedback control design
has received much attention and been intensively investi-
gated for a class of nonlinear systems with unmeasured
states dependent growth[3, 12∼18]. For details, in [14], adap-
tive output-feedback tracking control was investigated for
a class of nonlinear systems linearly depending on unmea-
sured states and in generalized output-feedback canonical
form. In [12], exponentially stable output-feedback control
was considered for a family of nonlinear systems that are
dominated by a triangular system satisfying linear growth
condition, and in [15, 19], the more general case was con-
sidered where the linear growth rate was an unknown con-
stant. In [18], the results of [12] are generalized to the sys-
tems with unknown control coefficients by introducing the
novel observer based on high-gain K-filters. Furthermore,
in [3, 13, 16], output-feedback control was investigated for
systems with output dependent growth rate, and by con-
structing norm estimators, an extension was obtained to
the systems with unmeasured states dependent growth rate
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in [17].
This paper continues the investigation started in [18] and

considers the output-feedback stabilizing control design for
a more general class of nonlinear systems with uncertain
control coefficients, hidden zero-dynamics and linearly un-
measured states dependent growth, and generalizes the rel-
evant results distributed in [1, 12, 15, 18]. Mainly thanks to
the presence of the unmeasured states dependent growth
and the uncertain control coefficients, the output-feedback
control problem of the systems under consideration is very
hard and hence a very meaningful question. In addition,
due to the existence of the hidden zero-dynamics, it is dif-
ficult to directly carry out the output-feedback control de-
sign. To achieve the control objective, two kinds of linear
state transformations are firstly introduced. One is to lump
the uncertain control coefficients together, and then a new
system with deterministic virtual control coefficients is ob-
tained. The other is to separate the zero-dynamics from
the system. Then, enlightened by [18], we propose an ap-
propriate high-gain K-filters based on which the state es-
timation is successfully constructed. Such kind of K-filters
indeed play a central role in the output-feedback control de-
sign which will be realized by the backstepping approach.
Moreover, by choosing the design parameters properly, the
global asymptotic stability of the closed-loop system can
be guaranteed.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the system to be considered and formu-
lates the control problem to be solved. Section 3 provides
two kinds of linear state transformations through which
the original system can be converted into a new system
that is convenient for observer design and observer-based
output-feedback control design. Section 4 gives the main
results of this paper, that is, the high-gain K-filters based
observer is constructed and the output-feedback stabilizing
control design is given using backstepping method. Section
5 is the necessary complementarity to Section 4, where fur-
ther study on a second-order system is addressed to the
case without zero-dynamics, and accordingly the numeri-
cal simulation is given to demonstrate the correctness of
the theoretical results. Section 6 presents some concluding
remarks. The paper ends with an appendix which provides
rigorous proofs of a number of important propositions and
lemmas.

Notations

Throughout this paper, I denotes identity matrix
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of appropriate dimension; for any xxx ∈ Rn, xi de-
notes its ith element and xxx[i] denotes [x1, . . . , xi]

T;

000[i] ∈ Ri denotes the zero vector; eeei,j(i ≤ j) denotes

[000T
[i−1], 1, 000T

[j−i]]
T ∈ Rj ; bbb′[i,0] denotes [b′i, b′i−1, . . . , b′0]

T ∈
Ri+1; ccci, [j] denotes [ci1, . . . , cij ]

T ∈ Rj and ΦΦΦi, [j, k] de-

notes [Φi, j , . . . , Φi, k]T ∈ Rk−j+1. We use ‖ · ‖1, ‖ · ‖(i.e.,
‖ · ‖2) and ‖ · ‖F to denote 1-norm, Euclidean norm (or
2-norm) and Frobenius norm for vectors respectively, and
the corresponding induced norm for matrices. Specifically,
for vector xxx, ‖xxx‖ ≤ ‖xxx‖1 ≤ √

n‖xxx‖ and for matrix A,
‖A‖ ≤ ‖A‖F . Besides, for simplicity of expression, we
sometimes drop the arguments of function when no con-
fusion is caused.

1 System description and problem for-
mulation

Consider the following class of single-input-single-output
(SISO) nonlinear systems:



























ζ̇i = giζi+1 + φi(t,ζζζ, u), i = 1, . . . , ρ − 1,

ζ̇j = gjζj+1 + bn−ju + φj(t,ζζζ, u),

j = ρ, ρ + 1, . . . , n − 1,

ζ̇n = gnb0u + φn(t,ζζζ, u),

y = ζ1,

(1)

where ζζζ = [ζ1, . . . , ζn]T ∈ Rn is the system state with the
initial condition ζζζ(0) = ζζζ0; u ∈ R and y ∈ R are the
control input and output, respectively; ρ is the relative de-
gree of the system satisfying ρ + m = n; both gi’s and
bi’s are unknown constants, called uncertain control coeffi-

cients, and specially, gi 6= 0, b0 6= 0 and bm 6= 0; functions
φi : R+ × Rn × R → R, i = 1, . . . , n are piecewise contin-
uous in the first argument and locally Lipschitz in the rest
arguments. In what follows, suppose that only the system
output is measurable, and the relative degree ρ > 1.

Obviously, we can see that control u appears in the
last (m + 1) equations of system (1). This means that
hidden zero-dynamics exist in the system. When control
coefficients are known, if 1 < ρ < n, then we can con-
struct K-filters and the output-feedback controller to sta-
bilize system (1) by consulting Chapter 8 of [1] and if
ρ = n, system (1) degenerates to a simpler case which has
been extensively investigated based on the Luenberger-like
observer[12∼15]. Moreover, when control coefficients are un-
known, various theoretical results have been obtained un-
der somewhat strong assumption that the nonlinearities are
dominated by some known functions of measurable out-
put y[1]. When the system nonlinearities inherently de-
pend on unmeasured states, the output-feedback control
design will become very hard. Faire recently, for the sys-
tems with unmeasured states dependent growth and with-
out zero-dynamics, [12, 15, 16] and [18] consider the prob-
lem of output-feedback stabilization for the cases of ex-
actly known control coefficients and uncertain control co-
efficients, respectively.

This paper is to investigate the problem of global output-
feedback stabilization for system (1) with uncertain control
coefficients, zero-dynamics and unmeasured states depen-
dent growth under the following assumptions:

Assumption 1. For i = 1, . . . , n and any t ∈ R+, ζζζ ∈
Rn, u ∈ R, there exists a known constant c > 0, such that

|φi(t,ζζζ, u)| ≤ c(|ζ1|+ |ζ2|+ · · ·+ |ζk|), k = min{i, ρ}. (2)

Assumption 2. The signs of gi, i = 1, . . . , ρ − 1 are
known, and there exist known positive constants g

i
and gi

satisfying:

g
i
≤ |gi| ≤ gi, i = 1, . . . , n. (3)

Assumption 3. The sign of bm is known, and there
exist known constants bN > 0 and bi > 0, i = 0, 1, . . . , m
such that

|bi| ≤ bi, i = 0, 1, . . . , m − 1, bN ≤ |bm| ≤ bm. (4)

Assumption 4. For the polynomial p(s) = b′msm+· · ·+
b′1s + b′0, where m ≥ 1, b′i = biΠ

n−i−1
k=1 gk, i = 1, . . . , m and

b′0 = b0Π
n
k=1gk, there exists a known positive constant d

such that the real part of each pole of the polynomial is
not larger than − d

2
.

For the aim of better comprehension, we would like to
give further interpretation for the above four assumptions.
Assumption 1 means that system (1) has linearly unmea-
sured states dependent growth. It seems to be stringent,
but it is crucial to carry out the output-feedback control.
This point can be seen from [3, 12 ∼ 15, 18, 20]. On the
other hand, maybe due to the existence of hidden zero-
dynamics and uncertainties in control coefficients, it is hard
to relax Assumption 1 to a weaker one.

Assumptions 2 and 3 give some available information
about the uncertain coefficients gi’s and bi’s. The known
signs of bm and gi, i = 1, . . . , ρ − 1 will play an important
role in control design. Otherwise, one can not decide the
direction along which the control operates, and the closed-
loop system may be unstable. The boundary restrictions
imposed on gi’s and bi’s look somewhat severe but cannot
be removed as will be detailed later.

Assumption 4 means that the hidden zero-dynamics of
the system possess the input-to-state stable property. This
assumption on the zero-dynamics is commonly implicitly
assumed in most of the work in robust/adaptive output-
feedback control of nonlinear systems; see [1, 10, 13] and
references therein.

According to Assumption 2, there exist known positive
constants gN := min

{

g
1
, g

1
g
2
, · · · , Πn

j=1gj

}

and gM :=

max
{

g1, g1g2, . . . , Πn
j=1gj

}

such that gN ≤
∣

∣Πi
j=1gj

∣

∣ ≤
gM , i = 1, . . . , n.

