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Abstract. In this paper we propose the group of unitriangular matrices
over a finite field as a non-abelian group and composition of inner, di-
agonal and central automorphisms as a group of automorphisms for the
MOR cryptosystem.

1 Introduction

Most of the cryptosystems popular today are built on abelian groups. It is
natural to try to generalize them to non-abelian groups, not only because
the current systems are getting old with time, but also because it is an
interesting academic adventure in trying to do so. The cryptosystem that
we have in mind is the El-Gamal cryptosystem [3, Section 2] which is
built on the Discrete Logarithm Problem [3, Section 2]. Discrete logarithm
problem can be generalized in different ways, to mention just two of them
– one was done in [7] and the other is the MOR cryptosystem [12].

The MOR cryptosystem attracted a lot of attention and some well
written papers [4, 11, 14]. We in this article propose a new group and a
set of automorphisms for the MOR cryptosystem. Our group is the group
of unitriangular matrices over a finite field and the automorphism is the
composition of diagonal, inner and the central automorphism. We show
that for this group and the set of automorphisms, MOR is at most as
secure as the discrete logarithm problem in finite fields.

There is still a lot of interest with cryptosystems using the discrete
logarithm problem in finite fields, like the El-Gamal cryptosystem. From
[4, 11] and our study of the MOR cryptosystem it seems reasonable to
expect that the proposed MOR cryptosystem is as secure as the El-Gamal
cryptosystem over finite fields. So, we claim that we had a reasonable
amount of success with these groups and automorphisms. Though the
most desirable consequences of this research would be no sub-exponential
attack on the cryptosystem.



There is one other shift in our proposed MOR cryptosystem. We are
using polycyclic groups [13, Chapter 9] for the cryptosystem, computation
with this class of groups is done differently than with the multiplicative
group of finite fields. We are yet to understand the consequence of this
shift, from arithmetic in finite fields to arithmetic in a polycyclic group
and the use of automorphisms instead of exponentiation.

It is often expected of a proposer of a new cryptosystem to provide
parameters and to show that the cryptosystem is semantically secure.
We are not yet in a position to provide parameters, because the discrete
logarithm problem in the automorphisms, on which the security of our
cryptosystem depends is not well studied. Moreover since the best known
attack is the discrete logarithm problem in finite fields, hence one can pick
parameters out of any cryptosystem using the discrete logarithm problem,
e.g. the El-Gamal cryptosystem. MOR cryptosystem is a straightforward
generalization of the El-Gamal cryptosystem, so it is easy to see that
MOR is not semantically secure (indistinguishability) [3], however it can
be made secure against indistinguishability against chosen ciphertext at-
tack using ideas similar to Cramer-Shoup [1].

2 The MOR cryptosystem

In this section we discuss the MOR cryptosystem [12] and critique some of
the points discussed by the authors there. There are two different concepts
used in this paper [12] for the security of their cryptosystem.

i The discrete logarithm problem in the group of inner automorphisms.
ii Membership problem in a finite cyclic group.

Let us describe the MOR cryptosystem in details. Let G = 〈γ1, γ2, . . . , γs〉
be a finite non-abelian group. Let φg be an inner automorphism of G
defined by φg(x) = g−1xg for all x ∈ G. Then φm

g (x) = g−mxgm for all
x ∈ G and m a positive integer. Now suppose Eve wants to set up a
public key for herself. Then she chooses g and publishes φg and φm

g . She
however doesn’t publish g and gm, instead she publishes {φg(γi)}s

i=1 and
{φm

g (γi)}s
i=1. Then to send a message (plaintext) a ∈ G, Bob computes

the φr
g and φmr

g from the public information and for a random r ∈ N
and computes φmr

g (a) and sends Eve
(
φr

g, φ
mr
g (a)

)
. Just like El-Gamal

cryptosystem Alice knowing m can compute φmr
g from φr

g and hence the
inverse φ−mr

g and can find out a the plaintext.
What does the security of this protocol depends on? Firstly if one can

solve the discrete logarithm problem in φg and φm
g then the protocol is
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broken. On the other hand since the inner automorphisms are presented
as the action on generators it might be difficult to find g from the public
information of {φg(γi)}s

i=1. Moreover φg = φgz for some z ∈ Z(G). Hence
even if there is an algorithm to find g, that g might not be unique. The
authors of the MOR cryptosystem uses this fact for security as follows,
suppose one knows the g from φg and then tries to determine the gm in
φgm then by solving the conjugacy problem they will come up with gmz
and then they will have to solve the membership problem in the cyclic
group 〈g〉 before they can even try to solve the discrete logarithm prob-
lem. Of course this attack on the system doesn’t include that some one
might be able to solve for m from the public informations {φg(γi)}s

i=1 and
{φgm(γi)}s

i=1. Moreover as shown in [4, Theorem 1] there is an effective
way using only black box group operations to get around this membership
problem by switching to discrete logarithm problem in G/Z(G).

