Vol. XX, No. X

ACTA AUTOMATICA SINICA

Month, 200X

Output-Feedback Control for a Class of Uncertain
Nonlinear Systems with Linearly Unmeasured States
Dependent Growth
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Abstract

LIU Yun-Gang

This paper is devoted to the problem of global stabilization by output-feedback for a class of nonlinear systems with

uncertain control coefficients, stable zero-dynamics and linearly unmeasured states dependent growth. By first introducing two
kinds of appropriate state transformations, the original system is converted into the new system with deterministic virtual control
coefficients and the separated zero-dynamics. Then, a suitable observer based on high-gain K-filters is constructed for the new
system, and the backstepping design approach is successfully proposed to the output-feedback controller. It is shown that the global
asymptotic stability of the closed-loop system can be guaranteed by the appropriate choice of the design parameters. A simulation
example is also provided to show the correctness of the theoretical results and the effectiveness of the proposed approach.
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Because that the system states are incompletely mea-
surable, the problem of output-feedback control is more
challenging and difficult than that of state-feedback
control'~%. Unlike linear systems, the separation prin-
ciple is invalid for most nonlinear systems, and hence the
observer and controller should be designed and analyzed to-
gether. The objective of control design based on observer is
to guarantee not only the stability of the closed-loop system
but also the convergence of the estimation error. Because
the theory of observer develops slowly[6N9]7 the output-
feedback control based on observer is far from maturit%/,
and there are still many problems remaining unsolved!? 19
For example, a foundational question is what the sufficient
and necessary conditions are to output-feedback stabilize
nonlinear systems. It has been pointed out in the remark-
able paper [11] that if the power of the nonlinearity growth
with respect to unmeasured states is greater than 2, there
are counterexamples for which no output-feedback controls
exist.

Recently, the problem of output-feedback control design
has received much attention and been intensively investi-
gated for a class of nonlinear systems with unmeasured
states dependent growth(® 12~18! For details, in [14], adap-
tive output-feedback tracking control was investigated for
a class of nonlinear systems linearly depending on unmea-
sured states and in generalized output-feedback canonical
form. In [12], exponentially stable output-feedback control
was considered for a family of nonlinear systems that are
dominated by a triangular system satisfying linear growth
condition, and in [15,19], the more general case was con-
sidered where the linear growth rate was an unknown con-
stant. In [18], the results of [12] are generalized to the sys-
tems with unknown control coefficients by introducing the
novel observer based on high-gain K-filters. Furthermore,
in [3,13,16], output-feedback control was investigated for
systems with output dependent growth rate, and by con-
structing norm estimators, an extension was obtained to
the systems with unmeasured states dependent growth rate
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This paper continues the investigation started in [18] and
considers the output-feedback stabilizing control design for
a more general class of nonlinear systems with uncertain
control coefficients, hidden zero-dynamics and linearly un-
measured states dependent growth, and generalizes the rel-
evant results distributed in [1, 12,15, 18]. Mainly thanks to
the presence of the unmeasured states dependent growth
and the uncertain control coefficients, the output-feedback
control problem of the systems under consideration is very
hard and hence a very meaningful question. In addition,
due to the existence of the hidden zero-dynamics, it is dif-
ficult to directly carry out the output-feedback control de-
sign. To achieve the control objective, two kinds of linear
state transformations are firstly introduced. One is to lump
the uncertain control coefficients together, and then a new
system with deterministic virtual control coefficients is ob-
tained. The other is to separate the zero-dynamics from
the system. Then, enlightened by [18], we propose an ap-
propriate high-gain K-filters based on which the state es-
timation is successfully constructed. Such kind of K-filters
indeed play a central role in the output-feedback control de-
sign which will be realized by the backstepping approach.
Moreover, by choosing the design parameters properly, the
global asymptotic stability of the closed-loop system can
be guaranteed.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the system to be considered and formu-
lates the control problem to be solved. Section 3 provides
two kinds of linear state transformations through which
the original system can be converted into a new system
that is convenient for observer design and observer-based
output-feedback control design. Section 4 gives the main
results of this paper, that is, the high-gain K-filters based
observer is constructed and the output-feedback stabilizing
control design is given using backstepping method. Section
5 is the necessary complementarity to Section 4, where fur-
ther study on a second-order system is addressed to the
case without zero-dynamics, and accordingly the numeri-
cal simulation is given to demonstrate the correctness of
the theoretical results. Section 6 presents some concluding
remarks. The paper ends with an appendix which provides
rigorous proofs of a number of important propositions and
lemmas.

Notations

Throughout this paper, I denotes identity matrix
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of appropriate dimension; for any x € R", z; de-
notes its ith element and z[; denotes [z, ..., m]T;
0 € R’ denotes the zero vector; e;;(i < j) denotes
[05,1], 1, OEfi]]T € R/; by, o denotes [b], bj_y, ..., bo|* €
R ¢;,(j denotes [ci1, ..., Cij]T € R and ®; ;K de-
notes [®;,;, ..., ®; 1] € R We use || - |1, || - ||(i-e.,
|| - ]l2) and || - ||r to denote 1-norm, Euclidean norm (or
2-norm) and Frobenius norm for vectors respectively, and
the corresponding induced norm for matrices. Specifically,
for vector z, |lz|| < |z < 7n|lz| and for matrix A,
JA|l < ||Al|r. Besides, for simplicity of expression, we
sometimes drop the arguments of function when no con-
fusion is caused.

1 System description and problem for-
mulation

Consider the following class of single-input-single-output
(SISO) nonlinear systems:

G = gilim+eit.Gu), i=1...p-1,
G = giCit1+bnju+ ¢;(t,¢ ),
j=p,p+1,...,n—1, (1)
én = gnb0u+¢n(t7<7u)7
Yy = C17
where ¢ = [¢1,...,¢n]T € R™ is the system state with the

initial condition {(0) = ¢{,; v € R and y € R are the
control input and output, respectively; p is the relative de-
gree of the system satisfying p + m = n; both ¢;’s and
b;’s are unknown constants, called uncertain control coeffi-
cients, and specially, g; # 0, bp # 0 and by, # 0; functions
¢ :RTxR"xR —=R,i=1,...,n are piecewise contin-
uous in the first argument and locally Lipschitz in the rest
arguments. In what follows, suppose that only the system
output is measurable, and the relative degree p > 1.