Similarly, by Assumption 3, we know that bM :=
max{b0, b1, . . . , bm} is a known positive constant such that
|bi| ≤ bM , i = 0, 1, . . . , m − 1 and bN ≤ |bm| ≤ bM .
Moreover, by Assumptions 2 and 3, the sign of b′m =
bmΠρ−1

k=1gk 6= 0 is known.
The objective of the paper is to design a dynamic output-

feedback controller for system (1), so that the closed-loop
system is globally asymptotically stable. This will be car-
ried out based on the methods of appropriate state transfor-
mation and observer-based backstepping as will be detailed
in the next sections.

2 Linear state transformations

In this section, it can be shown that, through two kinds
of linear state transformations, the system can be success-
fully transformed into a system with deterministic virtual
control coefficients, and the hidden zero-dynamics can be
separated out, and then the output-feedback control design
becomes less difficult.

By carefully examining system (1), we find that the nega-
tive influence of uncertain control coefficient, gi, disappears
if the corresponding equation is multiplied by g1 · · · gi−1
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with the scaled state being defined as the new state. This
simple observation motivates us to introduce the following
linear state transformation to convert the original system
into a new system in which there are no uncertain virtual
control coefficients, and the original uncertain control co-
efficients are lumped into the actual control coefficients:

x1 = ζ1, x2 = g1ζ2, · · · , xn = g1g2 · · · gn−1ζn. (5)

The dynamics of xxx = [x1, . . . , xn]T are then given by
{

ẋxx = Anxxx + bbbu + fff(t, xxx, u),

y = x1,
(6)

where xxx ∈ Rn is the state of the new system with the initial
condition depending on ζζζ0 and (5), and fff = [f1, . . . , fn]T =
[φ1, g1φ2, . . . , g1g2 · · · gn−1φn]T,

An =







0
...

I

0 0 · · · 0






, bbb =

[

000[ρ−1]

bbb′[m,0]

]

.

It is worth pointing out that when ρ = n (or m = 0), the
above transformation is enough and output-feedback con-
trol design can be pursued since there are no zero-dynamics
in this particular case. For the sake of integrality in the
later development, system (6) with ρ = n is rewritten as:

{

Σχχχ : χ̇χχ = Aρχχχ + b′meeeρ,ρu + ΦΦΦρ,[ρ](t, xxx, u);

χ1 = eeeT
1,ρχχχ = y,

(7)

where χχχ = xxx, ΦΦΦρ,[ρ] = fff .
However, when ρ < n, the foregoing linear transforma-

tion is still necessary but somewhat insufficient for the con-
trol design purpose. This is chiefly because that to develop
an output-feedback stabilizing controller, certain closed-
loop observer should be constructed. But due to the pres-
ence of hidden zero-dynamics in (6), it is very difficult to
determine what kind of observer is appropriate and to an-
alyze the closed-loop observer error performance. Mainly
enlightened by the existing relevant works on the stabiliza-
tion of the similar systems with hidden zero-dynamics (see
e.g., [21, 22]), an effectual idea is to look for some kind of
state transformation to separate the zero-dynamics from
the system. To achieve this, let us next introduce the sec-
ond kind of linear state transformation for system (6) with
ρ < n, which will be defined in a step-by-step manner, and
simultaneously, the effect and meaning for each step of the
state transformation will be exhibited accordingly.

The effect of the first transformation T1 (i.e., the lin-
ear transformation matrix) is to transform all the elements
of B into zero except the ρth element. Let ςςς1 = T1xxx,
where T1 and T−1

1 are the same as I except their ρth
columns that are [000T

[ρ−1], 1, −b′m−1/b′m, . . . , −b′0/b′m]T and

[000T
[ρ−1], 1, b′m−1/b′m, . . . , b′0/b′m]T, respectively. Then, we

can get the dynamics of ςςς1 as follows:

ς̇ςς1 = C1ςςς1 + BBBu + ΦΦΦ1(t, xxx, u), (8)

where C1 is the same as An except its ρth and
(ρ + 1)st columns, which are [000T

[ρ−2], 1, cccT
1, [m+1]]

T and

[000T
[ρ−1], 1, − 1

b′m
bbb′T[m−1, 0]]

T, respectively, and BBB = T1bbb =

[000T
[ρ−1], b′m, 000T

[m]]
T = b′meeeρ,n, ΦΦΦ1 = T1fff(t, x, u).

The rest ρ − 1 transformations are designed mainly for
matrix C1 such that we can eventually get Cρ which is the

same as matrix I except the first and (ρ + 1)st columns.
Specifically, the second transformation is to transform the
ρth column of C1 into eeeρ−1,n, i.e., [000T

[ρ−2], 1, 000T
[m+1]]

T. Let

ςςς2 = T2ςςς1, where T2 and T−1
2 are the same as I except

their (ρ− 1)st columns that are [000T
[ρ−2], 1, −cccT

1, [m+1]]
T and

[000T
[ρ−2], 1, cccT

1, [m+1]]
T, respectively. Noting that BBB = T2BBB,

the dynamics of ςςς2 is:

ς̇ςς2 = C2ςςς2 + BBBu + ΦΦΦ2(t, xxx, u), (9)

where C2 is the same as An except its (ρ − 1)st
and (ρ + 1)st columns which are [000T

[ρ−3], 1, cccT
2, [m+2]]

T

and [000T
[ρ−1], 1, − 1

b′m
bbb′T[m−1, 0]]

T, respectively, and ΦΦΦ2 =

T2ΦΦΦ1(t, xxx, u).
Similarly, the ith (i = 3, 4, . . . , ρ − 1) linear transfor-

mation Ti can be constructed to transform the (ρ − i +
2)nd column of Ci−1 into eeeρ−i+1,n. Let ςςςi = Tiςςςi−1,
where Ti and T−1

i are the same as I except their (ρ −
i + 1)st columns, which are [000T

[ρ−i], 1, −cccT
i−1, [m+i−1]]

T and

[000T
[ρ−i], 1, cccT

i−1, [m+i−1]]
T, respectively. Noting that BBB =

TiTi−1 · · ·T2BBB, the dynamics of ςςςi is:

ς̇ςςi = Ciςςςi + BBBu + ΦΦΦi(t, xxx, u), (10)

where Ci is the same as An except its (ρ − i + 1)st

and (ρ + 1)st columns which are
[

000T
[ρ−i−1], 1, cccT

i, [m+i]

]T

and
[

000T
[ρ−1], 1, − 1

b′m
bbb′T[m−1, 0]

]T
, respectively, and ΦΦΦi =

TiΦΦΦi−1(t, xxx, u).
Finally, the ρth linear transformation ςςςρ = Tρςςςρ−1 can

be constructed to transform the second column of Cρ−1 into
eee1,n, where Tρ and T−1

ρ are the same as I except their first

columns that are
[

1, −cccT
ρ−1, [n−1]

]T
and

[

1, cccT
ρ−1, [n−1]

]T
,

respectively. Noting that BBB = TρTρ−1 · · ·T2BBB, the dynam-
ics of ςςςρ is:

ς̇ςςρ = Cρςςςρ + BBBu + ΦΦΦρ(t, xxx, u), (11)

where Cρ is the same as An except its first and (ρ + 1)st

columns which are cccρ,[n] and
[

000T
[ρ−1], 1, − 1

b′m
bbb′T[m−1, 0]

]T
, re-

spectively, and ΦΦΦρ = TρΦΦΦρ−1 = [Φρ,1, . . . , Φρ,n]T.
Up to now, the two kinds of linear state transformations

are completely introduced. For the transformed system
(11), it is natural to design observer and observer-based
output-feedback control, as will be seen from the later de-
velopment.

First, we would like to give the 2-norm estimation of
the unknown vectors cccρ,[ρ] and cccρ, [ρ+1,n] which can be de-
duced from the above state transformations though a bit
complicatedly. In fact, from its definition, one can see that
each element of ccci, [m+i] is in the form of a quotient whose
denominator is a power function of b′m and numerator a
polynomial of the constants b′0, b′1, . . . , b′m. From this ob-
servation and Assumptions 2 and 3, we can easily verify
the following proposition:

Proposition 1. For cccρ, [n] introduced above, there exist
known positive constants d0 and d′

0 such that

‖cccρ,[ρ]‖ ≤ d0, ‖cccρ,[ρ+1,n]‖ ≤ d′
0. (12)

Before designing high-gain K-filters based observer and
output-feedback controller, we have to decompose system
(11) appropriately. Let χχχ = [χ1, . . . , χρ]

T = ςςςρ,[1, ρ] and

ηηη = [η1, . . . , ηm]T = ςςςρ,[ρ+1, n]. Then system (11) can be
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divided into the following form:


















Σηηη : η̇ηη = Dηηη + cccρ,[ρ+1,n]χ1 + ΦΦΦρ,[ρ+1,n](t, xxx, u);

Σχχχ : χ̇χχ = Aρχχχ + b′meeeρ,ρu + eeeρ,ρη1 + cccρ,[ρ]χ1

+ ΦΦΦρ,[ρ](t, xxx, u);

χ1 = eeeT
1,ρχχχ = y,

(13)

where D =
[

− bbb′
[m−1, 0]

b′m
, [I, 000[m−1]]

T
]

is Hurwitz ensured

by Assumption 4. So there is a positive definite matrix

Q = QT =

∫ ∞

0

exp(DTt) exp(Dt)dt, (14)

which satisfies the Lyapunov equation: DTQ + QD = −I .
We have the following lemma for the 2-norm of Q, whose

proof is given in Appendix.
Lemma 1. For any Hurwitz matrix D with Re(λ(D)) ≤

− d
2

< 0, the matrix Q defined by (14) satisfies the following
inequality: ‖Q‖ ≤ n

d
.