The idea behind this scheme seems to be novel and the idea of using
membership problem in Public Key Cryptography might have interesting
applications. However, the biggest test for an idea to develop a public key
protocol is the ability to find groups that produces fast encryption, fast
decryption and is secure.

The idea of using automorphisms, where the public information about
these automorphisms is its action on generators puts severe restrictions
to the groups useful in this scheme.

The group used should have a fast algorithm to express an element of
the group as a word in generators. Unless every group element is
presented as words in generators, e.g. polycyclic groups where fast
collection algorithms are available, this is hard to achieve.

What concerns us the most is the use of two different cryptographic prim-
itives simultaneously! It can be argued that two insecure locks doesn’t
make one secure lock, just get two guys to work on them simultaneously
or use a meet in the middle attack. The converse of the idea is that one
secure lock is enough to guard a secret. Stating plainly, the idea of using
membership problem and the discrete logarithm problem simultaneously
in a protocol is probably not wise. On top of that since MOR is a general-
ization of the El-Gamal cryptosystem whose security depends on discrete
logarithm problem, computational Diffie-Hellman problem and Decision
Diffie-Hellman problem [7, Section 2.3]or [3, Section 2], this cryptosys-
tem is not ideally suited to exploit the membership problem. This was
echoed in [11]. In the definition of the MOR cryptosystem in [11] the
whole automorphism group was considered instead of the group of inner
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automorphisms as in [12] and the requirement that the automorphisms
be presented as action on generators was dropped.

The basic scheme for a MOR cryptosystem is as follows and is an
adaptation of [11, Section 2].

Let G be a group and φ : G → G is an automorphism. Alice’s keys
are as follows:

Public Key φ and φm.
Private Key m.

Encryption

a To send a message a ∈ G Bob computes φr and φmr for a random
r ∈ N.

b The ciphertext is (φr, φmr(a)).

Decryption

a Alice knows m, so if she receives the ciphertext (φr, φmr(a)), she com-
putes φmr from φr and then φ−mr and then from φmr(a) computes
a.

Alice can compute φ−mr two ways, if she has the information necessary
to find out the order of the automorphism φ then she can use the identity
φt−1 = φ−1 whenever φt = 1. Or, she can find out the order of some
subgroup in which φ belongs and use the same identity. However the
smaller the subgroup more efficient is the decryption algorithm.

3 Proposed group for the MOR cryptosystem

The non-abelian group we are proposing for the MOR cryptosystem is
the group of unitriangular matrices over a finite field Fq of characteristic
p, where p is a prime number. The group of unitriangular matrices is
often denoted by UT (n,Fq). This group consists of all square matrices of
dimension n, the diagonal elements are 1 (the multiplicative identity of
the field) and all entries below the diagonal are 0 (the additive identity
of the field). The entries above the diagonal can be any element of the
finite field Fq. The group operation is matrix multiplication. An arbitrary
element g ∈ UT (4,Fq) looks like,

g =


1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

 .
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The ∗ denotes a field element. From a simple counting argument it fol-
lows that UT (n,Fq) is a Sylow p-subgroup of the general linear group
GL(n,Fq) where p is the characteristic of the finite field Fq.

Let eij for i < j represent the matrix with 1 in the (i, j) position and
0 elsewhere. It is customary to represent g ∈ UT (n,Fq) as 1 +

∑
i<j

aijeij ,

where aij ∈ Fq. Notice that 1 above is the identity matrix. We will abuse
the notation a little bit and will use 1 as the identity of UT (n,Fq) and
Fq simultaneously. It should be clear from the context which 1 we are
referring to.

There are two fundamental set of relations in UT (n,Fq) along with
the relations in the field Fq. For (1 + aeij), (1 + bekj) ∈ UT (n,Fq) where
a, b ∈ Fq they are as follows:

(1 + aeij)(1 + beij) = 1 + (a+ b)eij (1)

[1 + aeij , 1 + bekl] =


1 + abeil if j = k, i 6= l
1− abekj if i = l, j 6= k

1 otherwise
(2)

Here [x, y] = x−1y−1xy is the commutator of elements x, y ∈ G for any
group G. It is well known that the additive group of Fq, often written as
F+

q is a γ dimensional vector space over Zp, where pγ = q. It follows [15,
Page 455] that the minimal set of generators of UT (n,Fq) are 1+δkei,i+1,
k = 1, 2, . . . , γ and i = 1, 2, . . . , n− 1. The set {δ1, δ2, . . . , δγ} is a basis of
F+

q over Zp. The center of UT (n,Fq) is 1 + ke1,n where k ∈ Fq.
Since UT (n,Fq) is a finite p-group hence it is a finite nilpotent group

and a polycyclic group [13, Proposition 3.4].

Definition 1 (Polycyclic Group). A group G is a polycyclic group if
there is a finite chain of subgroups G = G1 ⊃ G2 ⊃ . . . ⊃ Gk ⊃ Gk+1 = 1
such that Gi+1 is a normal subgroup of Gi and Gi/Gi+1 is cyclic.

Since in a polycyclic group G, Gi/Gi+1 is cyclic hence there is a ai in
Gi such that the image of ai in Gi/Gi+1 generates Gi/Gi+1. It is easy
to see that {a1, a2, . . . , ak} generates the group G and is known as the
polycyclic generating set. Since we are dealing with finite groups hence
|Gi+1 : Gi| = mi is finite. It follows that (see [13, Section 9.4]) every word
in G can be expressed uniquely as aα1

1 aα2
2 . . . aαk

k where 0 ≤ αj < mj for
j = 1, 2, . . . , k. These words are called collected words. Using collection
algorithm [13, Section 9.4] any word in {a1, . . . , ak} can be expressed as
a collected word. So in this group computing the inverse and the product
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is fast and easy, i.e., there is a fast implementation of polycyclic groups
and their arithmetic [2, Polycyclic Package].

Now let us talk about the polycyclic generating set of UT (n,Zp), for
an arbitrary finite field Fq this can be similarly done. For sake of simplicity
we take n = 4. Let a1 = 1 + e12, a2 = 1 + e23, a3 = 1 + e34, a4 = 1 + e13,
a5 = 1+e24 and a6 = 1+e14. Then it is shown in [13, Section 9.4, Example
4.1] that {a1, a2, . . . , a5} form a polycyclic generating set for UT (4,Z). It
is easy to see that this is also a polycyclic generating set for UT (4,Zp)
for an arbitrary prime p.

3.1 The diagonal automorphism

Let D be an diagonal matrix, i.e., a matrix of dimension n over the
field Fq, and the only non-zero elements are in the diagonals. We will
represent a diagonal matrix D as [w1, w2, w3, . . . , wn], where wi are non-
zero elements of the fieldK and are the diagonal elements of the matrixD.
It is easy to see that if w1 = w2 = . . . = wn then the diagonal matrix is a
scalar matrix. Weir[15, Section 4] introduced the diagonal automorphisms
on UT (n,Fq). Let D be a diagonal matrix given by [w1, w2, . . . , wn], then
from matrix multiplication it follows that D−1xD for an x ∈ UT (n,Fq)
where x = 1 +

∑
i<j

aijeij is given by 1 +
∑
i<j

(w−1
i aijwj)eij . Since the scalar

matrices have the same diagonal elements, hence the group of diagonal
automorphisms has order (q − 1)n−1.

These diagonal automorphisms are clearly not inner automorphism
because the diagonal matrices are not unitriangular. We will now study
the MOR cryptosystem using these diagonal automorphisms. It is easy
to see that if D = [w1, w2, . . . , wn] and φ(x) = D−1xD for x ∈ UT (n,Fq)
then φm(x) = D−mxDm where Dm = [wm

1 , w
m
2 , . . . , w

m
n ] where m ∈ N. So

if Alice makes D and Dm public then finding the m is solving the discrete
logarithm problem in the multiplicative group F∗

q of the finite field Fq.
If the plaintext is a ∈ UT (n,Fq) then computing φm(a) is easy and

can be done easily from the formula above. So, using this diagonal au-
tomorphism one can have a secure protocol similar to that of El-Gamal
cryptosystem. Clearly, there is no advantage for using this protocol over
El-Gamal, the security depends on the discrete logarithm problem in the
multiplicative group of the finite fields but one has to do more work
than the El-Gamal cryptosystem for encryption and decryption. However
this protocol seems to be computationally secure and can be made se-
mantically secure using ideas similar to Cramer-Shoup. Notice that it is
essential for the above mentioned use that the wi are all different from

6



one another, otherwise valuable information about the plaintext will be
leaked.

3.2 The inner automorphism

Inner automorphisms are the easiest of the automorphisms to study, they
are defined as Ig(x) = g−1xg for all x ∈ UT (n,Fq) and g ∈ UT (n,Fq). It
is well known that the group of inner automorphisms I(G) for a arbitrary
group G is a normal subgroup of the automorphism group of G. It is
also known that I(G) is isomorphic to G/Z(G). From which it follows

that the order of the group of inner automorphisms is q
n2−n−2

2 . We now
see what happens when we use the inner automorphisms for the MOR
cryptosystem.

Let φ = Ig as defined before. Since the conjugacy problem is easy and
we are not using the membership problem, we can safely assume that g
and gn is public. If

g =


1 a12 a13 a14

0 1 a23 a24

0 0 1 a34

0 0 0 1


then

gn =


1 na12 ∗ ∗
0 1 na23 ∗
0 0 1 na34

0 0 0 1


where ∗ represents a field element.

Now the discrete logarithm problem to find n essentially becomes dis-
crete logarithm problem in F+

q . Since the discrete logarithm problem in
the additive group of a finite field is known to be easy we don’t believe
that using only inner automorphisms one can build a secure MOR cryp-
tosystem.

3.3 The central automorphism

The group of central automorphisms are the group most widely studied
after the group of inner automorphism. The reason of their popularity is
that the group of central automorphisms are the centralizers of the group
of inner automorphisms, i.e., the central automorphisms commute with
the inner automorphisms and fixes the derived subgroup elementwise. It
can be shown that if ψ is a central automorphism of a group G then
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ψ(g) = gzg where zg ∈ Z(G) and depends on g. It follows [5] that a
description of the central automorphism ζi(λ) is

ζr(λ) : 1 + ar,r+1er,r+1 7→ 1 + ar,r+1er,r+1 + λ (ar,r+1) e1,n

where λ is an endomorphism of F+
q and r = 1, 2, . . . , n − 1. Now since

λ is an endomorphism and F+
q is a γ-dimensional vector space over Zp,

then if λ(δi) = bi then we arrive at [15, Page 463] where a description of
the central automorphisms for the UT (n,Fq) is given as 1 + δier,r+1 7→
1+ δier,r+1 + bie1,n where r = 1, 2, . . . , n− 1, bi is an arbitrary element of
Fq. This can also be represented as 1+δier,r+1 7→ (1+δier,r+1)(1+bie1,n).
So composing this map n times gives us 1 + δier,r+1 7→ (1 + δier,r+1)(1 +
nbie1,n). Notice that if r = 1, n − 1 then the central automorphisms are
inner automorphisms and from this it follows that the order of the group
of central automorphisms is qγ(n−3) where pγ = q. Since the description
of the central automorphisms depend on λ hence unlike the inner or the
diagonal automorphisms the only possible description of a central auto-
morphism is by action on generators of the group G.

So if we take a central automorphism to use in MOR cryptosystem
then from the public information the discrete logarithm problem is the
same as the discrete logarithm problem in F+

q . Since the discrete logarithm
problem in the additive group of the field is easy so central automorphism
alone doesn’t provide us with a secure MOR cryptosystem.

4 A proposed automorphism for the MOR cryptosystem

Currently the proposed group for the MOR cryptosystem [12] is SL(2,Zp)o
Zp. This is a split extension of SL(2,Zp) by Zp. The automorphisms pro-
posed are the inner automorphisms. It is shown in [11, Theorem 2] that
the discrete logarithm problem in the group of inner automorphisms of
SL(2,Zp)oZp is the same as the discrete logarithm problem in SL(2,Zp).
In [9] the authors show that the discrete logarithm problem in GL(n, q),
the general linear group over the finite field Fq, is at most as hard as dis-
crete logarithm problem in some finite extension field of Fq. Since there
are sub-exponential attacks on discrete logarithm problem on finite fields
like the index calculus attack, there is every reason (practical as well as
academic) to look for other groups and automorphisms in these groups.

In [4] the authors came up with central commutator attack, they
showed that inner automorphisms are not well suited for MOR cryp-
tosystem, especially when the group is nilpotent.
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So it is clear that if we are using nilpotent groups, (UT (n,Fq) is a
finite p-group and hence nilpotent) then we have to look for outer auto-
morphisms. The diagonal and the central automorphisms are outer au-
tomorphisms. On the other hand as we saw in the last section, diagonal
automorphism does provide us with a secure MOR cryptosystem and the
only way to represent a central automorphism is its action on generators.
On the other hand the security with diagonal automorphisms turns out
to be discrete logarithm problem in the multiplicative group of the finite
fields and the central and the inner automorphisms, from their presenta-
tion reveals valuable information.