Obviously, we can see that control u appears in the
last (m + 1) equations of system (1). This means that
hidden zero-dynamics exist in the system. When control
coefficients are known, if 1 < p < n, then we can con-
struct K-filters and the output-feedback controller to sta-
bilize system (1) by consulting Chapter 8 of [1] and if
p = n, system (1) degenerates to a simpler case which has
been extensively investigated based on the Luenberger-like
observer[12~19, Moreover, when control coefficients are un-
known, various theoretical results have been obtained un-
der somewhat strong assumption that the nonlinearities are
dominated by some known functions of measurable out-
put ym. When the system nonlinearities inherently de-
pend on unmeasured states, the output-feedback control
design will become very hard. Faire recently, for the sys-
tems with unmeasured states dependent growth and with-
out zero-dynamics, [12,15,16] and [18] consider the prob-
lem of output-feedback stabilization for the cases of ex-
actly known control coefficients and uncertain control co-
efficients, respectively.

This paper is to investigate the problem of global output-
feedback stabilization for system (1) with uncertain control
coefficients, zero-dynamics and unmeasured states depen-
dent growth under the following assumptions:

Assumption 1. Fori =1,...,nand any t € RT, ¢ €
R", u € R, there exists a known constant ¢ > 0, such that

|¢:(t, ¢ u)| < e(|Cul+ ¢l +- - +[Ck]), &k =min{i,p}. (2)

Assumption 2. The signs of g;, i = 1,..., p— 1 are
known, and there exist known positive constants 9, and g,
satisfying:

Assumption 3. The sign of b, is known, and there
exist known constants by >0 and b; >0, : =0,1, ..., m
such that

|bl| < 1_71'7 t=0,1,...,m—1, by < |bm| < l_7m« (4)

Assumption 4. For the polynomial p(s) = b},s™+- -+
by s + by, where m > 1, b) = b,I1; "' 'gi, i =1, ..., m and
by = boll}_,gk, there exists a known positive constant d
such that the real part of each pole of the polynomial is
not larger than —g.

For the aim of better comprehension, we would like to
give further interpretation for the above four assumptions.
Assumption 1 means that system (1) has linearly unmea-
sured states dependent growth. It seems to be stringent,
but it is crucial to carry out the output-feedback control.
This point can be seen from [3, 12 ~ 15, 18, 20]. On the
other hand, maybe due to the existence of hidden zero-
dynamics and uncertainties in control coefficients, it is hard
to relax Assumption 1 to a weaker one.

Assumptions 2 and 3 give some available information
about the uncertain coefficients g;’s and b;’s. The known
signs of by, and g;, i =1, ..., p— 1 will play an important
role in control design. Otherwise, one can not decide the
direction along which the control operates, and the closed-
loop system may be unstable. The boundary restrictions
imposed on g;’s and b;’s look somewhat severe but cannot
be removed as will be detailed later.

Assumption 4 means that the hidden zero-dynamics of
the system possess the input-to-state stable property. This
assumption on the zero-dynamics is commonly implicitly
assumed in most of the work in robust/adaptive output-
feedback control of nonlinear systems; see [1,10,13] and
references therein.

According to Assumption 2, there exist known positive
constants gy := min {gl, 9,9, H?Zlgj} and gm =
max {§17 G102, - - H;-ngj} such that gy < ‘H;Zlgj‘
gM,i:L...,n.

Similarly, by Assumption 3, we know that by :=
max{bo, b1, ...,bm} is a known positive constant such that
|b7,| S b]\/[7 7= O,l,...,m—l and bN S |bm| S bM.
Moreover, by Assumptions 2 and 3, the sign of b, =
bmHZ;}gk # 0 is known.

The objective of the paper is to design a dynamic output-
feedback controller for system (1), so that the closed-loop
system is globally asymptotically stable. This will be car-
ried out based on the methods of appropriate state transfor-
mation and observer-based backstepping as will be detailed
in the next sections.

IN

2 Linear state transformations

In this section, it can be shown that, through two kinds
of linear state transformations, the system can be success-
fully transformed into a system with deterministic virtual
control coefficients, and the hidden zero-dynamics can be
separated out, and then the output-feedback control design
becomes less difficult.

By carefully examining system (1), we find that the nega-
tive influence of uncertain control coefficient, g;, disappears
if the corresponding equation is multiplied by g1 ---gi—1
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with the scaled state being defined as the new state. This
simple observation motivates us to introduce the following
linear state transformation to convert the original system
into a new system in which there are no uncertain virtual
control coefficients, and the original uncertain control co-
efficients are lumped into the actual control coefficients:

“gn-1Cn-  (5)

are then given by

x1 =, T2=gil2, -, Tn=gig2--

The dynamics of z = [z1, ..., zn]T

T = Apz+bu+ f(t, z, u), ()
y = T,

where £ € R" is the state of the new system with the initial

condition depending on ¢, and (5), and f = [f1,..., fa]" =
[¢17 gl¢27 cee5 9192 gn71¢n]T7
0
A, = : 1 , b:{ogﬂfll}.
) [m,0]
00 --- 0

It is worth pointing out that when p = n (or m = 0), the
above transformation is enough and output-feedback con-
trol design can be pursued since there are no zero-dynamics
in this particular case. For the sake of integrality in the
later development, system (6) with p = n is rewritten as:

Sxix = Apxt+bnepu+t @, (L, x, u); G
X1 = el X=y
where x =z, ®,,) = f.

However, when p < n, the foregoing linear transforma-
tion is still necessary but somewhat insufficient for the con-
trol design purpose. This is chiefly because that to develop
an output-feedback stabilizing controller, certain closed-
loop observer should be constructed. But due to the pres-
ence of hidden zero-dynamics in (6), it is very difficult to
determine what kind of observer is appropriate and to an-
alyze the closed-loop observer error performance. Mainly
enlightened by the existing relevant works on the stabiliza-
tion of the similar systems with hidden zero-dynamics (see

g., [21,22]), an effectual idea is to look for some kind of
state transformation to separate the zero-dynamics from
the system. To achieve this, let us next introduce the sec-
ond kind of linear state transformation for system (6) with
p < n, which will be defined in a step-by-step manner, and
simultaneously, the effect and meaning for each step of the
state transformation will be exhibited accordingly.