The following lemma is natural and can be easily proved
with Assumptions 1, 2 and 3.

Lemma 2. For ∀(t, xxx, u) ∈ R+ × Rn × R and
χχχ = [I 0ρ×m]Tρ · · · T1xxx ∈ Rρ, there is a known pos-
itive constant c′ such that the unknown nonlinearities
Φρ,i : R+ × Rn × R → R, i = 1, . . . , n of system (7)
or system (13) satisfy

|Φρ,i(t, xxx, u)| ≤ c′
(

|χ1| + · · · + |χk|
)

, k = min{i, ρ}. (15)

The next section is the core of present paper, in which
we will firstly construct the appropriate high-gain K-filters
based observer, and then design the output-feedback con-
troller by the backstepping method.

3 Output-feedback stabilizing control
design

This section turns to output-feedback control design for
system (7) (ρ = n) or system (13) (ρ < n). Since they
are equivalent to system (1), the global asymptotic stabil-
ity of the transformed and original systems can be achieved
simultaneously. This section includes three parts: in Sub-
section 4.1, a novel approach for observer design will be
proposed based on high-gain K-filters for system (7) or the
subsystem Σχχχ of system (13); Subsection 4.2 is restricted
to the case of ρ < n, where a globally asymptotically stabi-
lizing output-feedback controller will be constructed by the
traditional backstepping method[1], and the case of ρ = n
is simple which will be studied in the next section by an
example; in Subsection 4.3, the main result of the paper is
summarized, which shows that the global asymptotic sta-
bility of the closed-loop system can be guaranteed by the
appropriate choice of the design parameters.

3.1 High-gain K-filters and state estimation

For system (7) or the subsystem Σχχχ of system (13), by
[18], we introduce the following high-gain K-filters:

{

ξ̇ξξ = Alllεξξξ − lllεy,

λ̇λλ = Alllελλλ + eeeρ,ρu,
(16)

where ε ∈ (0, 1) is a constant, lllε = [ l1
ε

, l2
ε2 , . . . ,

lρ

ερ ]T, and

Alllε = Aρ + lllεeee
T
1,ρ.

The constant vector lll = [l1, . . . , lρ]
T is chosen to ensure

that matrix Alll = Aρ + llleeeT
1,ρ is Hurwitz. Then there is

a unique symmetric positive definite matrix Plll satisfying
AT

lll Plll + PlllAlll = −I . Define Iε = diag[1, ε, · · · , ερ−1]. It can
be shown that εAlllε = I−1

ε AlllIε. So matrix Plllε = IεPlllIε is
symmetric positive definite, and satisfies

AT
lllεPlllε + PlllεAlllε = −ε−1I2

ε . (17)

This means that Alllε is also a Hurwitz matrix.
Define the state estimate of state χχχ as χ̂χχ = ξξξ + b′mλλλ, and

the state estimation error as χ̃χχ = χχχ − χ̂χχ.
In the next development, we will consider the properties

of the state estimation error for the cases of ρ < n and
ρ = n, respectively.

Case 1: When ρ < n, the state estimation error χ̃χχ sat-
isfies

˙̃χχχ = Alllεχ̃χχ + eeeρ,ρη1 + cccρ,[ρ]χ1 + ΦΦΦρ,[ρ]. (18)

To prepare for the backstepping procedure in the next
subsection, we have to rewrite the equation of ẏ. Since the
state χ2 is not available, we need to replace χ2 by χ̃2 +ξ2 +
b′mλ2. Then, we have

ẏ = b′mλ2 + cρ,1y + χ̃2 + ξ2 + Φρ,1. (19)

Up to now, the whole system for control design is ob-
tained



























˙̃χχχ = Alllεχ̃χχ + eeeρ,ρη1 + cccρ,[ρ]χ1 + ΦΦΦρ,[ρ],

ξ̇ξξ = Alllεξξξ − lllεy,

ẏ = b′mλ2 + cρ,1y + χ̃2 + ξ2 + Φρ,1,

λ̇i = li
εi λ1 + λi+1, i = 2, 3, . . . , ρ − 1,

λ̇ρ =
lρ

ερ λ1 + u.

(20)

Obviously, the study of the global asymptotic stabilization
of the above system is equivalent to that of system (13), as
well as the original system (1). So, it is enough to consider
system (20).

Let’s next study the property of the subsystem Σηηη. The
following proposition shows that this subsystem is input-to-
state stable (ISS) and can be regarded as the zero-dynamics
of the whole system (13). The proof of the proposition is
provided in Appendix.

Proposition 2. For the subsystem Σηηη of system (13),
let Vηηη = ηηηTQηηη. Then there are known positive constants
d0,1, d0,2 and d0,3, independent of ε, such that

V̇ηηη ≤ − 3
8
‖ηηη‖2 + d0,1

(

d′2
0 + m2c′2ε−(2ρ−2)

)

y2

+ε−(2ρ−2)d0,2‖Iεχ̃χχ‖2 + ε−(2ρ−2)d0,2‖Iεξξξ‖2

+ε−(2ρ−2)d0,3

ρ
∑

i=2

ε2i−2λ2
i , (21)

for any χ̃χχ, ξξξ, ηηη, y, λi, i = 2, 3, . . . , ρ, where d′
0 has been

specified in Proposition 1.
The following two propositions play an important role

in control design in the sequent subsections. Specifically,
Propositions 3 and 4 characterize the ISS-like properties of
χ̃χχ and ξξξ of system (20) respectively. Besides, for the sake
of compactness, the proof of Proposition 3 is provided in
Appendix.

Proposition 3. For the subsystem χ̃χχ of system (20),
let Vχ̃χχ = χ̃χχTPlllεχ̃χχ. Then there are known positive constants
d0,4 ∼ d0,7 independent of ε, such that

V̇χ̃χχ ≤ −
(

1
2ε

− d0,4

)

‖Iεχ̃χχ‖2 + d0,5‖Iεξξξ‖2 + 2ε2ρ−1‖Pl‖2‖ηηη‖2

+d0,6y
2 + d0,7

ρ
∑

i=2

ε2i−2λ2
i , (22)
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for any χ̃χχ, ξξξ, ηηη, y, λi, i = 2, 3, . . . , ρ.
Proposition 4. For the subsystem ξξξ of system (20), let

Vξξξ = ξξξTPlllεξξξ. Then, for any ξξξ, y, the following inequality
holds:

V̇ξξξ ≤ − 1
2ε
‖Iεξξξ‖2 + 2‖Plll‖

2‖lll‖2

ε
y2. (23)

Proof. Noting that lllε = 1
ε
I−1

ε lll and Plllε = IεPlllIε, we
can show that the time derivative of Vξξξ satisfies

V̇ξξξ = − ‖Iεξξξ‖2

ε
− 2ξξξTIεPlllIεlllεy = − ‖Iεξξξ‖2

ε
− 2

ε
ξξξTIεPlllllly.

Then, by the method of completing square, we have

V̇ξξξ ≤ − ‖Iεξξξ‖2

ε
+ ‖Iεξξξ‖2

2ε
+ 2

ε
‖Plll‖2‖lll‖2y2

= − 1
2ε
‖Iεξξξ‖2 + 2‖Plll‖

2‖lll‖2

ε
y2,

for any ξξξ and y. �

Case 2: When ρ = n, the state estimation error χ̃χχ sat-
isfies

˙̃χχχ = Alllεχ̃χχ + ΦΦΦρ,[ρ]. (24)

Similarly, we rewrite the equation of ẏ = χ2 + Φρ,1 as ẏ =
b′mλ2 + χ̃2 + ξ2 +Φρ,1 and thus obtain the whole system for
control design:



























˙̃χχχ = Alllεχ̃χχ + ΦΦΦρ,[ρ],

ξ̇ξξ = Alllεξξξ − lllεy,

ẏ = b′mλ2 + χ̃2 + ξ2 + Φρ,1,

λ̇i = li
εi λ1 + λi+1, i = 2, 3, . . . , ρ − 1,

λ̇ρ =
lρ

ερ λ1 + u.

