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Abstract 

We propose to verify the AKS algorithm identities not for sequential integers, but for integers which are sequentially 
squared. In that case a number of elements, for which the identities are valid, doubles. 

 

1. Introduction 
Prime numbers are of fundamental importance in mathematics in general, and cryptography theory in 

particular. Efficient primality tests are also useful in practice: a number of cryptographic protocols need big prime 
numbers. 

In 2002 M.Agrawal, N.Kayal and N.Saxena presented a deterministic polynomial-time primality testing 
algorithm which relies on no unproved assumptions [1]. Idea of the algorithm is to prove primality with 
combinatorics: if one can write down many elements of a prime cyclotomic extension of the ring Zn of integers 
modulo n then n is a power of a prime. 

After that some improvements were proposed which reduced time complexity of the algorithm. The 
improvements are summarized in [2]. 

We offer one more improvement to the AKS algorithm which reduces a time complexity in near two times. 
f (r) means Euler’s function giving the number of integers less than r and relatively prime to r; |S| - a number 

of elements of the set S; or(n) - a multiplicative order of integer n modulo integer r. 
 

2. The idea 
 
A common way of AKS algorithm application – to verify the correspondent identities for sequential integers 

b=1, 2,…, l for appropriately chosen l. It was showed in [3] that if such verifications are done then the identities are 
valid also for multiplicative inverses of verifyed elements. As a result, a number of elements for which the 
identities are true doubles. 

We propose to verify the identities for integers which are sequentially squared b, b2, b4,…, 
i

b 2 .We show that 

then the identities are valid also for elements -b, -b2, -b4,…, -
12 −i

b . Hence a number of elements for which the 
identities hold is near two times bigger. 

 
3. Number of AKS identities for verification 

 
Lemma 1 Let n be a positive integer. If |b|<n/2,|b'|<n/2 for distinct integers b, b' and b= b' mod p for some 

non-trivial divisor p of n, then p=gcd(n,|b-b'|)<n.1 
Proof As b= b' mod p then | b-b'| is divided by p. From the lemma assumption |b-b'|<|b|+|b'|<n and proof is 

completed. 

Lemma 2 Let n be a positive integer. If |b|< n ,|b'|< n  and b-1= b' mod p for some non-trivial divisor p of 
n, then p=gcd(n,|bb'-1|)<n. 

Proof As b-1= b' mod p then |bb'-1| is divided by p. From the lemma assumption |bb'-1|<|b||b'|+1<n and proof 
is completed. 

Taking into account lemma 1 and lemma 2 we obtain a slightly modified version of theorem given by 
D.Bernstein in [2]. 
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Theorem 1 Let n and r be positive integers. Let d, i and j be nonnegative integers. Let S be a finite set of 
integers with 0,1,-1 ∉S. Assume that n is a primitive root modulo r=3;  

that |b|< n  for all b∈S; 

that gcd(n, |b-b'|)=1 for all distinct b, b'∈S 
that gcd(n, |bb'-1|)=1 for all b, b'∈S 
that bn-1=1 mod n for all b∈S; 

that  3/)(1)(||2||2 rn
j

dr
j

iS
i
d

i
S ϕϕ

≥






 −−







 −
















 

and that (x-b)n=xn-b (mod n,xr-1) for all b∈S. Then n is a power of a prime. 
 
Usually one takes sequential integers as elements of the set S. 
We propose to take integers which are sequentially squared as described further. 
Lemma 3 Let f(x) be an element of the ring Zn[x]/(xr-1). If (f(x))n=f(xn) (mod n,xr-1), then             

(f(xi))n=f(xin) (mod n,xr-1) for any positive integer i. 
Proof Substituting x by xi (i – any positive integer) in the equality (f(x))n=f(xn) (mod n,xr-1) we obtain 

(f(xi))n=f(xin) (mod n,xir-1). As xr-1 divides xir-1 then last equality holds also modulo n,xr-1. 
Lemma 4 Let n be a primitive root modulo prime number r=3. Then element x-b (b?1) has a multiplicative 

inverse in the ring Zn[x]/(xr-1). 
Proof It is sufficient to show that xr-1 is not divided by x-b. Assume that is not the case:  

xr-1=(x-b)(xr-1+ar-2xr-2+…+a1x+a0). It follows that ar-2=b, ar-3=b ar-2=b2,…, a0=b a1=br-1, b a0=br=1 mod n. As r is 
prime and b?1 then r divides n-1. Hence n=1 mod r – a contradiction. 

Lemma 5 Let n be a primitive root modulo prime number r=3. If (x-b)n=xn-b (mod n,xr-1) and                    
(x-b2)n=xn-b2 (mod n,xr-1), then (x+b)n=xn+b (mod n,xr-1). 

Proof If the assumption of the lemma holds then by lemma 3 (x2-b2)n=x2n-b2 (mod n,xr-1). Hence                
(x-b)n(x+b)n =(xn-b)(xn+b) (mod n,xr-1). Multiplying last equation from the left by multiplicative inverse of           
(x-b)n=xn-b, which exists by lemma 4, we obtain the desired equality. 

Theorem 2 Let n be a primitive root modulo prime number r=3. Let u be positive integer.                             

If (x-
i

a 2 )n =xn-
i

a 2  (mod n, xr-1) for i=0,1,…, u then (x+
i

a 2 )n =xn+
i

a 2  (mod n,xr-1) for i=0,1,…, u-1. 
Proof By induction on integer u. Using lemma 5. 
 
One uses theorem 1 and theorem 2 as follows, given a positive integer n. 
Check whether n is a perfect power; if so, then n is composite. 
Find the smallest prime r=3 such that n is a primitive rot modulo r.  
Select: 
- an integer d between 0 and ϕ(r)-1; 
- an integer i between 0 and d; 
- an integer j between 0 and ϕ(r)-1-d. 

Select a positive integer s such that  3/)(1)(22 rn
j
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Define the set S1={2,22,24,…, 
122

u

; 3,32,34,…,
223

u

; 5,52,54,…,
325

u

; 6,62,64,…, 
426

u

;   ; b,b2,…, 
tu

b2 }. 

Note that a total number of elements of the set S1 equals to ∑
=

+
t

k
ku

1

)1( . 

In that case select positive integers t, u1, u2,…, ut to satisfy the following conditions: 

- absolute values of all elements of the set S1 are smaller than n ; 
- all elements of the set S1 are pair wise distinct (that is we take for sequential squaring sequential positive 
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integers excepting those which are between powers of the previous integers); 

- the equality holds: ∑
=

=+
t

k
k su

1

)12( . 

Check whether gcd(n,b)=1 for all b∈S1; if not, n is composite. 
Check whether gcd(n, |b-b'|)=1 for all distinct b, b'∈S1 ; if not, n is composite. 
Check whether gcd(n, b+b')=1 for all distinct b, b'∈S1 ; if not, n is composite. 
Check whether gcd(n, |b b'-1|)=1 for all b, b'∈S1 ; if not, n is composite. 
Check whether gcd(n, b b'+1)=1 for all b, b'∈S1; if not, n is composite. Note that (-b)-1=-b-1 mod p. 
Check whether bn-1=1 mod n for all b∈S1; if not, n is composite. 
Check whether the AKS algorithm identities (x-b)n=xn-b (mod n,xr-1) are valid for all b∈S1; if not, n is 

composite. 
If the identities are valid for all elements of the set S1 then by theorem 2 the identities also hold for elements 

of the set S2={-2,-22,-24,…,-
1122

−u

;-3,-32,-34,…,-
1223

−u

;-5,-52,-54,…,-
1325

−u

;-6,-62,-64,…,-
1426

−u

;…;-b,-b2,…,-
12 −tu

b }. 

A total number of elements of the set S2 equals to ∑
=

t

k
ku

1

.The set S=S1∪S2 has totally ∑
=

=+
t

k
k su

1

)12(  elements. 

The checks performed before guarantee that conditions of theorem 1 are true for the set S. Hence n is prime by 
theorem 1. 

The ratio |S|/|S1| is near 2 for big integers n. 
 
Remark One can define the set S1 as sequential squares of only one integer, for example 2. If all elements of 

the set are pair wise distinct modulo n then |S|=2|S1|-1. 
 

4. Results of a numerical experiment 
 
We generated a random integer with 500 decimal digits and using the simplest checks (trial divisions by 

small primes and Fermat trials) found the nearest probably prime integer: 
n=479409177435379736926444758122299925297868148724992455622925707553306438131348331710045849
99222590110235044488677770714926858791225185306522918439447628041208121917296188768103979134
96355304585341383041628465930554851261720371023802792519535952268313537105565890406328657863
58335822140678273606542593302348943723321597302501596966064507836039107310171544582243368492
89932324339688284385593377864655882803248863009189826723839129681831756854480239463853251795
610189200537854685347952906322421388521503 

n is a primitive root modulo prime r=2755759; ϕ(r)=or(n)=27555758. 
Select for the last inequality s=0.0497ϕ(r)=136961; i=j=0.047ϕ(r)=129520; d=0.5ϕ(r)=1377879. As a result 

the last inequality holds: the base 2 logarithm of left side equals to 1581626.22, and the base 2 logarithm of the 
right side equals to 1581407.72. 

The set S1 is defined as follows. 

As n<10500=21650 then n <2825. 

First take integer 2. u1=9 is the smallest positive integer for integer 2 such that 
122

u

< n . Therefore 2, 22, 24, 

28, 216, 232, 264, 2128, 2256, 2512 ∈ S1. 

Next take integer 3. u2=9 is the smallest positive integer for integer 3 such that 
223

u

< n . Therefore 3, 32, 

34, 38, 316, 332, 364, 3128, 3256, 3512 ∈ S1. 
Do not take integer 4 because it is between the powers of integer 2. So take next integer 5 etc. 
In such a way we took t=11076 integers. 
Last integer equals to 11207. u11076=5 is the smallest positive integer for integer 11207 such that 
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11076211207
u

< n . Therefore 11207, 112072, 112074, 112078, 1120716, 1120732 ∈ S1. 
We obtained in the example |S1|=74023 and |S|/|S1|=1.85. 
Hence to prove that n is prime it is sufficient to show the following: 

- that gcd(n, |b-b'|)=1 for all distinct b, b'∈S1; 
- that gcd(n, b+b')=1 for all distinct b, b'∈S1; 
- that gcd(n, |b b'-1|)=1 for all b, b'∈S1; 
- that gcd(n, b b'+1)=1 for all b, b'∈S1; 
- that bn-1=1 mod n for all b∈S1; 
- that equalities (x-b)n=xn-b (mod n,xr-1) hold for all 74023 elements of the set S1. 
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