The effect of the first transformation 7i (i.e., the lin-
ear transformation matrix) is to transform all the elements
of B into zero except the pth element. Let ¢; = Tiz,
where 77 and Tfl are the same as I except their pth
columns that are [0, j, 1, —bl,,_1 /b1, —bp/bi,] T and
[Or[r s Ly b1 /Uiy bo/b 27T, respectlvely Then, we
can get the dynamics of ¢1 as follows:

<1 = Cis1+Bu+®i(t, z, u), (8)

where C7 is the same as A, except its pth and
(p + 1)st columns which are [O[Tl),z], 1, c{ [m+1]]T and

[Op 1]» 17 b['m 1, 0]] 5 respectively, and B = le =
[0’[1; 1]» b;’ru OT ] - bmep,n, Ql = Tlf(t, x, 'LL).

The rest p — 1 transformations are designed mainly for
matrix C1 such that we can eventually get C, which is the

same as matrix I except the first and (p + 1)st columns.
Specifically, the second transformation is to transform the
pth column of Cy into e,—1,y, i.e., [O[Tp 95 1,0 m+1]] . Let
6o = 156y, where T» and T{l are the same as I except
their (p — 1)st columns that are [O[T’),z], 1, —c{ [m+1]]T and
[O[T/PQ]7 el [m+1]]T7 respectively. Noting that B = T>B,
the dynamics of g5 is:
$2 = (o6 + Bu+®:(t, z, u), (9)
where C2 is the same as A, except its (p — 1)st
and (p + 1)st columns which are [0?;73], 1 e; [m+2]]T
and [O[T,),l]7 1,
712@1(257 x, u)
Similarly, the ith (i = 3,4, ..., p — 1) linear transfor-
mation T; can be constructed to transform the (p — i +
2)nd column of C;—1 into e,—it1,n. Let ¢; = Tig;_1,
where T; and T[l are the same as I except their (p —
i + 1)st columns, which are [O[Tp,i], 1, —¢l | [m+i71]]T and
[O[Tpﬂ-]7 1, cinl’ [m+i711]T7 respectively. Noting that B =
T;T;—1---T2B, the dynamics of ¢; is:

—ibﬁ,l’o]]T7 respectively, and ®; =

where C; is the same as A, except its (p — i + 1)st
and (p + 1)st columns which are [OF;?FW 1, c;lj [m+i]]T
and [0?;71]7 1, —
TiQifl(t, x, u)

Finally, the pth linear transformation ¢, = T)¢,_1 can
be constructed to transform the second column of C,_; into
e1,n, where T, and T;l are the same as I except their first

]]T and [1 C —1, [n— 1]]T7
-T2B, the dynam-

b[m 1 0]] , respectively, and ®; =

columns that are [17 _0371,@71
respectively. Noting that B =T,1},_1 --
ics of ¢, is:

¢, = Cusp+Bu+9,(t z, u), (11)

where C, is the same as A, except its ﬁrst and (p + 1)st
b[m 1 O]]T7 re-
spectively, and ®, = T,®,_1 = [P, 1, ..., q)p,n]

Up to now, the two kinds of linear state transformations
are completely introduced. For the transformed system
(11), it is natural to design observer and observer-based

output-feedback control, as will be seen from the later de-
velopment.

columns which are Cp.[n] and [OF;,IP ,

First, we would like to give the 2-norm estimation of
the unknown vectors ¢, [, and ¢, [,41,»] Which can be de-
duced from the above state transformations though a bit
complicatedly. In fact, from its definition, one can see that
each element of ¢; [,,,14) is in the form of a quotient whose
denominator is a power function of b, and numerator a
polynomial of the constants by, b, ..., bl,. From this ob-
servation and Assumptions 2 and 3, we can easily verify
the following proposition:

Proposition 1. For ¢, [, introduced above, there exist
known positive constants dp and d such that

leooll < do,  llep,fprr,mll < do. (12)

Before designing high-gain K-filters based observer and
output-feedback controller, we have to decompose system
(11) appropriately. Let x = [x1, ..., Xp]" = Sp,[1,, and
n=1[m,...,0m|" =Sy [p+1,n. Then system (11) can be
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divided into the following form:

Er] : ’I" = D’I" +cp,[/)+1,n]X1 +¢p,[/}+1,7l] (t7 z, u);
Syix = Apx+bnesutep,m+ e, pxa (13)
+<I> (t T, u);
X1 = el,pX =

[m10

where D = 1, Opm—1)]

by Assumption 4. So there is a positive definite matrix

] is Hurwitz ensured

Q=Q" = /O - exp(DTt) exp(Dt)dt, (14)

which satisfies the Lyapunov equation: DTQ + QD = —1.

We have the following lemma for the 2-norm of ), whose
proof is given in Appendix.

Lemma 1. For any Hurwitz matrix D with Re(A(D)) <
—42 <0, the matrix Q defined by (14) satisfies the following
inequality: ||Q] < Z.

The following lemma is natural and can be easily proved
with Assumptions 1, 2 and 3.

Lemma 2. TFor V(t,z,u) € RT x R" x R and
X = [I Opxm]T,---Thx € RP, there is a known pos-
itive constant ¢’ such that the unknown nonlinearities
®,; : R* xR"xR — R, i=1,...,n of system (7)
or system (13) satisfy

|®p,i(t, 2, u)| < (Ixa|+ -+ [xxl), k=min{i, p}. (15)

The next section is the core of present paper, in which
we will firstly construct the appropriate high-gain K-filters
based observer, and then design the output-feedback con-
troller by the backstepping method.

3 Output-feedback stabilizing control
design

This section turns to output-feedback control design for
system (7) (p = m) or system (13) (p < m). Since they
are equivalent to system (1), the global asymptotic stabil-
ity of the transformed and original systems can be achieved
simultaneously. This section includes three parts: in Sub-
section 4.1, a novel approach for observer design will be
proposed based on high-gain K-filters for system (7) or the
subsystem 3, of system (13); Subsection 4.2 is restricted
to the case of p < n, where a globally asymptotically stabi-
lizing output-feedback controller will be constructed by the
traditional backstepping method[”, and the case of p =n
is simple which will be studied in the next section by an
example; in Subsection 4.3, the main result of the paper is
summarized, which shows that the global asymptotic sta-
bility of the closed-loop system can be guaranteed by the
appropriate choice of the design parameters.