(25)

3.2 Output-feedback control design

This subsection is devoted to the constructive design of
output-feedback control for system (20) with ρ < n by the
traditional backstepping method, which is presented in a
step-by-step manner.

Step 1. Define V0 = ε2ρ−2Vηηη+Vχ̃χχ+Vξξξ, where Vηηη, Vχ̃χχ and
Vξξξ have been defined respectively in Propositions 2, 3 and
4. Let V1 = V0 + 1

2
y2 be the Lyapunov function candidate

for this step. Then, from Propositions 2, 3 and 4, and (19),
it follows that

V̇1 ≤ −ε2ρ−1
(

3
8ε

− 2‖Plll‖2
)

‖ηηη‖2 −
(

1
2ε

− d0,2 − d0,4

)

·‖Iεχ̃χχ‖2 −
(

1
2ε

− d0,2 − d0,5

)

‖Iεξξξ‖2 +
(

d′2
0 d0,1ε

2ρ−2

+m2c′2d0,1 + d0,6 +
2‖Plll‖2‖lll‖2

ε

)

y2 + (d0,3 + d0,7)

·
ρ

∑

i=2

ε2i−2λ2
i + y(b′mλ2 + cρ,1y + χ̃2 + ξ2 + Φρ,1).(26)

Let us first handle the last term on the right-hand side of
(26). From Proposition 1, it follows that |cρ,1| ≤ ‖cccρ,[ρ]‖ ≤
d0. Then, for any ξξξ, y, χ̃χχ, it is evident that

cρ,1y
2 ≤ d0y

2, yχ̃2 ≤ 1
4ε
‖Iεχ̃χχ‖2 + 1

ε
y2,

yξ2 ≤ 1
4ε
‖Iεξξξ‖2 + 1

ε
y2, yΦρ,1 ≤ c′y2. (27)

By substituting (27) into (26) and letting d′
1,1 = d0,2 +

d0,4, d′
1,2 = d0,2 + d0,5 and dλλλ = d0,3 + d0,7, we have

V̇1 ≤ −ε2ρ−1
(

3
8ε

− 2‖Plll‖2
)

‖ηηη‖2 −
(

1
4ε

− d′
1,1

)

‖Iεχ̃χχ‖2

−
(

1
4ε

− d′
1,2

)

‖Iεξξξ‖2 +
(

d′2
0 d0,1ε

2ρ−2 + m2c′2d0,1

+d0,6 + c′ + d0 + 2‖Plll‖
2‖lll‖2+2
ε

)

y2

+dλλλ

ρ
∑

i=3

ε2i−2λ2
i + dλλλε2λ2

2 + b′myλ2. (28)

Choose the virtual controller as

λ∗
2= − 1

ε

(

sign(b′m)

gN bN
L1 + ᾱ1

)

y =: −α1(L1)
ε

y, (29)

where ᾱ1 =
sign(b′m)

gN bN

(

d′2
0 d0,1 + m2c′2d0,1 + d0,6 + c′ + d0 +

2‖Plll‖2‖lll‖2 + 2
)

is clearly a known constant, and L1 ≥ 1 is
a constant to be determined later.

Define z1 = y and z2 = λ2 − λ∗
2. Observe that

dλλλε2λ2
2 ≤ 5dλλλε2z2

2 + µz1
1 (L1)y

2

+ µχ̃χχ
1 ‖Iεχ̃χχ‖2 + µξξξ

1‖Iεξξξ‖2, (30)

where µz1
1 (L1) = 2dλλλα2

1(L1), and µχ̃χχ
1 = µξξξ

1 = 0 for the
initial assignment of the forthcoming inductive step. Then,
substituting (29) and (30) into (28) results in

V̇1 ≤−ε2ρ−1
(

3
8ε

− 2‖Plll‖2
)

‖ηηη‖2 −
(

1
4ε

− d1,1

)

‖Iεχ̃χχ‖2

−
(

1
4ε

− d1,2

)

‖Iεξξξ‖2 −
(

L1
ε

− d1,3(L1)
)

y2

+ dλλλ

ρ
∑

i=3

ε2i−2λ2
i + 5dλλλε2z2

2 + b′myz2, (31)

where d1,1 = d′
1,1+µχ̃χχ

1 , d1,2 = d′
1,2+µξξξ

1, d1,3(L1) = µz1
1 (L1).

Step 2. Let V2 = V1 + 1
2
ε2z2

2 . Then, by (31), the time
derivative of V2 satisfies

V̇2 ≤ V̇1 + ε2z2ż2. (32)

By the definition of z2, we have

ż2 =λ3 +

2
∑

j=1

γ
λj

2 (L1)ε
−(3−j)λj +

2
∑

j=1

γ
ξj

2 (L1)ε
−(3−j)

· ξj + γy
2 (L1)ε

−2y + γ∆
2 (L1)ε

−1(cρ,1y + b′mλ2

+ χ̃2 + Φρ,1) (33)

with specified γλ2
2 (L1) = 0, γξ1

2 (L1) = 0, γy
2 (L1) = 0 for

the initial assignment of the forthcoming inductive step.
Before deriving the virtual controller λ∗

3, we should elim-
inate the “undesired” effect of z2 in (32). For this purpose,
by the method of completing square, we have

b′myz2 ≤ bMgM |y||z2| ≤ 1
ε
y2 + 1

4
max{1, b2

Mg2
M}εz2

2 , (34)

and the following inequalities































εγ∆
2 (L1)cρ,1yz2 ≤ 1

4
d2
0(γ

∆
2 (L1))

2ε2z2
2 + y2,

b′mεγ∆
2 (L1)λ2z2 ≤ 1

ε
y2 +

(

bMgM |γ∆
2 (L1)|

+ 1
4
b2
Mg2

Mα2
1(L1)(γ

∆
2 (L1))

2
)

εz2
2 ,

εγ∆
2 (L1)χ̃2z2 ≤ 1

8ε
‖Iεχ̃χχ‖2 + 2(γ∆

2 (L1))
2εz2

2 ,

εγ∆
2 (L1)Φρ,1z2 ≤ 1

4
c′2(γ∆

2 (L1))
2ε2z2

2 + y2.

(35)

Substituting (33), (34) and (35) into (32), we have

V̇2 ≤ −ε2ρ−1
(

3
8ε

− 2‖Plll‖2
)

‖ηηη‖2 −
(

1
8ε

− d1,1

)

‖Iεχ̃χχ‖2

−
(

1
4ε

− d1,2

)

‖Iεξξξ‖2 −
(

L1−2
ε

− d1,3(L1) − 2
)

y2

+dλλλ

ρ
∑

i=4

ε2i−2λ2
i + ε2z2

(

2
∑

j=1

γ
λj

2 (L1)ε
−(3−j)λj
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+

2
∑

j=1

γ
ξj

2 (L1)ε
−(3−j)ξj + γy

2 (L1)ε
−2y

)

+ᾱ2(L1)z2 + dλλλε4λ2
3 + ε2z2λ3. (36)

where ᾱ2(L1) = 5dλλλ + 1
4
(d2

0 + c′2)(γ∆
2 (L1))

2 +

bMgM |γ∆
2 (L1)|+2(γ∆

2 (L1))
2 + 1

4

(

b2
Mg2

Mα2
1(L1)(γ

∆
2 (L1))

2 +

max{1, b2
Mg2

M}
)

. Thus, we can choose the virtual controller
as

λ∗
3 = −ε−1α2(LLL[2])z2 −

2
∑

j=1

γ
λj

2 (L1)ε
−(3−j)λj

−
2

∑

j=1

γ
ξj

2 (L1)ε
−(3−j)ξj − γy

2 (L1)ε
−2y, (37)

where α2(LLL[2]) = L2 + ᾱ2(L1), and L2 ≥ 1 is a constant to
be determined later.