Now we are in a position to describe the automorphism that we are
going to use for the MOR cryptosystem, it is

central composed inner composed diagonal automorphism.
Let us denote by I, D and L the group of inner, diagonal and the cen-

tral automorphisms respectively. From the definition of L it is clear that
I × L is a subgroup of the automorphism group of UT (n,Fq). Since the
diagonal automorphisms don’t commute with the inner automorphisms
and from a simple argument it follows that the specific automorphisms
we plan on using belongs to the subgroup (I × L) o D. From this it fol-
lows that the smallest subgroup containing the above automorphisms has
order

q
n2−n−2

2 × (q − 1)n−1 × qγ(n−3).

We now show by means of a small example that with the best of our
efforts we were not able to beat the sub-exponential attack on finite fields.
It is shown that the with the proposed group and the automorphism the
MOR cryptosystem is as secure as discrete logarithm problem in a finite
field.

4.1 A small example

We now explain the MOR cryptosystem with a small example. We used
[2, Polycyclic Package] for this example, notations are from Section 3. Let
n = 4 and q = 1297 where 1297 is a prime. We pick three random integers
984, 807 and 452. Then we define a central automorphisms (see Section
3.3) map1 as

map1 =


a1 −→ a1a

984
6

a2 −→ a2a
807
6

a3 −→ a3a
452
6

all other generators remain fixed. Next we pick a random element h :=
a83

1 a
462
2 a1202

3 a1209
4 a793

5 a152
6 and compute the inner automorphism (see Sec-
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tion 3.2), map2 : x 7→ h−1xh corresponding to h.

map2 :=



a1 −→ a1a
462
4 a1001

6

a2 −→ a2a
1214
4 a1202

5 a103
6

a3 −→ a3a
835
5 a88

6

a4 −→ a4a
1202
6

a5 −→ a5g
61214

a6 −→ a6

Then we take the diagonal automorphism (see Section 3.1) corresponding
to [624, 155, 538, 126], the diagonal automorphism map3 is

map3 =



a1 −→ a576
1

a2 −→ a1267
2

a3 −→ a574
3

a4 −→ a878
4

a5 −→ a938
5

a6 −→ a768
6

Then the automorphism Alice will make public is φ = map1 ·map2 ·map3
and that is given by

φ =



a1 −→ a576
1 a972

4 a538
6

a2 −→ a1267
2 a1055

4 a383
5 a508

6

a3 −→ a574
3 a1139

5 a558
6

a4 −→ a878
4 a118

6

a5 −→ a938
5 a1168

6

a6 −→ a736
6

and if Alice chooses her private key to be 65 then

φ65 =



a1 −→ a450
1 a1145

4 a618
6

a2 −→ a1263
2 a1269

4 a1242
5 a1093

6

a3 −→ a526
3 a708

5 a279
6

a4 −→ a264
4 a1190

6

a5 −→ a274
5 a836

6

a6 −→ a85
6

The automorphisms φ and φ65 is public, (see description of the MOR
cryptosystem in Section 2). Notice that (576)65 mod 1297 = 450. An avid
reader will further notice that from the public information of φ and φ65 it
is clear that if k′j is the exponent of aj in φ65(aj) and if kj is the exponent
of aj in φ(aj) for j = 1, 2, 3 and j = 6. Then k′j is k65

j . The reason for

10



this is that the inner and the central automorphisms leave the exponent
of a1, a2, a3, a6 unchanged. The only thing that changes {a1, a2, a3, a6} is

the diagonal automorphism and then the change is like aj 7→ a
w−1

j wj+1

1

for j = 1, 2, 3 and a6 7→ a
w−1

1 w4

6 . Then composing the map m many times

gives us aj 7→ a
(w−1

j wj+1)m

j for j = 1, 2, 3 and a6 7→ a
(w−1

1 w4)m

6 .
This leads us to the best known attack against this cryptosystem. If

one can solve the discrete logarithm problem in a finite field then he can
figure out them from the public information of φ and φm as demonstrated
above. There are sub-exponential algorithms, like index calculus methods,
in finite fields to solve the discrete logarithm problem.

5 Conclusion

In this paper we studied a new group and a group of outer automorphisms
for the MOR cryptosystem. The security of any proposed cryptosystem
is always an open question. Since, this is the first time the group of
unitriangular matrices and automorphisms over it is proposed for public
key cryptography more work needs to be done to assure one of the security
of the said system. There are two important question that comes out of
this cryptosystem.

1. We saw that if one can solve the discrete logarithm problem in finite
fields then he can break the MOR cryptosystem. Is the security of
MOR cryptosystem equivalent to the El-Gamal cryptosystem?

2. Is it computationally more expensive to use MOR cryptosystem than
the traditional El-Gamal cryptosystem? This is a relevant question
because the MOR cryptosystem uses the algorithms for polycyclic
groups.
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