3.1 High-gain K-filters and state estimation

For system (7) or the subsystem X, of system (13), by
[18], we introduce the following high-gain K-filters:

£ = A€ -1
§ l€€ ey, (16)
A=A A +epu,
where € € (0, 1) is a constant, l. = [%, i—%, R i—‘;]T, and
A = A, + el ,.
The constant vector I = [l1,...,1,]" is chosen to ensure

that matrix A, = A, + lel, is Hurwitz. Then there is

a unique symmetric positive definite matrix P satisfying
Al P+ P A; = —1I. Define I = diag[l,¢,---,e”7']. It can
be shown that €4;, = IZ'A;I.. So matrix P, =IRlis
symmetric positive definite, and satisfies

ALP. + P A = ' (17)

This means that A;_ is also a Hurwitz matrix.

Define the state estimate of state x as x = € + b, A, and
the state estimation error as x = x — X-

In the next development, we will consider the properties
of the state estimation error for the cases of p < n and
p = n, respectively.

Case 1: When p < n, the state estimation error x sat-
isfies
X1+ @, (18)

To prepare for the backstepping procedure in the next
subsection, we have to rewrite the equation of . Since the
state x2 is not available, we need to replace x2 by x2+ &2+
b, A2. Then, we have

X =ALX+epom+c,,

Y= b/m)\z + oyt X2+ &+ Do (19)

Up to now, the whole system for control design is ob-
tained

x Azx+eppn1+cp X1+ P,

€ Al& loy,

y—b A +cp1y+x2+&+ Do, (20)
)\z: 1)\1—|—)\1+1, 2—23 ..,p—l
}\p:i’;)\l—ku.

Obviously, the study of the global asymptotic stabilization
of the above system is equivalent to that of system (13), as
well as the original system (1). So, it is enough to consider
system (20).

Let’s next study the property of the subsystem 3,. The
following proposition shows that this subsystem is input-to-
state stable (ISS) and can be regarded as the zero-dynamics
of the whole system (13). The proof of the proposition is
provided in Appendix.

Proposition 2. For the subsystem X, of system (13),
let V;; = nT@Qn. Then there are known positive constants
do,1, do,2 and do,3, independent of ¢, such that

Vp <

_%HWHQ +d0,1 (do —|—m c E —(2p— 2)) y
e Do LRI+ Do | 1)

p
—|—€7(2p72)d0,3 282272)\?, (21)

for any x, &, m, v, \i, i = 2,3,...,p, where dj has been
specified in Proposition 1.

The following two propositions play an important role
in control design in the sequent subsections. Specifically,
Propositions 3 and 4 characterize the ISS-like properties of
x and & of system (20) respectively. Besides, for the sake
of compactness, the proof of Proposition 3 is provided in
Appendix.

Proposition 3. For the subsystem x of system (20),
let Vg = )ZTPIE)Z. Then there are known positive constants
do,a ~ do,7 independent of ¢, such that

Vx < = (3= = doa) [X|® + dos |l 1€]1* + 26| P ]| ®

p
+do,6y” + do,7 Z 7227, (22)

=2
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fOI‘ anyi7 67 v, )\i7 122737,p
Proposition 4. For the subsystem & of system (20), let

Ve = £TP[€£. Then, for any &, y, the following inequality
holds:

3 2 2

Ve < —L|Lg)? + AR ,2 (23)

Proof. Noting that I. = %I;ll and B, = I.PBI., we
can show that the time derivative of Vg satisfies

. 2 2
Ve = _IIIsfH —QETIstIslsyz _Hfsfll _ §€T15—F)lly«
Then, by the method of completing square, we have

I.€)2 1.€)2
_ E5|| Il QEH - z|\2Pt||2Hl||2y2
2|| P, l

Ve <

for any £ and y. O

Case 2: When p = n, the state estimation error x sat-
isfies )

X=A4.X+, (24)

Similarly, we rewrite the equation of § = x2 + ®,,1 as y =

bl A2 + X2 +&2+ P@,,1 and thus obtain the whole system for
control design:

)T( =Aix+ ‘I:'p’[p]v

g = Als£ _lsyy

Y=bpre+ X2+ &+ Py, (25)
i = %)\1+)\i+1, 1=23,...,p— 1

}\ﬂ = i—,;)\l + u.

3.2 Output-feedback control design

This subsection is devoted to the constructive design of
output-feedback control for system (20) with p < n by the
traditional backstepping method, which is presented in a
step-by-step manner.

Step 1. Define Vo = £2° 2V, + Vg + Vg, where V3, V4 and
Ve have been defined respectively in Propositions 2, 3 and
4. Let Vi = Vo + %yz be the Lyapunov function candidate
for this step. Then, from Propositions 2, 3 and 4, and (19),
it follows that

Vi < =71 (& = 2|R) Inll* — (3 — do2 — do.)
NEI? = (3 = doa — dos) 11617 + (diFdo, e~

2 2
ARIWEY 2 (a4 o)

+m>?do,1 + dos +
P
TN Y (e + cpay + Xz + 2 + $p1).(26)
i=2
Let us first handle the last term on the right-hand side of
(26). From Proposition 1, it follows that |c, 1| < e, 0]l <
do. Then, for any &, y, X, it is evident that

yxe < =1x11? + 17,
yq)p,l < C,y2‘ (27)

cony? < doy?,
yéo < [I1EI1° + 207,

By substituting (27) into (26) and letting dy , = do,2 +
do,a, di 2 = do2 + dos and dx = do,3 + do,7, we have

=& = 2RIP) Il — (5 — di) I

— (& — i) 18] + (o™~ + mPdo.s
2 2

+do + ¢ + do + AL +2)y2

i <

P
Hda > ¥ TN 4+ dae?AS + brya. (28)

i=3
Choose the virtual controller as

M= -1 (BEXRIL, 4 an )y = —ouliay, (29)

€ INbN

where & = % (d62d0,1 +m2d?do1 4+ dos + ¢ +do+

2| Py ||?[|2]|> +2) is clearly a known constant, and Ly > 1 is
a constant to be determined later.
Define 21 = y and 22 = A2 — A5. Observe that

dae® N3 < Bdae®z5 + pi (Lh)y?
+ Y I + HS €], (30)

where pt(L1) = 2dxa?(L1), and pX = p§ = 0 for the
initial assignment of the forthcoming inductive step. Then,
substituting (29) and (30) into (28) results in

Vi <=1 (& = 2R)P) Inll? = (£ — dia) X
— (£ —dig2) 1] = (& — dis(L)) y*

P
+da Y TN 4 bdae’2S + by, (31)

i=3
where d1,1 = d/171+p,)127 d1,2 = d/172+u§7 dl,g(L1) = p,il (L1)

Step 2. Let Vo = V4 + %52:/:5. Then, by (31), the time
derivative of V5 satisfies

Vo < Vitelnia (32)

By the definition of z2, we have

2 2
B =Xa+ D (L) @M + 3005 (L)e 7

j=1 j=1
&+ V8 (L)e Py + 45 (La)e T (cpay + b h
+ X2 + ©p,1) (33)

with specified 752 (L1) = 0, v5*(L1) = 0, 7¥(L1) = 0 for
the initial assignment of the forthcoming inductive step.