Define z3 = λ3 − λ∗
3. Similar to Step 1, we should

estimate dλλλε4λ2
3 by an appropriate function of z1, z2, z3,

ξξξ and χ̃χχ. Since λ1 = 1
b′m

(

y − χ̃1 − ξ1

)

, we have λ2
1 ≤

3
b2
N

g2
N

(

y2 + χ̃2
1 + ξ2

1

)

. By this and (30), we have

dλλλε4λ2
3 ≤ 7dλλλε4z2

3 +
2

∑

j=1

µ
zj

2 (LLL[2])ε
2j−2z2

j

+µχ̃χχ
2 (L1)‖Iεχ̃χχ‖2 + µξξξ

2(L1)‖Iεξξξ‖2,

where µz1
2 (LLL[2]) = 21dλλλ

b2
N

g2
N

(γλ1
2 (L1))

2 +7(γλ2
2 (L1))

2µz1
1 (L1)+

7dλλλ(γy
2 (L1))

2, µz2
2 (LLL[2]) = 7dλλλα2

2(LLL[2]) + 35dλλλ(γλ2
2 (L1))

2,

µχ̃χχ
2 (L1) = 21dλλλ

b2
N

g2
N

(γλ1
2 (L1))

2 + 7(γλ2
2 (L1))

2µχ̃χχ
1 , µξξξ

2(L1) =

21dλλλ

b2
N

g2
N

(γλ1
2 (L1))

2+7(γλ2
2 (L1))

2µξξξ
1+max{7dλλλ(γ

ξj

2 (L1))
2, j =

1, 2}.
By substituting this and (37) into (36), we have

V̇2 ≤ −ε2ρ−1
(

3
8ε

− 2‖Plll‖2
)

‖ηηη‖2 −
(

1
8ε

− d2,1(L1)
)

·‖Iεχ̃χχ‖2 −
(

1
4ε

− d2,2(L1)
)

‖Iεξξξ‖2 −
(

L1−2
ε

−d2,3(LLL[2])
)

z2
1 −

(L2

ε
− d2,4(LLL[2])

)

ε2z2
2

+dλλλ

ρ
∑

i=4

ε2i−2λ2
i + 7dλλλε4z2

3 + ε2z2z3, (38)

where d2,1(L1) = d1,1 + µχ̃χχ
2 (L1), d2,2(L1) = d1,2 + µξξξ

2(L1),
d2,3(LLL[2]) = d1,3(L1) + 2 + µz1

2 (LLL[2]), and d2,4(LLL[2]) =
µz2

2 (LLL[2]).

Inductive Step. Suppose at step k − 1 (k =
3, 4, . . . , ρ), there exists a smooth, positive definite and
proper function Vk−1(ηηη, χ̃χχ, ξξξ, z1, . . . , zk−1) whose time
derivative satisfies

V̇k−1 ≤ −ε2ρ−1
( 3

8ε
− 2‖Plll‖2

)

‖ηηη‖2 −
( 1

2kε
− dk−1,1

(LLL[k−2])
)

‖Iεχ̃χχ‖2 −
(

1
4ε

− dk−1,2(LLL[k−2])
)

‖Iεξξξ‖2

−
2

∑

j=1

(

Lj − (k − j)

ε
− dk−1,j+2(LLL[k−1])

)

ε2j−2z2
j

−
k−2
∑

j=3

(

Lj − 1

ε
− dk−1,j+2(LLL[k−1])

)

ε2j−2z2
j

−
(Lk−1

ε
− dk−1,k+1(LLL[k−1])

)

ε2k−4z2
k−1

+dλλλ

ρ
∑

i=k+1

ε2i−2λ2
i + (2k + 1)dλλλε2k−2z2

k

+ε2k−4zk−1zk, (39)

where z1 = y, zi = λi − λ∗
i , i = 2, 3, . . . , k, and λ∗

i ’s are a
set of virtual controllers in the following forms:

λ∗
i = − ε−1αi−1(LLL[i−1])zi−1 −

i−1
∑

j=1

γ
λj

i−1(LLL[i−2])ε
−(i−j)λj

−
i−1
∑

j=1

γ
ξj

i−1(LLL[i−2])ε
−(i−j)ξj − γy

i−1(L1)ε
−(i−1)y.

(40)

From (40), we can find nonnegative functions

µ
zj

i−1(·), µχ̃χχ
i−1(·), µξξξ

i−1(·), i = 2, 3, . . . , k, j = 1, . . . , i − 1,
such that

dλλλε2i−2λ2
i ≤ (2i + 1)dλλλε2i−2z2

i +

i−1
∑

j=1

µ
zj

i−1(LLL[i−1])ε
2j−2z2

j

+µχ̃χχ
i−1(LLL[i−2])‖Iεχ̃χχ‖2 + µξξξ

i−1(LLL[i−2])‖Iεξξξ‖2.(41)

The dynamics of variable zi (i = 2, 3, . . . , k − 1) can be
immediately computed from (40):

żi = λi+1 +

i
∑

j=1

γ
λj

i (LLL[i−1])ε
−(i+1−j)λj

+
i

∑

j=1

γ
ξj

i (LLL[i−1])ε
−(i+1−j)ξj + γy

i (L1)ε
−iy

+γ∆
i (LLL[i−1])ε

−(i−1)(cρ,1y + b′mλ2 + χ̃2 + Φρ,1).

In what follows, we will show that the above state-
ments still hold at step k. For this aim, choose Vk =
Vk−1 + 1

2
ε2k−2z2

k, where zk = λk − λ∗
k and the virtual con-

troller λ∗
k are smooth functions. For notational convenience

and consistency, let λρ+1 = u. Then, computing the time
derivative of Vk, we have

V̇k ≤ V̇k−1 + ε2k−2zkżk. (42)

By the definition of zk, we have

żk = λk+1 +

k
∑

j=1

γ
λj

k (LLL[k−1])ε
−(k+1−j)λj

+

k
∑

j=1

γ
ξj

k (LLL[k−1])ε
−(k+1−j)ξj + γy

k (L1)ε
−ky

+γ∆
k (LLL[k−1])ε

−(k−1)(cρ,1y + b′mλ2 + χ̃2 + Φρ,1), (43)

where γ
λj

k (LLL[k−1]), γ
ξj

k (LLL[k−1]), γ
y

k(L1) and γ∆
k (LLL[k−1]), j =

1, . . . , k are defined as

γλ1
k (LLL[k−1]) = lk +

k−1
∑

j=1

ljγ
λj

k−1(LLL[k−2])

+αk−1(LLL[k−1])γ
λ1
k−1(LLL[k−2]),

γ
λj

k (LLL[k−1]) = αk−1(LLL[k−1])γ
λj

k−1(LLL[k−2])

+γ
λj−1

k−1 (LLL[k−2]), j = 2, 3, . . . , k − 1,

γ
λk
k (LLL[k−1]) = γ

λk−1

k−1 (LLL[k−2]) + αk−1(LLL[k−1]),

γξ1
k (LLL[k−1]) =

k−1
∑

j=1

ljγ
ξj

k−1(LLL[k−2])
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+αk−1(LLL[k−1])γ
ξ1
k−1(LLL[k−2]),

γξ2
k (LLL[k−1]) = αk−1(LLL[k−1])γ

ξ2
k−1(LLL[k−2])

+γy

k−1(L1) + γξ1
k−1(LLL[k−2]),

γ
ξj

k (LLL[k−1]) = αk−1(LLL[k−1])γ
ξj

k−1(LLL[k−2])

+γ
ξj−1

k−1 (LLL[k−2]), j = 2, 3, . . . , k − 1,

γ
ξk
k (LLL[k−1]) = γ

ξk−1

k−1 (LLL[k−2]),

γy

k(L1) = αk−1(LLL[k−1])γ
y

k−1(L1) −
k−1
∑

j=1

ljγ
ξj

k−1(LLL[k−2]),

γ∆
k (LLL[k−1]) = αk−1(LLL[k−1])γ

∆
k−1(LLL[k−2]) + γy

k−1(L1).

From the above equations, we can see that

γ
λj

k (·), γξj

k (·), γy

k (·) and γ∆
k (·), j = 1, . . . , k are contin-

uous functions which can be derived recursively from their
initial assignment in Step 2, and become constant once the
value of LLL[k−1] is specified.

Before deriving the virtual controller λ∗
k+1, we should

eliminate the “undesired” effect of zk in (42). For this
purpose, by the method of completing square, we have

ε2k−4zk−1zk ≤ ε2k−5z2
k−1 + 1

4
ε2k−3z2

k

≤ ε2k−5z2
k−1 + 1

4
max{1, b2

Mg2
M}ε2k−3z2

k, (44)

and the following inequalities











































εk−1γ∆
k (LLL[k−1])cρ,1yzk ≤ 1

4
d2
0(γ

∆
k (LLL[k−1]))

2ε2k−2z2
k + y2,

b′mεk−1γ∆
k (LLL[k−1])λ2zk ≤ 1

4
b2
Mg2

M (γ∆
k (LLL[k−1]))

2ε2k−3z2
k

+ εz2
2 + 1

ε
y2 + 1

4
b2
Mg2

Mα2
1(L1)

· (γ∆
k (LLL[k−1]))

2ε2k−3z2
k,

εk−1γ∆
k (LLL[k−1])χ̃2zk ≤ 2k−1(γ∆

k (LLL[k−1]))
2ε2k−3z2

k

+ 1
2k+1ε

‖Iεχ̃χχ‖2,

εk−1γ∆
k (LLL[k−1])Φρ,1zk ≤ 1

4
c′2(γ∆

k (LLL[k−1]))
2ε2k−2z2

k + y2.

(45)

Choose the virtual controller as

λ∗
k+1 = −ε−1αk(LLL[k])zk −

k
∑

j=1

γ
λj

k (LLL[k−1])ε
−(k+1−j)λj

−
k

∑

j=1

γ
ξj

k (LLL[k−1])ε
−(k+1−j)ξj − γy

k(L1)ε
−ky, (46)

where αk(LLL[k]) = Lk + ᾱk(LLL[k−1]), ᾱk(LLL[k−1]) = (2k +

1)dλλλ + 1
4

max{1, b2
Mg2

M} + 2k−1(γ∆
k (LLL[k−1]))

2 + 1
4
(d2

0 +

c′2)(γ∆
k (LLL[k−1]))

2 + 1
4
b2
Mg2

M (α2
1(L1) + 1)(γ∆

k (LLL[k−1]))
2, and

Lk ≥ 1 is a constant to be determined later. Note that once
the value of LLL[k] is specified, αk(LLL[k]) is a known positive
constant.

Define zk+1 = λk+1 − λ∗
k+1 when k < ρ and zρ+1 = 0.

Then, similarly, we have

dλλλε2kλ2
k+1 ≤(2k + 3)dλλλε2kz2

k+1 + (2k + 3)dλλλ(γy

k(L1))
2y2

+ (2k + 3)dλλλα2
k(LLL[k])ε

2k−2z2
k + (2k + 3)dλλλ

· max
{

(γ
ξj

k (LLL[k−1]))
2, j = 1, . . . , k

}

‖Iεξξξ‖2

+ (2k + 3)dλλλ

k
∑

j=1

(γ
λj

k (LLL[k−1]))
2ε2j−2λ2

j .

(47)

Clearly, the last term on the right-hand side of the above
inequality is undesirable and has to be handled. By (41),

we have the following inequality

(2k + 3)dλλλ

k
∑

j=1

(γ
λj

k (LLL[k−1]))
2ε2j−2λ2

j

≤ (2k + 3)
k

∑

j=1

(γ
λj

k (LLL[k−1]))
2(2j + 1)dλλλε2j−2z2

j

+(2k + 3)
k

∑

j=1

(γ
λj

k (LLL[k−1]))
2

j−1
∑

i=1

µzi
j−1(LLL[j−1])ε

2i−2z2
i

+(2k + 3)
k

∑

j=1

(γ
λj

k (LLL[k−1]))
2µχ̃χχ

j−1(LLL[i−2])‖Iεχ̃χχ‖2

+(2k + 3)
k

∑

j=1

(γ
λj

k (LLL[k−1]))
2µξξξ

j−1(LLL[i−2])‖Iεξξξ‖2. (48)

Substituting this into (47), we have for k < ρ

dλλλε2kλ2
k+1 ≤(2k + 3)dλλλε2kz2

k+1 +
k

∑

j=1

µ
zj

k (LLL[k])ε
2j−2z2

j

+ µχ̃χχ

k (LLL[k−1])‖Iεχ̃χχ‖2 + µξξξ

k(LLL[k−1])‖Iεξξξ‖2.

(49)

Specially, one can see that since dλλλ

∑ρ

i=ρ+1 ε2i−2λ2
i = 0,

it is unnecessary for Step ρ to take the computation sim-
ilar to (49). However, for the sake of the integrality of
the inductive steps, we let µ

zj
ρ (LLL[ρ]) = 0, j = 1, . . . , ρ,

µχ̃χχ
ρ (LLL[ρ−1]) = 0 and µξξξ

ρ(LLL[ρ−1]) = 0.
Substituting (43), (44), (45), (46) and (49) into (42), we

obtain

V̇k ≤ −ε2ρ−1
( 3

8ε
− 2‖Plll‖2

)

‖ηηη‖2 −
( 1

2k+1ε
− dk,1(LLL[k−1])

)

·‖Iεχ̃χχ‖2 −
( 1

4ε
− dk,2(LLL[k−1])

)

‖Iεξξξ‖2 −
2

∑

j=1

(Lj

ε

− (k + 1 − j)

ε
− dk,j+2(LLL[k])

)

ε2j−2z2
j −

k−1
∑

j=3

(Lj − 1

ε

−dk,j+2(LLL[k])
)

ε2j−2z2
j −

(Lk

ε
− dk,k+2(LLL[k])

)

ε2k−2

·z2
k + dλλλ

ρ
∑

i=k+2

ε2i−2λ2
i + (2k + 3)dλλλε2kz2

k+1

+ε2k−2zkzk+1, (50)

where











































dk,1(LLL[k−1]) = dk−1,1(LLL[k−2]) + µχ̃χχ

k (LLL[k−1]),

dk,2(LLL[k−1]) = dk−1,2(LLL[k−2]) + µξξξ
k(LLL[k−1]),

dk,3(LLL[k]) = dk−1,3(LLL[k−1]) + 2 + µz1
k (LLL[k]),

dk,4(LLL[k]) = dk−1,4(LLL[k−1]) + µz2
k (LLL[k]),

dk,j+2(LLL[k]) = dk−1,j+2(LLL[k−1]) + µ
zj

k (LLL[k]),

j = 3, 4, . . . , k − 1,

dk,k+2(LLL[k]) = µ
zk
k (LLL[k]).

From the above equations, we can see that dk,i(·), k =
3, 4, . . . , ρ, i = 1, . . . , k+2 are continuous functions which
can be derived recursively from their initial assignment in
step 2, and are undoubtedly constant once the value of LLL[k]

is specified. By more detailed analysis, we can see that
they are all positive except dρ,ρ+2(LLL[ρ]) = 0.
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At the last step, the design of the controller u is slightly
different from that of other steps, because all the junk
terms, i.e., λ2

i , 1 ≤ i ≤ ρ in (39), have already been canceled
at step ρ − 1. Using the inductive procedure and letting
k = ρ in (46), we can design the controller as follows:

u = λρ+1 = λ∗
ρ+1. (51)

Accordingly, letting k = ρ in (50) and noting that
dλλλ

∑ρ

i=ρ+1 ε2i−2λ2
i = 0, zρ+1 = 0, we have

V̇ρ ≤− ε2ρ−1
( 3

8ε
− 2‖Plll‖2

)

‖ηηη‖2 −
( 1

2ρ+1ε
− dρ,1(LLL[ρ−1])

)

· ‖Iεχ̃χχ‖2 −
( 1

4ε
− dρ,2(LLL[ρ−1])

)

‖Iεξξξ‖2 −
2

∑

j=1

(Lj

ε

− (ρ + 1 − j)

ε
− dρ,j+2(LLL[ρ])

)

ε2j−2z2
j −

ρ−1
∑

j=3

(Lj − 1

ε

)

− dρ,j+2(LLL[ρ])ε
2j−2z2

j −
(Lρ

ε
− dρ,ρ+2(LLL[ρ])

)

ε2ρ−2z2
ρ,

(52)

where Vρ(ηηη, χ̃χχ, ξξξ, z1, . . . , zρ) is a positive definite and
proper function defined by

Vρ = V0 +
1

2

ρ
∑

i=1

ε2i−2z2
i . (53)

3.3 Main results

From (52), we can see that to realize stabilization of the
closed-loop system, the controller designed should ensure
the negative definiteness of the time derivative of Vρ. This
can be guaranteed by choosing positive constants ε and Li’s
such that






















3
8ε

− 2‖Plll‖2 > 0, 1
2ρ+1ε

− dρ,1(LLL[ρ−1]) > 0,
1
4ε

− dρ,2(LLL[ρ−1]) > 0,

Li−(ρ+1−i)
ε

− dρ,i+2(LLL[ρ]) > 0,
Lj−1

ε
− dρ,j+2(LLL[ρ]) > 0,

Lρ

ε
− dρ,ρ+2(LLL[ρ]) > 0,

(54)

for i = 1, 2 and j = 3, 4, . . . , ρ − 1.
The following lemma shows the existence of positive con-

stants ε and Li’s satisfying (54). Besides, the choice of such
constants is discussed in the proof of the lemma.

Lemma 3. There are always positive constants Li ≥
1, i = 1, . . . , ρ and 0 < ε < 1 satisfying inequalities (54).

Proof. We prove this lemma by construction.
Firstly, for any specified constants L∗

i > 0, i = 1, . . . , ρ−
1 and L∗

ρ ≥ 1, choose










Li ≥ L∗
i + ρ + 1 − i, i = 1, 2,

Lj ≥ L∗
j + 1, j = 3, 4, . . . , ρ − 1,

Lρ ≥ L∗
ρ.