Before deriving the virtual controller A3, we should elim-
inate the “undesired” effect of z2 in (32). For this purpose,
by the method of completing square, we have

byzz < bargarlyllze] < 2 + 3 max{1,b3,9%,}ez3, (34)
and the following inequalities
e (L1)cpayze < 3d(v2 (L))*e®23 + 47,
bl eve (Li)Aeza < 1y* + <ngM|’Y2A(L1)|
+ 10319303 (L) (48 (L1))? ) e23, (35)

LILx|? + 2078 (L1))%e23,

evs (L1) X222 <
< 2P (L)% 2 +

75 (L1)®p 122
Substituting (33), (34) and (35) into (32), we have
Voo < =N = 20B7) Inll - (5 — dia) 12X

(3 — di2) I1:6]° = (B2 = dua(Ln) - 2)°

P 2
“+dy Z 2722 4 22 < Z ng (L1)e” B\
i—4 i=1
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2 ) d )
+3 5 (L)e g + vé’(Ll)s’zy) +dxy Y TN 4 2k + 1)dre® 22
i—1 i=k+1
Fan(L1)zs + dre? A2 + 2220, (36) +e?* sz, (39)

where @&2(L1) = 5dx +
bargar[ys (L) +2(v8 (L1))? +

max{1, b?\/[g%/[}) .
as

15 + )3 (L)? +
z(ngMal(Ll)(%A(Ll))2+
Thus, we can choose the virtual controller

2

Z *(3 J))\

)\§ = —87 a2 L[Q] zZ2 —

- Z 75’ (L
j=1

where az(Ljg)) = L2+ a2(L1), and L2 > 1 is a constant to
be determined later.

Define z3 = A3 — A3. Similar to Step 1, we should
estimate dye*A3 by an appropriate function of zi, za, 23,
¢ and x. Since A\; = i(y - X1 — 51), we have A} <

—Qigg(yz + X1+ ff) By this and (30), we have

)em D¢ — ¥ (La)e %y, (37)

2
dae'N3 < Tdae'2+ ) ps (L) 2
j=1

+u3 (L)X + pS (L) | €)1,

where p3' (Ljg)) = 21d" (72 (L1))2 +7(32(L1))2pi (L) +

7dx(v3(L1))?, 15 (L ) = 7dxaz(L[zJ) + 35dx (752 (L)),
py(Lh) = m* ( HL))? + T2 (L)), pS(Lr) =
zld% (v (Ll)) +7( 2(L4))? i +max{7dx (75’ (1)), j =
1,2}.
By substituting this and (37) into (36), we have
Vo < =7 (E = 2B1P) Il - (& — dea(Lr))
Wexll = (3 = da2 (L)) [ 1€]1° — (22
L
_dg’g(L[Q]))Z% — (?2 — d2,4(L[2])>EQZ§
P
+dx Z 27202 L Tdye 22 + 222023, (38)
i=4

where do,1(L1) = di1 + pX(Ln), d2,2(L1) = dia + p§(La),
d2,3(Liz)) = dis(L1) + 2 + p3' (L)), and daa(Lyz) =
15° (Lyz)).-

Inductive Step. Suppose at step k — 1(k =
3,4, ..., p), there exists a smooth, positive definite and
proper function Vi_1(n, X, &€, 21, ..., 2zk—1) whose time
derivative satisfies

1

2p—1 2

~<7 (g = 2RI Il = (e — die
(L[k72])> ||IEXH2 (— —dk-1 Z(L[kﬂ])) er§||2

2
Li—(k—j
— E ( J ( -7) _dkfl,j+2(L[k—1])) €2J 2232

Vi <

- £
Jj=1
k—2
Li—1
_Z< - _dkfl,j+2(L[k*1])) M2
j=3 €
Ly _ _
—< ke ! —dk—l,k+1(L[k—1])>52k Y

where z1 =y, zi=X i — A, 1=2,3, ..., k, and \]’s are a
set of virtual controllers in the following forms:

i1

* —_ P (i

No=—e i (Lpon)zion — Yyt (L-a)e” TN
i=1

)e™ g =t (L)e” Yy

i—1
5.
= (L
=1

(40)
From (40), we can find nonnegative functions
M:]—I(')7 M§71(')7 Mf—l('% 1=23, ..., kj=1..,i-1,
such that
dae® 2N < (20 + 1)dae® %27 —&—Zuz V(Lp—n)e? %22

+py (L) X +1U‘i71(L[if2])||I5£” (41)

The dynamics of variable z; (1 =2, 3, ..., k — 1) can be

immediately computed from (40):

3 = A1+1+271 *(z+1 J))\
+Z% in)e” g 44 (La)e”
+%- (L[ifl]) —6= 1)(CP,1y+b/m)‘2+>22+(I)p,1)-

In what follows, we will show that the above state-
ments still hold at step k. For this aim, choose V), =
Vi—1 + 3 Lg2k— 221%, where 2z = A\ — Aj, and the virtual con-
troller )\ are smooth functions. For notational convenience
and Consistency7 let A\p41 = u. Then, computing the time
derivative of Vi, we have

Vk < Vk—l + 52167221@21@. (42)
By the definition of zx, we have

k
. X _ s
i = Ak+1+§ ’Yk] (L[k,l])f;‘ (k+1 J))\j
=1

k
5.
+ Z Vi (Lpg—1))e
+’Y1cA(L[k71])€7(k71)(C

by 3 .
where 7,7 (Lix—11), %’ (Lig—11), 74 (L1) and 7 (Lig—1y), § =
1,...,k are defined as

THEIE 4yl (La)e Ty

o1y + b A2 + X2 4+ ©p1), (43)

k-1
A.
Ve (L)) = Ui + Z Lyl 1 (Lie—2)

j=1
+Oék—1(L[k—l])’ygil(L[k—ﬂ):
Yo (L) = a1 (L) 1 (Le—2)
9 L), § = 2,3, .., k=1,
VM(L[k 1) = ’Y;kIl(L[k 97) + a—1(Lpk—1)),

L[k 1)) Zlﬂ’k 1(Lie—2)
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+ak—1(Lp—1)7e"y (Lik—2),
V2 (Lig-1)) = a1 (Lpe—)) 772 (Lpe—2)

Ay (L) + 9y (L)
’Y;ij (Lig—11) = Oék71(L[k71])%§J;1(L[k72])

+’Y,€j:11 (Lig—21), 3 =2,3,...,
W L) = 95 Le-an),

Vi (L1) = ak—1(Lig—1)) Vi1 (L1)

k—1,

k—

ZJVk 1 ~2),

7j=1

fykA(L[k,l]) = Oék71(L[k71])’Yk71(L[k 21) + i1 (L1)-

From the
W () (0,78 () and A£(-),5 = 1,...,k are contin-
uous functions which can be derived recursively from their
initial assignment in Step 2, and become constant once the
value of L;_qj is specified.

Before deriving the virtual controller A;,;, we should
eliminate the “undesired” effect of zx in (42). For this
purpose, by the method of completing square, we have

above equations, we can see that

2k—4 5
e k12K §E2k dzk 1+ 152k 3 I%
5

S E2k Zk,1 + 1 max{17nglz\J}52k s 2 (44)

and the following inequalities

"Iy (Lik-1))epayzr < 1d(2)(’yk( k-1))’e? 7228 + 07,
bEEkil’YkA(L[kfl])Mzk < MgM( kA( k—11))’e % Sz
+€Zz + 12/2 ib?\/ngal(Ll)

(Ve (Lp—n)))?e® 222,
< 2k71(’7kA(L[k71]))252k 2
+ s 1 xP,

"7 (Ljp—1))X22k

TR L) Ppaze < (7R (Lpmn)) e %22 + 7
(45)
Choose the virtual controller as
k .
)\ZJrl = —67 Qp L[k] Zk — Z L[k 7(k+17]))\j

T — 3 (La)eFy, (46)

k
év
- Z Y (Lie—1))e
=1

where Oék(L[k]) = Ly + O_ék(L[k,l])7 O_Zk(L[kfl]) = (Qk +
1)dx + § max{L, b3 9%/1} + 2" (v (L 1])) $(d5 +
) (ke (Lpe—11))? + 303970 (@3 (L1) + 1) (v (L 1])) ; and
L > 11is a constant to be determined later. Note that once
the value of Ly is specified, ax (L)) is a known positive
constant.

Define 211 = Ag41 — Ajpsq when k£ < p and 2,41 = 0.
Then, similarly, we have

dae Mpi1 <(2k + 3)dae™ 2y + (2k + 3)da (v (L1)) %y
+ (2K + 3)daai (Lig))e™* 220 + (2k + 3)da

cmax { (v (L)% = 1,-.., k}||I£€])?

k
+ (2 +3)dx > (7 (Lip—11)) %™ 7203,
j=1
(47)

Clearly, the last term on the right-hand side of the above
inequality is undesirable and has to be handled. By (41),

we have the following inequality

k
(2k + 3)d Z L))

k
(2k +3) Z
Jj=1
k Jj—1

H(2k+3) Y L)) > 5y (Do) 222

Jj=1 =1
>\. ~ ~
+(2k+3) ) (v’ (Lp—1))) 21X (L) | X1
j=1

+(2k +3) > Lpe-1) iy (L) |11E]°. (48)

j=1

2 £2- 2)\2

)*(2) + Ddae™ 22}

=l

= |l

Substituting this into (47), we have for k < p

k
dae Mp1 <(2k + 3)dae® 2y + Z 1 (Lpy)e™ 223

j=1
+ X L)X + 1 (L)) 1€
(49)
Specially, one can see that since dx ) f_ pt1 27202 = 0,

it is unnecessary for Step p to take the computation sim-
ilar to (49). However, for the sake of the integrality of

the inductive steps, we let u,’ (L) = 0,5 =1,...,p,

5 (Lip-1)) = 0 and p5 (L, 1)) = 0.
Substituting (43), (44), (45), (46) and (49) into (42), we
obtain
Vi < —e2 1 (2 _opy? (L 4@
< =7 (2B InlP — (g — 1< )
2 1 L;
X = (52 = dea(Lp-n) ) ILEN° — (;
_(k—l—l—j)_ ‘ 2322 L -
— dk,]+2(L[k])) (
. L N
_dk,jJrg(L[k]))&‘zJ 22’32- — <? — dk’k+2(L[k]))€2k 2
P
Zetdy Y TN+ (26 4 3)dae™ 20
i=k+2
+52k72zkzk+17 (50)
where
1 (Lp—y) = di—11(Lyp—2)) + X (L)),
do(Lip—) = di-12(Lp—2) + 1§ (Lie—1)),
di,3(Lix)) = dr—1,3(Lpg—1)) + 2+ p;* (L)),
dea(Li) = di—1,4(Lp—1)) + 32 (L),
dijr2(Lg) = di—1j12(Lp—1) + 1) (L),
j=3.4,... k-1,
dikt2(Lig) = pet (Lg)-

From the above equations, we can see that dj.(-), k =
3,4, ..., p,t=1, ..., k+2 are continuous functions which
can be derived recursively from their initial assignment in
step 2, and are undoubtedly constant once the value of L
is specified. By more detailed analysis, we can see that
they are all positive except dp, ,+2(L,) = 0.
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At the last step, the design of the controller w is slightly
different from that of other steps, because all the junk
terms, i.e., A?,1 < i < p in (39), have already been canceled
at step p — 1. Using the inductive procedure and letting
k = p in (46), we can design the controller as follows:

U= Apt1 = Appr (51)

Accordingly, letting k = p in (50) and noting that
dx Zf:p+1 52272)\? =0, zp+1 = 0, we have

. 1,3 1
V, < -7 (==2|R|?) |l - (m -

8
2
~ 112 1 2 Lj
MXIP = (52 = doa(Lip-n) )1 2:£] —FIQ;
(p+1-3) (L1
- 2j—2_2 -
SO g )-8 ()
j=3
2j—2 L, 20—2 2
—dpj+2(Lip))e” " 25 — <? - dp,p+2(L[p])>€ 2z,
(52)

where V,(n, x, &, 21, ..., 25) is a positive definite and
proper function defined by

1 o 2i—2 _2

3.3 Main results

From (52), we can see that to realize stabilization of the
closed-loop system, the controller designed should ensure
the negative definiteness of the time derivative of V,. This
can be guaranteed by choosing positive constants € and L;’s
such that

% = 2[|R* > 0, 5547z — dp.a(Lpp-1)) > O,
i —dp2(Lip-1)) > 0,

W —dpiv2(Liy) >0,
L.—
i —dpj2(Lp) > 0, 22 — dp pr2(Liy) > 0,

€

fori=1,2and j=3,4,...,p— 1.

The following lemma shows the existence of positive con-
stants € and L;’s satisfying (54). Besides, the choice of such
constants is discussed in the proof of the lemma.

Lemma 3. There are always positive constants L; >
1,i=1, ..., pand 0 < € < 1 satisfying inequalities (54).

Proof. We prove this lemma by construction.

Firstly, for any specified constants Ly > 0,i=1,...,p—
land L;, > 1, choose

(54)

Li > Li+p+1—1i, i=1,2,
Lj ZL;+17 J=34...,p—1, (55)
L, > L.
Secondly, choose € such that
* . 3 1
0<e<e =minql, , )
{ 16[| P> 20 dp 1 (Lpp—1))
1 L

7 7i:17...,p}. 56
4dp2(Lp—1))” dpit2(Lyp)) (56)

It is easy to verify that any L;’s and ¢ determined by (55)
and (56) satisfy inequalities (54). O

The main result of the paper is summarized as follows:

Theorem 1. Consider the output-feedback control
problem of system (1) with p < n. Suppose the system sat-
isfies Assumptions 1~4. Tf 1 = [l1,...,1,]T is chosen such
that matrix A; = A+ le] is Hurwitz, then the closed-loop
system is globally asymptotically stable under the dynamic
output-feedback control (51) with positive constants ¢ and
L;’s satisfying (55) and (56).

Proof. First of all, observing that ¢ and L;’s satisfy
(55) and (56), it is straightforward to deduce from (53)
and (52) that there is a positive constant 3 such that V, <
—V,, which implies that 5, €', €&, and €222, are
globally asymptotically stable for ¢ = 1,...,p, and so are
7, X, &, and z;’s since ¢ is a positive constant. This together
with the fact y = z1 = x1 = x1 concludes that the global
asymptotic stability of y, x1 and x1, and hence A1 since
A = i(y—fa —51). Then from (29) and A2 = 22+ A3, it
follows that A3 and A2 are globally asymptotically stable.
Continuing in the same fashion, (40) and A\; = z; + A}
for i = 3, 4, ..., p recursively establish that A is globally
asymptotically stable. By the global asymptotic stability
of &, XA and x, and x = £ +b,, X, we know that x¥ and hence
X (= x + Xx) are globally asymptotically stable as well.

Finally, from ¢, 1,5 = X, $p,[p4+1,n) = N, and the equiv-
alent transformations defined above, we conclude that ¢,
and ¢ are all globally asymptotically stable. |

4 Further study and numerical simula-
tion

It is easily seen that the design procedure given in the
previous section cannot be unchangeably applied to the
case p = n. In fact, there are minor differences between
the control design procedures of the cases p = n and p < n.
Therefore, we would like to study a simple example, rather
than a general system, which can adequately demonstrate
the major characteristics of output-feedback control design
for system (1) without zero-dynamics.

Consider the following second-order nonlinear system

él = g1<2+01<-1 sin(z, Yy = <17 (57)

which satisfies Assumptions 1~3 with ¢ = 0.1, 0.05 < |g1] <
1,1 <g2| £2,0.5 < |bg] <1, and the signs of g1, g2 and
bo are assumed to be positive.

As discussed earlier, it is enough to apply the first kind
of transformation given in Section 3 to system (57) since
no zero-dynamics exist in this case. After transformation
and defining x = x, we obtain the following new system:

G = gobou,

X = Aox + bpeaou + ®o o) (t, T, u), x1 =€l X =y, (58)

where by = and A, =
[0, O], [1, 0]"], @515 = [0.1x1 sin 22, 0]
According to Subsection 4.1, we obtain the whole sys-
tem for control design (25) with p = n = 2. Choose
1 =[—1,-0.8]" such that matrix A; is Hurwitz.
Let Vg = )ZTPIE)Z. Then, the time derivative of V5 along

the trajectories of )2 satisfies:

=2 Ixl? + 202X - 1P (=@, g2

bog1g2 with positive sign,
T

As before, noting that x1 = y, we have 2||I.x| - || Bl -
[ 1:®2, 12|11 < 3|1Iex|]? + 4c®|| P ||°y?. Then we have

Vg <

—( = YILRI? + 43| R)P2 (59)
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Let’s next turn to the output-feedback control design
which will be completed in two steps.

Step 1. Let V1 = V3 + V¢ + %yz for this design step,
where V; = €T P_¢. Then, by Proposition 4 and (59), we
have

Vo= = (2= 1) X - L€ + (SR

2 2
+ 2LAEIE ) o2 g (B A + X2 + €2 + Par). (60)

- 2
Notice that yx2 < g|Lx|® + &, y&2 < £|1£)7 +

g, y®a1 < cy?, for any €, y, X. Substituting this into
(60) results in

Vi< = (& = 1) ILxI? - £+ (SIRIP
o SHADITIE )y2 +boye. (61)

Noting sign(by) = 1, we choose the virtual controller as

A= —laddy o ala), (62)

where a1 = ¢®||P||* + ¢+ £ +2|| Ry ||*||1]|? is clearly a known
constant, and L; > 1 is a constant to be determined later.

Define z1 = y and z2 = A2 — A5. Then, substituting (62)
into (61) results in

Vi< — (% = 1) ILxI? — £IE£)° — L9 + bhyza. (63)

Step 2. Let Vo = V1 + %6225. Then, by (63), the time
derivative of V5 satisfies

Voo < — (5 = 1) [IxI? — £l
—Ly? 4 bhyzs + 2%zt (64)

By the definition of z2, we have
Zo=u+lae * X + a1 (L1)e  (byra 4+ X2 + E2 4 ®2,1). (65)

As before, we have

boyz2 < te'yP + basgaess,

boear(Li)Aezz < (bargar|an (L) + 503798701 (L))
e23 + %sflyz,

eai(L1)Xaz2 < Ex|? + of (L1)ezs,

ea1(L1)®P2122 < v+ %a%(Ll)Ezzg.

Substituting this and (65) into (64), we have

. - L,—3

Vo < —(& 1) ILXIP - £ - (22 - 1)y
+e2z (lgsfz)\l + ai(Li)e e+ (e (bugm
Joa (Ln)| + o (L) + $b3sgis (i (L) + 2))

? 2
+Za1(L1))22) + & zou. (66)

Thus, we can choose the controller as
u = —571062(11[2])22 — 12572)\1 — 041(L1)571£27 (67)

where az(L[Q]) = Lo+ @2(L1), ﬁz(Ll) = ngM|a1(L1)| +
a3 (L) + $b31031(ad(L1) +2) + So3(L1), and Ly > 1is a
constant to be determined later.

Substituting (67) into (66) concludes that

Vo < —(£-1)1LxI” — £

=
£

Choosing L1 > 1,Lz > 1 and 0 < ¢ < &' =
min{L %7 L1 — %}7 we can see that V2 is negative defi-
nite, and hence the closed-loop system is globally asymptot-
ically stable. With respect to system (57) and the output-
feedback controller designed above, we next give the corre-
sponding numerical simulation to show the effectiveness of
the methods.

Let the initial value of the state be ¢, = [0,1]T, £(0) =0
and A(0) = 0, and the system parameters be g1 = 0.05,
g2 = 1 and bp = 1. Choosing L1 = L2 = 1 and £ = 0.249,
we obtain Fig.1~Fig.4. These figures show that all the
closed-loop states are indeed asymptotically stable.

— 1>y2 — Locz3. (68)

5 Concluding Remarks

In this paper, the output-feedback stabilization has been
investigated for a class of uncertain nonlinear systems. Af-
ter introducing two kinds of linear state transformations,
the control design becomes much natural since the con-
verted system has known virtual control coefficients and
separated stable zero-dynamics. For the new transformed
system, an appropriate high-gain observer based on K-
filters is introduced, and then by the backstepping ap-
proach, the output-feedback controller is successfully de-
signed. It is shown that the global asymptotic stability of
the closed-loop system can be guaranteed by the appropri-
ate choice of the design parameters.
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Appendix
-0.2¢ |
A In this appendix, we give proofs of Lemma 1, Proposi-
-0.45 ¢ . .
Ve tions 2 and 3, respectively.
061/ A.1 Proof of Lemma 1
-0.8; 5 s 10 15 It is clear that @ defined by (14) exists since it is the
) ; ) unique solution of the Lyapunov function: DTQ + QD =
Fig.4 State A of high-gain K-filters I

Because that D is Hurwitz and Re(A\(D)) < —£, we can

conclude that DT + D < —dI. Let A\s, i =1, ..., n be the
eigenvalues of DT + D. Then there exists an orthogonal
matrix P (i.e., P~' = PT) such that for V¢ € R™,

exp(D't + Dt) =

Pexp(diag[A1, -+, AnJt) P
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= Pdiaglexp(Ait), - ,exp(Ant)] P

By Tr(DT) = Tr(D), Tr(D™D) = Tr(DDT) and the ex-

pansion in series of the exponential matrix, it is easy
to show that for V¢t € RT, Tr(exp(D"t)exp(Dt)) =

Tr (exp(D™t + Dt)). From this, it follows that

Tr(Q) = Tr (/000 exp(DTt) exp(Dt)dt)

Tr (exp(DTt) exp(Dt)) dt

- Tr <exp(DTt + Dt)) dt

[e')

Il
th\g

Tr (Pdiag[exp(Ait), - -

:/ Zexp()\it)dt < -
0 d

i=1

, exp()\nt)]Pfl) dt

3

This together with @ > 0 concludes that ||Q] < ||Q|lr =
VIrQTQ) = vIr(Q*) < Tr(Q) < 5. O
A.2 Proof of Proposition 2

Along the trajectories of the subsystem X, the time
derivative of V3 satisfies

Vo < =Imll? + 201Q1 - llep,tos1,mll - Imll - [xa]
+2[ll - QI - 1@, p41,m]1-

For the second term on the right-hand side of the above
inequality, by Lemma 1 and Proposition 1, we have

2
20QI1 - llep,jprrmll - Inll - Ixal < gllml® + S-di’y®. (A2)

By the fact 0 < € < 1, and Lemmas 1 and 2, we know
that

20l - QI - 1R, 1p11.mll < 2252V (Ixa] + lexe|
4.4 |5P71Xp|)-

From this and x1 =y, xi = Xi + & +bpi, i =2,3,...,p,
it follows that

2[lnll - QI - 125, (p+1,ml11

< %”,,.'HZ + 8m2d¢:2'2n2 57(2p72)y2 + 8m2;’22n2p57(2p72)
L) + Bt Crm2) | g
8m2c?n? 5 , 3p-2) = 2622
+ 7z pbirgare 3P )ZE AN (A3)

=2

Substituting (A2) and (A3) into (Al), we can get

Vo < =Bl o+ dos (dF 4 miePe ) g2
e 20Dy o[ LK + e~ Do o | L€
P
+57(2p72)d0,3 Z 52172)\?7 (A4)
i=2
where do1 = SdL:’ don = %7 dos =
&rﬁi#pbﬁ{g]zw. This leads to (21). 0O

A.3 Proof of Proposition 3

The time derivative of Vj along (18) satisfies

. AT . ~
Vg <—XE 220111y - | B - (Il + 212X
B lep. e lllyl + 20 Zx - 18] - [[e®p, o1+ (A5)

We will deal with the last three terms on the right-hand
side of the above inequality. Firstly, by Proposition 1, the
second term and the third term satisfy respectively

N

=12
WIXIZ 4 921 || By|2 Im)|2,

IZeXI1* + dal| PI*y®. - (A6)

1 ~
2”7 [ Lex] - LB - il <
2Lx - 1B llep ol - 1yl <
For the last term, it is easy to show that [|I.®, |1

pc’ (Ix1| + €lxz| + -+ '|x,|). Then, noting that x1
yand x; = Xi + & + b, i, i =2, 3, ..., p, we have

I IA

2 x|l 17 - (L@ 10112
< (L4202 PRI + 30° ¢ || Pl | 1:€]
P

+302C2 | Ry + 30° g IR 3 €2 72N (AT)

i=2
Substituting (A6) and (A7) into (A5), we have
Vi < = (32 — doa) I1XII” + dos || €]

P
+26% 7| B |mlf* + do,ey® + do Y e¥ 2N, (A8)

=2

3
where doa = 2+ 2p2C||R|, dos = 3p°c?||Ri1?, dos =
(d2 +3p2C?) | B, do = 30263, g3 BII* are known
positive constants independent of . |