(55)

Secondly, choose ε such that

0 < ε < ε∗ = min

{

1,
3

16‖Plll‖2
,

1

2ρ+1dρ,1(LLL[ρ−1])
,

1

4dρ,2(LLL[ρ−1])
,

L∗
i

dρ,i+2(LLL[ρ])
, i = 1, . . . , ρ

}

. (56)

It is easy to verify that any Li’s and ε determined by (55)
and (56) satisfy inequalities (54). �

The main result of the paper is summarized as follows:
Theorem 1. Consider the output-feedback control

problem of system (1) with ρ < n. Suppose the system sat-
isfies Assumptions 1∼4. If lll = [l1, . . . , lρ]

T is chosen such
that matrix Alll = A + llleeeT

1 is Hurwitz, then the closed-loop
system is globally asymptotically stable under the dynamic
output-feedback control (51) with positive constants ε and
Li’s satisfying (55) and (56).

Proof. First of all, observing that ε and Li’s satisfy
(55) and (56), it is straightforward to deduce from (53)

and (52) that there is a positive constant β such that V̇ρ ≤
−βVρ, which implies that ηηη, εi−1χ̃i, εi−1ξi, and ε2i−2zi are
globally asymptotically stable for i = 1, . . . , ρ, and so are
ηηη, χ̃χχ, ξξξ, and zi’s since ε is a positive constant. This together
with the fact y = z1 = χ1 = x1 concludes that the global
asymptotic stability of y, χ1 and x1, and hence λ1 since
λ1 = 1

b′m

(

y− χ̃1 − ξ1

)

. Then from (29) and λ2 = z2 +λ∗
2, it

follows that λ∗
2 and λ2 are globally asymptotically stable.

Continuing in the same fashion, (40) and λi = zi + λ∗
i

for i = 3, 4, . . . , ρ recursively establish that λλλ is globally
asymptotically stable. By the global asymptotic stability
of ξξξ, λλλ and χ̃χχ, and χ̂χχ = ξξξ + b′mλλλ, we know that χ̂χχ and hence
χχχ (= χ̂χχ + χ̃χχ) are globally asymptotically stable as well.

Finally, from ςςςρ,[1, ρ] = χχχ, ςςςρ,[ρ+1, n] = ηηη, and the equiv-
alent transformations defined above, we conclude that ςςς, xxx
and ζζζ are all globally asymptotically stable. �

4 Further study and numerical simula-
tion

It is easily seen that the design procedure given in the
previous section cannot be unchangeably applied to the
case ρ = n. In fact, there are minor differences between
the control design procedures of the cases ρ = n and ρ < n.
Therefore, we would like to study a simple example, rather
than a general system, which can adequately demonstrate
the major characteristics of output-feedback control design
for system (1) without zero-dynamics.

Consider the following second-order nonlinear system

ζ̇1 = g1ζ2 + 0.1ζ1 sin ζ2, ζ̇2 = g2b0u, y = ζ1, (57)

which satisfies Assumptions 1∼3 with c = 0.1, 0.05 ≤ |g1| ≤
1, 1 ≤ |g2| ≤ 2, 0.5 ≤ |b0| ≤ 1, and the signs of g1, g2 and
b0 are assumed to be positive.

As discussed earlier, it is enough to apply the first kind
of transformation given in Section 3 to system (57) since
no zero-dynamics exist in this case. After transformation
and defining χχχ = xxx, we obtain the following new system:

χ̇χχ = A2χχχ + b′0eee2,2u + ΦΦΦ2,[2](t, xxx, u), χ1 = eeeT
1,ρχχχ = y, (58)

where b′0 = b0g1g2 with positive sign, and A2 =
[

[0, 0]T, [1, 0]T
]

, ΦΦΦ2,[2] =
[

0.1χ1 sin χ2
g1

, 0
]T

.

According to Subsection 4.1, we obtain the whole sys-
tem for control design (25) with ρ = n = 2. Choose
lll = [−1,−0.8]T such that matrix Alll is Hurwitz.

Let Vχ̃χχ = χ̃χχTPlllεχ̃χχ. Then, the time derivative of Vχ̃χχ along

the trajectories of ˙̃χχχ satisfies:

V̇χ̃χχ ≤ − 1
ε
‖Iεχ̃χχ‖2 + 2‖Iεχ̃χχ‖ · ‖Plll‖ · ‖IεΦΦΦ2,[2]‖1.

As before, noting that χ1 = y, we have 2‖Iεχ̃χχ‖ · ‖Plll‖ ·
‖IεΦΦΦ2,[2]‖1 ≤ 1

4
‖Iεχ̃χχ‖2 + 4c2‖Plll‖2y2. Then we have

V̇χ̃χχ ≤ −
(

1
ε
− 1

4

)

‖Iεχ̃χχ‖2 + 4c2‖Plll‖2y2. (59)
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Let’s next turn to the output-feedback control design
which will be completed in two steps.

Step 1. Let V1 = Vχ̃χχ + Vξξξ + 1
2
y2 for this design step,

where Vξξξ = ξξξTPlllεξξξ. Then, by Proposition 4 and (59), we
have

V̇1 = −
(

1
ε
− 1

)

‖Iεχ̃χχ‖2 − 1
2ε
‖Iεξξξ‖2 +

(

c2‖Plll‖2

+ 2‖Plll‖
2‖lll‖2

ε

)

y2 + y(b′0λ2 + χ̃2 + ξ2 + Φ2,1). (60)

Notice that yχ̃2 ≤ 1
2ε
‖Iεχ̃χχ‖2 + y2

2ε
, yξ2 ≤ 1

4ε
‖Iεξξξ‖2 +

y2

ε
, yΦ2,1 ≤ cy2, for any ξξξ, y, χ̃χχ. Substituting this into

(60) results in

V̇1 ≤ −
(

1
2ε

− 1
)

‖Iεχ̃χχ‖2 − 1
4ε
‖Iεξξξ‖2 +

(

c2‖Plll‖2

+c + 3+4‖Plll‖
2‖lll‖2

2ε

)

y2 + b′0yλ2. (61)

Noting sign(b′0) = 1, we choose the virtual controller as

λ∗
2 = −L1+ᾱ1

ε
y =: −α1(L1)

ε
y, (62)

where ᾱ1 = c2‖Plll‖2 + c+ 3
2
+2‖Plll‖2‖lll‖2 is clearly a known

constant, and L1 ≥ 1 is a constant to be determined later.
Define z1 = y and z2 = λ2 −λ∗

2. Then, substituting (62)
into (61) results in

V̇1 ≤ −
(

1
2ε

− 1
)

‖Iεχ̃χχ‖2 − 1
4ε
‖Iεξξξ‖2 − L1

ε
y2 + b′0yz2. (63)

Step 2. Let V2 = V1 + 1
2
ε2z2

2 . Then, by (63), the time
derivative of V2 satisfies

V̇2 ≤ −
(

1
2ε

− 1
)

‖Iεχ̃χχ‖2 − 1
4ε
‖Iεξξξ‖2

−L1
ε

y2 + b′0yz2 + ε2z2ż2. (64)

By the definition of z2, we have

ż2 = u + l2ε
−2λ1 + α1(L1)ε

−1(b′0λ2 + χ̃2 + ξ2 + Φ2,1). (65)

As before, we have



























b′0yz2 ≤ 1
4
ε−1y2 + b2

Mg2
Mεz2

2 ,

b′0εα1(L1)λ2z2 ≤
(

bMgM |α1(L1)| + 1
2
b2
Mg2

Mα4
1(L1)

)

· εz2
2 + 1

2
ε−1y2,

εα1(L1)χ̃2z2 ≤ 1
4ε
‖Iεχ̃χχ‖2 + α2

1(L1)εz
2
2 ,

εα1(L1)Φ2,1z2 ≤ y2 + c2

4
α2

1(L1)ε
2z2

2 .

Substituting this and (65) into (64), we have

V̇2 ≤ −
(

1
4ε

− 1
)

‖Iεχ̃χχ‖2 − 1
4ε
‖Iεξξξ‖2 −

(

L1−
3
4

ε
− 1

)

y2

+ε2z2

(

l2ε
−2λ1 + α1(L1)ε

−1ξ2 +
(

ε−1(bMgM

·|α1(L1)| + α2
1(L1) + 1

2
b2
Mg2

M (α4
1(L1) + 2))

+
c2

4
α2

1(L1)
)

z2

)

+ ε2z2u. (66)

Thus, we can choose the controller as

u = −ε−1α2(LLL[2])z2 − l2ε
−2λ1 − α1(L1)ε

−1ξ2, (67)

where α2(LLL[2]) = L2 + ᾱ2(L1), ᾱ2(L1) = bMgM |α1(L1)| +
α2

1(L1) + 1
2
b2
Mg2

M (α4
1(L1) + 2) + c2

4
α2

1(L1), and L2 ≥ 1 is a
constant to be determined later.

Substituting (67) into (66) concludes that

V̇2 ≤ −
(

1
4ε

− 1
)

‖Iεχ̃χχ‖2 − 1
4ε
‖Iεξξξ‖2

−
(

L1−
3
4

ε
− 1

)

y2 − L2εz
2
2 . (68)

Choosing L1 ≥ 1, L2 ≥ 1 and 0 < ε < ε∗ =
min

{

1, 1
4
, L1 − 3

4

}

, we can see that V̇2 is negative defi-
nite, and hence the closed-loop system is globally asymptot-
ically stable. With respect to system (57) and the output-
feedback controller designed above, we next give the corre-
sponding numerical simulation to show the effectiveness of
the methods.

Let the initial value of the state be ζζζ0 = [0, 1]T, ξξξ(0) = 0
and λλλ(0) = 0, and the system parameters be g1 = 0.05,
g2 = 1 and b0 = 1. Choosing L1 = L2 = 1 and ε = 0.249,
we obtain Fig.1∼Fig.4. These figures show that all the
closed-loop states are indeed asymptotically stable.

5 Concluding Remarks

In this paper, the output-feedback stabilization has been
investigated for a class of uncertain nonlinear systems. Af-
ter introducing two kinds of linear state transformations,
the control design becomes much natural since the con-
verted system has known virtual control coefficients and
separated stable zero-dynamics. For the new transformed
system, an appropriate high-gain observer based on K-
filters is introduced, and then by the backstepping ap-
proach, the output-feedback controller is successfully de-
signed. It is shown that the global asymptotic stability of
the closed-loop system can be guaranteed by the appropri-
ate choice of the design parameters.
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Appendix

In this appendix, we give proofs of Lemma 1, Proposi-
tions 2 and 3, respectively.

A.1 Proof of Lemma 1

It is clear that Q defined by (14) exists since it is the
unique solution of the Lyapunov function: DTQ + QD =
−I .

Because that D is Hurwitz and Re(λ(D)) ≤ − d
2
, we can

conclude that DT + D ≤ −dI . Let λi, i = 1, . . . , n be the
eigenvalues of DT + D. Then there exists an orthogonal
matrix P (i.e., P−1 = P T ) such that for ∀t ∈ R+,

exp(DTt + Dt) = P exp(diag[λ1, · · · , λn]t)P−1
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= Pdiag[exp(λ1t), · · · , exp(λnt)]P−1.

By Tr(DT) = Tr(D), Tr(DTD) = Tr(DDT) and the ex-
pansion in series of the exponential matrix, it is easy
to show that for ∀t ∈ R+, Tr

(

exp(DTt) exp(Dt)
)

=

Tr
(

exp(DTt + Dt)
)

. From this, it follows that

Tr(Q) = Tr

(
∫ ∞

0

exp(DTt) exp(Dt)dt

)

=

∫ ∞

0

Tr
(

exp(DTt) exp(Dt)
)

dt

=

∫ ∞

0

Tr
(

exp(DTt + Dt)
)

dt

=

∫ ∞

0

Tr
(

Pdiag[exp(λ1t), · · · , exp(λnt)]P−1) dt

=

∫ ∞

0

n
∑

i=1

exp(λit)dt ≤ n

d
.

This together with Q > 0 concludes that ‖Q‖ ≤ ‖Q‖F =
√

Tr(QTQ) =
√

Tr(Q2) ≤ Tr(Q) ≤ n
d
. �

A.2 Proof of Proposition 2

Along the trajectories of the subsystem Σηηη, the time
derivative of Vηηη satisfies

V̇ηηη ≤ −‖ηηη‖2 + 2‖Q‖ · ‖cccρ,[ρ+1,n]‖ · ‖ηηη‖ · |χ1|
+2‖ηηη‖ · ‖Q‖ · ‖ΦΦΦρ,[ρ+1,n]‖1. (A1)

For the second term on the right-hand side of the above
inequality, by Lemma 1 and Proposition 1, we have

2‖Q‖ · ‖cccρ,[ρ+1,n]‖ · ‖ηηη‖ · |χ1| ≤ 1
8
‖ηηη‖2 + 8n2

d2 d′2
0 y2. (A2)

By the fact 0 < ε < 1, and Lemmas 1 and 2, we know
that

2‖ηηη‖ · ‖Q‖ · ‖ΦΦΦρ,[ρ+1,n]‖1 ≤ 2mc′n
d

ε−(ρ−1)‖ηηη‖
(

|χ1| + |εχ2|
+ · · · + |ερ−1χρ|

)

.

From this and χ1 = y, χi = χ̃i + ξi + b′mλi, i = 2, 3, . . . , ρ,
it follows that

2‖ηηη‖ · ‖Q‖ · ‖ΦΦΦρ,[ρ+1,n]‖1

≤ 1
2
‖ηηη‖2 + 8m2c′2n2

d2 ε−(2ρ−2)y2 + 8m2c′2n2ρ

d2 ε−(2ρ−2)

·‖Iεχ̃χχ‖2 + 8m2c′2n2ρ

d2 ε−(2ρ−2)‖Iεξξξ‖2

+
8m2c′2n2

d2
ρb2

Mg2
Mε−(2ρ−2)

ρ
∑

i=2

ε2i−2λ2
i . (A3)

Substituting (A2) and (A3) into (A1), we can get

V̇η ≤ − 3
8
‖ηηη‖2 + d0,1

(

d′2
0 + m2c′2ε−(2ρ−2)

)

y2

+ε−(2ρ−2)d0,2‖Iεχ̃χχ‖2 + ε−(2ρ−2)d0,2‖Iεξξξ‖2

+ε−(2ρ−2)d0,3

ρ
∑

i=2

ε2i−2λ2
i , (A4)

where d0,1 = 8n2

d2 , d0,2 = 8m2c′2n2ρ

d2 , d0,3 =
8m2c′2n2

d2 ρb2
Mg2

M . This leads to (21). �

A.3 Proof of Proposition 3

The time derivative of Vχ̃χχ along (18) satisfies

V̇χ̃χχ ≤− ‖Iεχ̃χχ‖2

ε
+ 2ερ−1‖Iεχ̃χχ‖ · ‖Plll‖ · ‖ηηη‖ + 2‖Iεχ̃χχ‖

· ‖Plll‖ · ‖cccρ,[ρ]‖|y| + 2‖Iεχ̃χχ‖ · ‖Plll‖ · ‖IεΦΦΦρ,[ρ]‖1. (A5)

We will deal with the last three terms on the right-hand
side of the above inequality. Firstly, by Proposition 1, the
second term and the third term satisfy respectively

2ερ−1‖Iεχ̃χχ‖ · ‖Plll‖ · ‖ηηη‖ ≤ ‖Iεχ̃χχ‖2

2ε
+ 2ε2ρ−1‖Plll‖2‖ηηη‖2,

2‖Iεχ̃χχ‖ · ‖Plll‖ · ‖cccρ,[ρ]‖ · |y| ≤ ‖Iεχ̃χχ‖2 + d2
0‖Plll‖2y2. (A6)

For the last term, it is easy to show that ‖IεΦΦΦρ,[ρ]‖1 ≤
ρc′

(

|χ1| + ε|χ2| + · · · + ερ−1|χρ|
)

. Then, noting that χ1 =

y and χi = χ̃i + ξi + b′mλi, i = 2, 3, . . . , ρ, we have

2‖Iεχ̃χχ‖ · ‖Plll‖ · ‖IεΦΦΦρ,[ρ]‖1

≤ (1 + 2ρ
3
2 c′‖Pl‖)‖Iεχ̃χχ‖2 + 3ρ3c′2‖Plll‖2‖Iεξξξ‖2

+3ρ2c′2‖Plll‖2y2 + 3ρ3c′2b2
Mg2

M‖Plll‖2
ρ

∑

i=2

ε2i−2λ2
i . (A7)

Substituting (A6) and (A7) into (A5), we have

V̇χ̃χχ ≤ −
(

1
2ε

− d0,4

)

‖Iεχ̃χχ‖2 + d0,5‖Iεξξξ‖2

+2ε2ρ−1‖Plll‖2‖ηηη‖2 + d0,6y
2 + d0,7

ρ
∑

i=2

ε2i−2λ2
i , (A8)

where d0,4 = 2 + 2ρ
3
2 c′‖Plll‖, d0,5 = 3ρ3c′2‖Plll‖2, d0,6 =

(

d2
0 + 3ρ2c′2

)

‖Plll‖2, d0,7 = 3ρ3c′2b2
Mg2

M‖Plll‖2 are known
positive constants independent of ε. �


