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Research Article

On Monotonic Convergence to Stability

Dalkhat Ediev1

Abstract

The paper introduces, for age-distribution population vectors, a class of distances to the
stable equivalent; each of these distances converges monotonically to zero as the
population approaches stability. The Kullback distance, considered earlier to be unique
as a measure with this property, turns out to be a mere specimen of this class. It is
shown that the very feature of monotonic convergence agrees with demographic
potential of age specific stabilization measures. The paper also introduces a class of
monotonic measures of the convergence to each other of two non-stable populations
with similar reproduction regimes. Numerical illustrations and demographic
applications conclude the paper.

                                                          
1 Karachay-Cherkessian State Technological Institute
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1. Introduction

Monotonic measures for convergence of the population to its stable equivalent were
imported into demography from the thermodynamic concept of entropy and from the
information theoretical concept of informational distance. This paper contributes to the
subject by widening the class of such monotonic measures. Firstly, we consider the
classical population projection model with constant rates and suggest the class of
monotonic measures for stabilization. These measures are weighted sums of age-
specific deviations from the stable equivalent population, including as a special case the
Kullback distance investigated in the literature. Next, we turn to the convergence to
each other of two non-stable populations with similar reproduction regimes and show
that monotonic measures for convergence of such populations form a subclass of the
aforementioned monotonic measures. Finally, we explore the convergence in the case
of time-dependent reproduction regimes and suggest monotonic measures for
convergence in that case. Being weightening factors, demographic potentials play an
important role in the monotonic measures proposed. Discrete one-sex models closed to
migration are considered throughout the paper, but continuous analogs are
straightforward. Results of the work are accompanied by numerical illustrations and are
applied to explore the convergence of racial groups of the US population.

In his paper “Why use population entropy? It determines the rate of convergence”
Tuljapurkar (1982) introduced the informational distance as a monotonic measure of
convergence of age structure to the stable equivalent. Later Schoen and Kim (1991)
developed this idea and argued that the Kullback information distance is suitable for
demographic needs and it can reflect instantaneous movements towards the stable
equivalent. It was recently proved that monotonic convergence to stability by the
Kullback distance is equivalent to the ergodic property for linear population models
with nonnegative reproduction rates [Ediev 2002a]. These results leave the impression
that the Kullback distance is particularly suitable for age-structured models and
represent some important features of demographic systems. Schoen and Kim, for
example, wrote:

“… the only other [besides the Kullback distance – D.E.] monotonic measure of
which we are aware is described in Golubitsky, Keeler, and Rothschild (1975). That
measure is less appealing than the Kullback distance because it assures monotonicity
only in the maximum deviation of observed age-specific values from their stable
counterparts” [Schoen and Kim 1991: 465].

It is shown in this paper, however, that a wide class of distances can be proposed,
which monotonically reflect the convergence of population age structure. Indeed,
monotonic measures are presented which have a simpler structure and a better
performance compared to the Kullback distance.
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When the paper was being reviewed, the author found another work on the monotonic
measures of convergence to stability. Independently from the aforementioned works
Rubinov and Chistyakova developed the quantity called ‘the indicator of instability’
[Rubinov and Chistyakova 1986: 50, 51].  They corrected the measure proposed by
Pirozhkov (1976) and pointed to the monotonicity as an important unique feature of the
indicator they developed.

In fact both the Kullback distance and the Pirozhkov-Rubinov-Chistyakova’s
index of instability turn out to be a mere specimens of the class proposed in the paper.

2. The population projection model

In this section we rewrite the classical population projection model in a form more
convenient for the purposes of the paper. The form we propose arises from the model of
reproduction based on the concept of demographic potential [Ediev 2000, 2001a: 325-
329, 2001b, 2001c] but it is fully equivalent to the classical component model as well.
In the cohort-component model [Leslie 1945], age-specific mortality and fertility rates
are used to model the dynamics of the population age structure. In that model, the
dynamics of the youngest age group is described by the following difference equation:

( ) ( )∑
=

−=+
X

x
xx FLxtntn

0
00 1 , {1}

where ( )tnx  is the size of age group x  at time t , xL  is the accumulated probability of

surviving from age 0  to age x , and xF  is the age-specific fertility rate corrected for

infant mortality ( Xx ,...,2,1,0= ) .
Fisher’s reproductive value xv  of a person of age x  [Fisher 1930] is the net

present value of future births of that person discounted by the intrinsic rate of
population increase. In the discrete case [Leslie 1948] it can be written as:

( )∑
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−+−=
X

xy
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y
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L
v 1λ , {2}

here Xx ,...,2,1,0= ; for ages above X  we will set reproductive values to be zero. It

can be shown [Ediev 2001a: 325-329] that the fertility rates can be expressed in terms
of reproductive values:
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1+−= xxxx vPvF λ , {3}

where xP  is the probability of surviving from age x  to age 1+x . Using {3}, the

difference equation {1} can be rewritten in the form:

∑
=

−+ ∆=
X

x
xtxt bb

0
1 , {4}

where 
( )
tt
tn

b
λ
0=  is the discounted number of births at time t  ; 1+−=∆ xx

def

x uu  ;

and 
x
x

xx

L
vu

λ
=  is the expected relative future demographic potential at age x  for

today’s newborn [Ediev 1999], for the population with time-constant fertility and
mortality rates it simply equals to the expected present value of the reproductive value
to be attained by a newborn at age x . The concept of demographic potential is close to
the reproductive value in the sense that it measures the relative contribution of persons
from different population groups to the ultimate population size. Unlike the
reproductive values, which correlate contributions of contemporarily living persons, the
demographic potentials measure relative contributions of persons at arbitrary ages, from
arbitrary birth cohorts, taken at arbitrary time periods. In addition, the demographic
potential concept can be extended to the case of time-dependent reproduction regimes.

The total reproductive value of the population can be rewritten in the new notation
as:

( ) ( ) ∑∑
=

−
=

==
X

x
xtx

t
X

x
xx butnvtV

00
λ  {5}

Under the ergodic property [Arthur 1981, 1982], discounted births tend to a constant
level determined by the stable equivalent [Keyfitz 1969], as t  tends to infinity:

( )0*
0

* nbb
def

t =→  as ∞→t

(hereinafter the asterisk denotes stable counterparts of the population quantities.)
Population parameters are related to their stable counterparts through equality of total
reproductive values [Ediev 2001a: 331-332].
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Combining this with {5} and taking into account the exponential dynamics of the total
reproductive value [Fisher 1930] we have:

 
( ) ( )
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0* =
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, {6}

where ∑
=

=
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x
xuU

0
.

3. The Kullback information distance as a member of a wider class
of distances

The Kullback-Leibler distance [Kullback and Leibler 1951, Kullback 1959] measures

the dissimilarity between two vectors ( *, yy ) containing components of some

probability distributions:
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where the quantities xy  are non-negative and sum to one, and similarly for the

quantities *
xy .

As proposed by Tuljapurkar (1982), the age distribution of reproductive values
could be substituted into {7} in order to get a monotonic measure of convergence to
stability. In our notation this distribution is given by the following expression:
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Substituting by {6}, we have for the stable equivalent population:
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Combining {7}-{9}, we finally get the following expression for the Kullback distance:
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As it was shown by Tuljapurkar (1982), this distance converges monotonically to zero
as the population approaches stability. The quantity Kt in {10} is a ‘one-way’ distance

from the population structure at moment t  to the structure of the stable equivalent. As
it is shown in [Ediev 2002a], monotonic convergence to stability can be observed in
two other information distances, one which measures the ‘one-way’ distance in the
opposite direction, i.e. from the stable equivalent to the current population structure,
and the symmetrical distance defined as the average of the two others:
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From {10}-{12} it follows that all three variants of the information distance can be
treated as measures of the following type:

( )∑
=

−=
X

x
xtxt bbduD

0

*; , {13}

where ( )*; bbd xt −  is a function which measures one-dimensional deviation of xtb −

from its stable equivalent *b . The purpose of this paper is to prove that under

unrestrictive assumptions about the deviation function ( )*; bbd , viz that is a convex

function of b  and satisfies ( ) 0; =bbd  for all b , every measure of the form {13}

converges monotonically to 0 for increasing t , that is, as the population approaches
stability. Convexity condition is granted if, for example, the second derivative

( )*
2

2

;bbd
b∂
∂  is nonnegative.
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4. Proof of monotonic convergence to stability

The following expression can be obtained for changes in distance {13}:

( ) ( ) ( )*
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0
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1 ;;; bbdubbdubbduDD t
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xtxtt +
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By rearranging, by using {4}, and taking into account that 10 =u  and 01 =+Xu , we

get:
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Indeed, the reproduction coefficients x∆  should be nonnegative for monotonic

convergence in the Kullback distance, as shown in [Ediev 2002a]. This condition is
assured for the cohort-component model, as fertility rates are necessarily nonnegative.

We also assume this condition to be met, i.e. Xxx ,0,0 =≥∆ . Then monotonic

convergence of distance {13} is simply a consequence of the Jensen’s inequality for
convex functions [Hardy, Littlewood, and Polya 1934]:

( ) 
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kk xafxfa  {16}

for any convex function ( )xf  if 0≥ka  and 1=∑
k

ka . We should only note that

10
0

==∆∑
=

u
X

x
x

to obtain the following result from the Jensen’s inequality, the convexity assumption
imposed on the deviation function, and expression {15}:

01 ≥− +tt DD , i.e. tt DD ≤+1  for any t  {17}

This means that the distance {13} decreases monotonically for increasing  t , so it has a
limit. We shall now prove that this limit is zero, regardless of the initial population.
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Assume that the ergodic property holds for the reproduction model {1}, {4}. Indeed, as
proved in [Ediev 2002a], this is the necessary and sufficient condition for monotonic
convergence in the Kullback distance for models with a nonnegative projection matrix.
Then it follows from the condition ( ) 0; =bbd  imposed on the deviation function and

from the continuity of that function (this property is granted for any convex function
defined on the set of all real numbers [e.g. Polyak 1983: 118]), that distance {13} tends
to zero as the population structure approaches the structure of the stable equivalent and

tb  approaches *b .

5. Examples of monotonic measures and numerical results

The results obtained suggest that different distances can be constructed, which decrease
to zero monotonically as time goes on and the population approaches stability. In terms
of population structures, these distances have the following form:
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where ( )*;bbd  is a convex function of b  and ( ) 0; * =bbd  for *bb = . Table 5.1

presents some examples of such monotonic measures.

Table 5.1: Selected examples of monotonic measures of stabilization
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The symmetrical Kullback distance {12}
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Deviation function
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Distance Remarks
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These distances illustrate that any convex function of
discounted births weighted by demographic
potentials decreases monotonically, i.e., it behaves
like the thermodynamic entropy with inversed sign
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previous type, these distances are constructed of (not
necessarily positive) deviation functions

Table 5.1 by no way comprehends all the possible monotonic measures. For example,
monotonic distances can be based on the deviation function
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where ( )*;bbd  is any other deviation function and parameter a  determines the

threshold under which population differences are considered negligible (e.g.
fluctuations). Other examples can also be suggested.

Hence, we have suggested a wide variety of distances which all exhibit monotonic
convergence to zero as the stabilization goes on. The Kullback distance turns out to be a
member of this class, being neither the only one nor the simplest. The following
example illustrates how the different measures proposed above converge to zero. The
age structure of the 1985 population of Austria [Keyfitz and Flieger 1990: 404-405]
was projected till 2185 using the 1985 vital rates and zero migration assumptions.
Values of monotonic measures were calculated for all years of the projection period. In
addition to the Kullback distance three other measures were taken for the analysis.
These were distances formed by the absolute deviations, by the quadratic deviations,
and by the fourth power of deviations from the stable equivalent.

Figure 1: Dynamics of stabilization measures for the female population of Austria,
1985-2185. Projection is made using the 1985 vital rates and under zero
migration
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Figure 1 presents results of the calculations (‘Kullback’ stands for the Kullback
distance; ‘Abs’ stands for the weighted sum of age-specific absolute deviations from the
stable equivalent; ‘Abs^2’ stands for the weighted sum of quadratic deviations; and
‘Abs^4’ stands for the weighted sum of deviations in the 4th power.) Percents of initial
distances to the stable equivalent are plotted for the sake of comparability. More
detailed results are presented in table A1 of the Appendix.

It is seen that the distance formed by deviations in the fourth power has a steeper
decline while the absolute deviations result in the slowest decline. More generally, the

higher the power α  in the deviation function 
α

1
*

−
b

b
, the steeper decline of the

stabilization measure. The absolute deviation forms the slowest stabilization measure
since it is the only deviation function, which being a convex function, is also a concave
function for negative and positive values of its argument. The Kullback distance
behaves very close to the quadratic distance. This is natural since it can be
approximated by the following quadratic expression when the population structure is
close to stability:

=




 −≈





 ∑∑ −−−−

x

xtxt
x

x

xtxt
x

b

b

Ub

b
u

b

b

Ub

b
u 1ln

****

∑∑∑ 




 −=





 −+





 −= −−−

x

xt
x

x

xt
x

x

xt
x

b

b
u

Ub

b
u

Ub

b
u

U

2

**

2

*
1

1
1

1
1

1
, {19}

where the latter equation follows from {5} and {6}.
Choice of appropriate distance from the class presented above depends on research

needs and objectives. Some general remarks can be made however. Firstly, the
Kullback distance seems to have no advantages for the study of population stabilization.
It works similar to the quadratic distance, which is simpler and clearer in structure.
Secondly, perhaps the most perspective measure of stabilization is the measure, which
is formed of absolute deviations. This choice has several advantages in addition to its
simplicity. The appropriate measure converges to zero with the slowest possible speed,
i.e. it does not mask the final stages of stabilization. Besides, absolute deviations are
proportional to the difference between the actual and stable population numbers, and
hence they do not result in scale-dependent distortions of the speed of convergence to
stability. This makes the distances based on absolute deviations easily interpretable. For
example, 20% - decrease in such a distance implies that age-specific discrepancies
between the actual and asymptote population numbers have shortened by 20% on
average. Faster convergence to zero of the Kullback distance is a consequence of
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quadratic nature of this measure itself rather than a reflection of the stabilization
process. Another consideration important for practical applications is that the Kullback
distance is highly sensitive to the age pattern of demographic potentials while other
measures presented above are robust. This aspect will be illustrated in section 8 where
possible demographic applications of monotonic measures will be discussed (figure 3.)
Finally, we will see that it is the distance formed of absolute deviations, which
monotonically reflects the convergence of age structures of two non-stable populations
with similar time-dependent reproduction rates.

6. Populations monotonically converge to each other when they
follow similar reproduction regimes

6.1 Two populations with similar time-independent reproduction rates
(convergence under the strong ergodicity conditions)

It follows from the results of Schoen and Kim (1991) as well as from the results
presented above, that the rate of convergence to stability varies with time and depends
on the population age structure. It would therefore be natural to expect that the
dynamics of the distance between two arbitrary populations could not be monotonic,
despite similar asymptotes. In spite of this, monotonic convergence of such populations
can be granted, as demonstrated below. No doubt the monotonicity depends on
particular characteristics of the measure used to reflect the distance between population
structures. The Kullback distance, for example, fails to be a monotonic measure of
population convergence. But there are other distances formed as a weighted sum of
convex deviation functions, which do fit appropriate monotonicity conditions.

Let us consider the following distance between two population  structures:

( )∑
=

−−=
X

x
xtxtxt bbduD

0

21 ; , {20}

where 1
tb  and 2

tb  are the discounted births of the two populations under consideration.

Assuming that the same reproduction model {4} applies to both populations, we get:
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when the deviation function is a convex function of both of its variables. This means the
monotonic convergence of {20} to zero under the conditions of ergodicity. The
‘reciprocal’ convexity of the deviation function is essential; both ‘one-way’ Kullback
distances, for example, are convex functions of the first variable only. This explains
why the Kullback distance between two non-stable populations does not converge to
zero monotonically, while monotonicity is granted for symmetrical deviation functions.
One example, though artificial, is presented in Figure 2, which reflects distances
between the projected population of Austria and the population of people aged 10-20 in
1985 (mortality and fertility correspond to the Austrian rates in 1985). Numerical
results are presented in Table A2 of the Appendix.

Figure 2: Distances between the projected female population of Austria and the
population initially containing people at ages of 10-20 only, 1985-2185.
The projection is made using the Austrian 1985 vital rates and under zero
migration
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6.2 Two populations following similar time-dependent reproduction regimes
(convergence under the weak ergodicity conditions)

This section investigates the question of monotonicity in the case of a time-dependent
reproduction model, when only the weak ergodic property can be granted [Arthur
1982].

Let us start with additional notations for time-dependent demographic parameters.
We denote by ( )tLx  the accumulated probability to survive from age 0  to age x  for

individuals born at time t . For time-dependent reproduction models it is convenient to
use demographic potentials, which also depend on time, and no more relate to Fisher’s
reproductive value [Ediev 1999]. We denote by ( )tcx  the demographic potential of a

person aged x  who was born at time t . The total demographic potential of the
population turns out to be constant over time [Ediev 1999]. Using this property, we get
the following model of reproduction:

( )∑
=

−+ −∆=
X

x
xtxt bxtb

0
1  {22}

where ( ) ( )tctnbt 00=  is the total demographic potential of newborns at time t ,

( ) ( ) ( )tutut xxx 1+−=∆ , and ( ) ( ) ( )
( )tc

tLtc
tu xx

x
0

=  is the expected relative future

demographic potential at age x  for newborn at time t .  Again, we suppose that

( ) Xxtx ,0,0 =≥∆ .

Following the same strategy as earlier, let us consider the following distance
between two population structures:
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x
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where 21, tt bb  are the demographic potentials of newborns of the populations under

consideration. Under reproduction model {22} applied to both populations, we get:
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when the deviation ( )21; tt bbd  is a convex and homogeneous function of both its

variables (e.g. *bb − ). This implies monotonic convergence of distance {23} to zero

under the conditions of weak ergodicity. In other words, the monotonic convergence
within the time-dependent reproduction model can be granted if deviations weighted by
the time-dependent demographic potentials are used to measure the distance between
two age structures. Homogeneity of the deviation function is important. Since
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 is not necessarily equal to one, we should divide all the sums in {24} by
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, in order to be able to make use of Jensen’s inequality. This can be done

for homogeneous deviation functions only:
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7. Are there other classes of monotonic measures?

For some special classes of reproduction models, monotonic distances can be
constructed which are not members of the class presented above. The distances

( )∑
=

−=
X

x
xtt bbdD

0

*; , for example, are monotonic measures of stabilization if mortality

and fertility are age-independent; here ( )*;bbd  is a deviation function of a special type,

e.g. nonnegative and convex [Ediev 2002c].
Sure, some new measures can be constructed based on the distances already

developed. If tD  is a monotonic measure, then ( )tDf  is also monotonic, where ( )⋅f
is any monotonously increasing function. For example, the square root of the quadratic
distance could be of interest in applications. Another simple way of developing new
measures for convergence is to use different segments of the population age structure,
as it is described below. Theoretically, the distances considered above are based on all
age classes of the population pyramid. Nonetheless the demographic potentials used as
the weightening factors equal to zero for ages above the maximum fertile age. This
means that the distances proposed are based on the lower age segments of the age
pyramid: Fnnnn ,...,,, 210 , where F  is the maximum age with nonzero demographic
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potential. Hence, we can use any age segment FAAAA nnnn +++ ,...,,, 21 , where

XFA ≤+ , to build measures of the following type:
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For the distance in absolute deviations, this leads to the expression:
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where 
xA

x
xA L

L
P

+
=  is the probability for a person aged x  to survive during the period

of length A .
Existence of monotonic distances, which are independent of those presented in this

paper, is still an open question to be addressed in future. Among the intriguing
problems concerning the monotonicity is the question of existence of monotonic
measures for convergence in the case of arbitrary linear reproduction models, without a
restriction of non-negativity being imposed on the population projection matrix.
Recently [Ediev 2002b], the ergodic property was expanded to the case of the arbitrary
linear models mentioned above, but the monotonicity in that case is still an open
question.

8. Applications

The results presented above could be useful whenever one needs to introduce a distance
from one population structure to another. Indeed, in such a case it would be preferable
to use a distance, which shortens when the populations under consideration follow the
same reproduction regime. Under the conditions of monotonicity the closer the
reproduction histories of populations, the shorter should be the distance between them.
Therefore, distances between populations can be used to classify them into groups with
presumably similar demographic history. Such a need can arise when a multigroup
population is considered. The population of the US presents a good example of such
type (this case will be considered later in the text.)
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Monotonic distances could also be useful when the hypothesis is to be tested about
similar reproduction past of two or more populations. No doubt, similarity of
demographic past can be examined easily if one has at hand all the historical trends of
fertility, mortality, and migration for all the populations under consideration. Yet, some
times the only data we can rely on are the data on population structure. In such a
situation vital trends cannot be obtained directly from the initial data, while the
dynamics of distance between population structures can be obtained. Indeed, close
distance between two populations does not necessarily imply similarity of their
demographic history. The population with high fertility and low mortality, for example,
could be close in its age structure to the population with low fertility and high mortality.
However, it follows from the theory developed in the paper, that appropriately selected
distance between the demographically similar populations should shorten with time,
while for sufficiently different populations the distance could decrease monotonically
under special conditions only. The question about which distances should be considered
close, and which are far enough to imply sufficiently different demographic past,
deserves further research. Based on my own experience, I would suggest that the
distances between two different populations of about 0.05 or less are close, while the
distances of about 0.1 and above are far enough (these figures correspond to distance
{30} presented below.)

Another possible application of monotonic measures of convergence is in
monitoring the demographic transition in a particular population. If we know the
ultimate reproduction regime after the completion of demographic transition, then the
distance to the appropriate stable equivalent population can be taken as an indicator of
advance in the demographic transition. If the ultimate reproduction regime is unknown,
one can develop another approach using the monotonic distance between two non-
stable populations. If these populations follow the same reproduction regime then the
distance between them should decrease monotonically. Hence, in addition to the
population under consideration, one should find another one that passes through the
same demographic transition and monitor the distance between them. Structures of the
population under consideration taken at different points in time can be used for this
purpose. The author applied this approach to the historical data on the population of
Sweden and found it useful in visualizing the process of demographic transition and in
separating the stages of transition.

Before proceeding with the example of monotonic distances’ application, I would
like to discuss some important aspects of practical calculations. Although a monotonic
distance should better be calculated using the demographic potentials obtained from the
population’s reproduction parameters, results of calculation (including the monotonicity
in dynamics) are less sensitive to the age pattern of demographic potentials. One can
usually rely on the same standard pattern of demographic potentials in different
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situations. This point is illustrated on figure 3, which presents the same distances as on
figure 1, with the standard age pattern of demographic potentials used in distances
calculation. This standard pattern is based on the Brass relational mortality and fertility
models [United Nations 1983] corresponding to the life expectancy at birth of 65 years
and to the null intrinsic growth rate (see table 8.2 below). The numerical results are
presented in table A3 of the Appendix. It is seen that all the distances presented except
for the Kullback distance are robust and insensitive to choice of the pattern of
demographic potentials.

Figure 3: Dynamics of stabilization measures for the female population of Austria,
1985-2185, calculated using the standard pattern of expected future
demographic potentials (table 8.2). Projection is made using 1985 vital
rates and under zero migration.

Expected future demographic potentials xu  are less volatile than the reproductive

values xv . Therefore, the distances calculated using the former potentials are more

robust and more attractive for use. Another general consideration about the use of
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distances, which arises from the practice, is that it would be preferable to use the sizes
of age groups ( )tnx  rather than the discounted birth numbers xtb − . Besides, the

distances with homogeneous deviation function could be preferred due to their
monotonic properties in case when the populations with varying reproduction regimes
are considered. These considerations resulted in the following choice of distances.
When the convergence to the stable equivalent population is considered, the following
distance seems to be a good measure:

( ) ( )
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x x

x
x
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tVtn
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0
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1  {28}

Dividing by the total reproductive value ( )tV  ( *V  - for the stable equivalent

population) guaranties that distance {28} is calculated towards the stable population,
which is asymptotically equivalent to the population under consideration. Expression
{28} can be adapted to the case when the distance is calculated from one non-stable
population to another non-stable one:
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Unfortunately, we cannot guarantee that this distance will be a monotonic measure for
convergence of two non-stable populations, as the deviation function used in {29} is
not a convex function of both its variables. Therefore, it would be better to use the
following distance to examine the convergence of two non-stable populations:
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For the purpose of monitoring the demographic transition distance {30} can be applied
to age structures of the population under consideration taken at different moments of
time:
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The theory presented in the paper is suited for the populations without migration.
Therefore, application of the distances proposed to the populations with considerably
high migration could become unreasonable. Even though, we can neglect the impact of
the migration if the variation of migration rates is much lower than the variation in sizes
of the population age groups. In the case of the US we have that the immigration
consists about 0.5% of the population’s total demographic potential. Such a migration
can disturb distances {30} and {31} to the amount of much less then 0.005, which is
negligible compared to the distances’ values obtained in the case of the US (see the
example below.)

Now we will proceed with the example of monotonic measures’ application. We
will use distances {30} and {31} to investigate the racial differences in the US after
1980. The age pattern of demographic potentials used in calculations is presented in
tables 8.1 and 8.2. It was obtained using the Brass relational models of mortality and
fertility [United Nations 1983], the life expectancy at birth being 65 years and the
intrinsic rate of natural increase being zero (the structural parameters beta were set 0.9
and 1.0 for the mortality and fertility models respectively.)

Table 8.1: The demographic potentials’ age patterns used in the calculations

x u(x) v(x) x u(x) v(x) x u(x) v(x) x u(x) v(x) x u(x) v(x)

0 1.0000 1.0421 10 1.0000 1.0910 20 0.9028 1.0008 30 0.4258 0.4851 40 0.0884 0.1040

1 1.0000 1.0593 11 1.0000 1.0921 21 0.8602 0.9562 31 0.3824 0.4370 41 0.0664 0.0785

2 1.0000 1.0712 12 1.0000 1.0932 22 0.8132 0.9063 32 0.3411 0.3909 42 0.0481 0.0570

3 1.0000 1.0773 13 1.0000 1.0944 23 0.7641 0.8539 33 0.3019 0.3470 43 0.0332 0.0395

4 1.0000 1.0811 14 1.0000 1.0958 24 0.7142 0.8002 34 0.2647 0.3053 44 0.0216 0.0258

5 1.0000 1.0836 15 0.9997 1.0969 25 0.6642 0.7462 35 0.2297 0.2657 45 0.0131 0.0157

6 1.0000 1.0855 16 0.9971 1.0958 26 0.6146 0.6924 36 0.1969 0.2284 46 0.0074 0.0090

7 1.0000 1.0871 17 0.9879 1.0876 27 0.5655 0.6388 37 0.1662 0.1935 47 0.0040 0.0048

8 1.0000 1.0886 18 0.9686 1.0685 28 0.5174 0.5862 38 0.1377 0.1609 48 0.0019 0.0023

9 1.0000 1.0899 19 0.9399 1.0393 29 0.4709 0.5349 39 0.1116 0.1308 49 0.0006 0.0008

50+ 0.0000 0.0000
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Table 8.2: The demographic potentials’ age patterns used in the calculations (5-
year age intervals)

x u(x) v(x) x u(x) v(x) x u(x) v(x) x u(x) v(x)

0 1.0000 1.0660 15 0.9787 1.0777 30 0.3434 0.3933 45 0.0054 0.0066

5 1.0000 1.0869 20 0.8112 0.9038 35 0.1686 0.1961 50+ 0.0000 0.0000

10 1.0000 1.0933 25 0.5668 0.6400 40 0.0517 0.0611

Figure 4 depicts the trends in distances from the age structure of the US white non-
Hispanic female population to the age structures of other race-origin groups [source of
data: U.S. Bureau of the Census 2000a, 2000b]. The following abbreviations for the
race-origin groups are used in the figures and the text:

Abbreviation used Description
WhNonHis White, non-Hispanic female population
BlNonHis Black, non-Hispanic female population
AmNonHis American Indian, Eskimo, and Aleut, non-Hispanic female population
AsNonHis Asian and Pacific Islander, non-Hispanic female population
Wh Hisp White, Hispanic female population
Bl Hisp Black, Hispanic female population
Am Hisp American Indian, Eskimo, and Aleut, Hispanic female population
As Hisp Asian and Pacific Islander, Hispanic female population
NonHispanic (All) Non-Hispanic female population
Hispanic (All) Hispanic female population
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Figure 4: Distances between age structures of the US race-origin groups and the
structure of the US White non-Hispanic female population, 1980-2000

Notable racial differentials can be observed on figure 4. Although 90s became a decade
of convergence in structures of different races, sufficient nonzero distances still persist.
While the Hispanic origin plays an important role for Whites, Blacks, and Asian and
Pacific Islanders, American Indian, Eskimo, and Aleuts seem to be more homogeneous.
Another conclusion, which can be made, is that the US whites and blacks seem to be
close to each other given the same origin status. These race groups were converging to
each other during 80s and especially during 90s. At the same time both blacks and
whites with Hispanic origin were diverging from the appropriate race group with non-
Hispanic origin, i.e. their demographic behavior was persistently and sufficiently
dependent on original status. It worth to compare these distances to the dynamics of the
race-origin groups’ age structures, which can be reflected by the distance from the
population’s structure to its own structure one year later:
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The dynamics of these distances is reflected on figure 5. Age structures of the US race-
origin groups were being stabilized during 80-90s. Notable sharp changes around 1990
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may be caused by the discontinuity of demographic statistics before and after the 1990
census. Yet, the American Indian, Eskimo, and Aleut, Hispanic female population
deserves further research on causes of the unusual trend during 80s.

Figure 5: Dynamics of age structures of the US race-origin groups, 1980-2000

Table 8.3: Distances between the US race-origin groups as of year 2000

WhNonHis BlNonHis AmNonHis Am Hisp Wh Hisp Bl Hisp As Hisp AsNonHis

WhNonHis  0.04 0.09 0.10 0.13 0.12 0.10 0.09

BlNonHis 0.04  0.06 0.08 0.12 0.11 0.08 0.11

AmNonHis 0.09 0.06  0.05 0.14 0.14 0.11 0.15

Am Hisp 0.10 0.08 0.05  0.12 0.12 0.10 0.14

Wh Hisp 0.13 0.12 0.14 0.12  0.03 0.06 0.12

Bl Hisp 0.12 0.11 0.14 0.12 0.03 0.04 0.11

As Hisp 0.10 0.08 0.11 0.10 0.06 0.04  0.10

AsNonHis 0.09 0.11 0.15 0.14 0.12 0.11 0.10  

Distance to US 0.03 0.05 0.11 0.14 0.10 0.09 0.08 0.08
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In addition to the trends presented, it is useful to look to the pattern of interracial
distances as of 2000 (table 8.3.) The authors’ experience in working with the monotonic
measures suggests that the distances of 0.05 or less can be attributed to the natural
random variations in birth numbers, which are observed in any real population.
Observing the distances between the racial groups can help in aggregating them into a
few relatively uniform subgroups of the US population. According to these distances
the US races can be arranged into the following groups with presumably close
demographic characteristics (these groups are highlighted in table 8.3):

- Non-Hispanic Whites and Blacks and all American Indian, Eskimo, and Aleuts.
- All Hispanic groups except for American Indian, Eskimo, and Aleuts with
   Hispanic origin.
- Asian and Pacific Islander, non-Hispanic female population.

One could also use the more detailed classification of the race groups:

- Non-Hispanic Whites and Blacks.
- All American Indian, Eskimo, and Aleuts.
- All Hispanic groups except for American Indian, Eskimo, and Aleuts with
   Hispanic origin.
- Asian and Pacific Islander, non-Hispanic female population.

Either one of the classifications presented can be used to build reproduction models for
the US population, which reflect the heterogeneity of the population on the one hand,
and the similarity of demographic characteristics on the other hand.
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Appendix: Numerical results for illustrative examples presented in
the text

Table A1: Dynamics of different distances to the stable equivalent for the female
population of Austria, 1985-2100. Projection is made using 1985 vital
rates and under zero migration. [Keyfitz and Flieger 1990: 404-405].

Kullback Abs Abs^2 Abs^4 Kullback Abs Abs^2 Abs^4

1985 0,005595 0,456838 0,060023 0,001572 100,00 100,00 100,00 100,00

1990 0,003687 0,348863 0,039929 0,000748 65,89 76,36 66,52 47,57

1995 0,002640 0,293884 0,028475 0,000408 47,19 64,33 47,44 25,92

2000 0,001718 0,218466 0,018363 0,000230 30,71 47,82 30,59 14,64

2005 0,001043 0,172529 0,011121 0,000114 18,65 37,77 18,53 7,23

2010 0,000640 0,149686 0,006869 0,000047 11,44 32,77 11,44 2,96

2015 0,000393 0,116929 0,004249 0,000016 7,02 25,60 7,08 1,05

2020 0,000271 0,103718 0,002944 0,000005 4,84 22,70 4,90 0,35

2025 0,000193 0,089900 0,002092 0,000002 3,45 19,68 3,49 0,13

2030 0,000127 0,068506 0,001373 0,000001 2,27 15,00 2,29 0,06

2035 0,000089 0,059242 0,000963 0,000000 1,59 12,97 1,60 0,03

2040 0,000061 0,049981 0,000660 0,000000 1,09 10,94 1,10 0,01

2045 0,000040 0,040493 0,000438 0,000000 0,72 8,86 0,73 0,01

2050 0,000029 0,035871 0,000315 0,000000 0,52 7,85 0,52 0,00

2055 0,000020 0,029216 0,000213 0,000000 0,35 6,40 0,35 0,00

2060 0,000013 0,024268 0,000144 0,000000 0,24 5,31 0,24 0,00

2065 0,000009 0,021228 0,000103 0,000000 0,17 4,65 0,17 0,00

2070 0,000006 0,016397 0,000068 0,000000 0,11 3,59 0,11 0,00

2075 0,000004 0,013794 0,000047 0,000000 0,08 3,02 0,08 0,00

2080 0,000003 0,011845 0,000033 0,000000 0,06 2,59 0,06 0,00

2085 0,000002 0,008856 0,000022 0,000000 0,04 1,94 0,04 0,00

2090 0,000001 0,007578 0,000016 0,000000 0,03 1,66 0,03 0,00

2095 0,000001 0,006411 0,000011 0,000000 0,02 1,40 0,02 0,00

2100 0,000001 0,005012 0,000007 0,000000 0,01 1,10 0,01 0,00

‘Kullback’ stands for the Kullback information distance; ‘Abs’ stands for the weighted sum of age-specific absolute deviations from
stable equivalent; ‘Abs^2’ stands for the weighted sum of age-specific quadratic deviations; and ‘Abs^4’ stands for the weighted
sum of age-specific deviations in the 4th power. Percents of initial values are presented in addition to absolute values.
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Table A2: Dynamics of different measures for convergence between the female
population of Austria and the population initially consisting of persons at
ages 10-20; 1985-2100. Projection is made using 1985 Austrian vital
rates and under zero migration [Keyfitz and Flieger 1990: 404-405].

Kullback Abs Abs^2 Abs^4 Kullback Abs Abs^2 Abs^4

1985 -0,365534 6,745271 9,176343 21,414729 -100,00 100,00 100,00 100,00

1990 -0,231117 6,011895 7,970232 19,041740 -63,23 89,13 86,86 88,92

1995 -0,194056 5,019124 6,123267 14,176936 -53,09 74,41 66,73 66,20

2000 -0,172929 4,212380 4,319862 8,320280 -47,31 62,45 47,08 38,85

2005 -0,126961 3,108090 2,585005 3,820660 -34,73 46,08 28,17 17,84

2010 -0,039200 2,456206 1,545148 1,446963 -10,72 36,41 16,84 6,76

2015 0,025564 2,079714 1,018522 0,509810 6,99 30,83 11,10 2,38

2020 0,042106 1,556879 0,664658 0,208963 11,52 23,08 7,24 0,98

2025 0,040943 1,329521 0,470510 0,100029 11,20 19,71 5,13 0,47

2030 0,032600 1,132445 0,332995 0,048576 8,92 16,79 3,63 0,23

2035 0,022238 0,864793 0,219266 0,022838 6,08 12,82 2,39 0,11

2040 0,015400 0,752694 0,155634 0,010617 4,21 11,16 1,70 0,05

2045 0,010074 0,636143 0,107137 0,005021 2,76 9,43 1,17 0,02

2050 0,006512 0,517248 0,071226 0,002364 1,78 7,67 0,78 0,01

2055 0,004701 0,458359 0,051147 0,001117 1,29 6,80 0,56 0,01

2060 0,003233 0,372372 0,034482 0,000534 0,88 5,52 0,38 0,00

2065 0,002195 0,309649 0,023307 0,000251 0,60 4,59 0,25 0,00

2070 0,001556 0,270597 0,016716 0,000118 0,43 4,01 0,18 0,00

2075 0,001018 0,208310 0,011092 0,000056 0,28 3,09 0,12 0,00

2080 0,000702 0,175352 0,007663 0,000027 0,19 2,60 0,08 0,00

2085 0,000501 0,150400 0,005435 0,000013 0,14 2,23 0,06 0,00

2090 0,000332 0,112682 0,003579 0,000006 0,09 1,67 0,04 0,00

2095 0,000234 0,096585 0,002524 0,000003 0,06 1,43 0,03 0,00

2100 0,000162 0,081700 0,001757 0,000001 0,04 1,21 0,02 0,00
‘Kullback’ stands for the Kullback information distance; ‘Abs’ stands for the weighted sum of age-specific absolute deviations from

stable equivalent; ‘Abs^2’ stands for the weighted sum of age-specific quadratic deviations; and ‘Abs^4’ stands for the weighted
sum of age-specific deviations in the 4th power. Percents of initial values are presented in addition to absolute values.
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Table A3: Dynamics of different distances to the stable equivalent for the female
population of Austria, 1985-2100. Projection is made using 1985 vital
rates and under zero migration. [Keyfitz and Flieger 1990: 404-405].
Standard reproductive values are used (Table 8.2), which doesn’t relate
to the actual vital rates used in projections.

Kullback Abs Abs^2 Abs^4 Kullback Abs Abs^2 Abs^4

1985 -0,006188 0,551197 0,082583 0,003122 -100,00 100,00 100,00 100,00

1990 0,000595 0,416336 0,052646 0,001380 9,62 75,53 63,75 44,20

1995 0,006414 0,349754 0,036431 0,000636 103,65 63,45 44,11 20,38

2000 0,006244 0,266471 0,024171 0,000334 100,90 48,34 29,27 10,71

2005 0,001428 0,213661 0,015726 0,000184 23,08 38,76 19,04 5,89

2010 -0,001827 0,180508 0,010116 0,000092 -29,53 32,75 12,25 2,95

2015 -0,001311 0,137323 0,006172 0,000042 -21,19 24,91 7,47 1,34

2020 0,000892 0,118772 0,003925 0,000015 14,41 21,55 4,75 0,48

2025 0,001819 0,103462 0,002649 0,000004 29,40 18,77 3,21 0,13

2030 0,000909 0,081315 0,001808 0,000002 14,69 14,75 2,19 0,06

2035 -0,000431 0,070475 0,001278 0,000001 -6,96 12,79 1,55 0,03

2040 -0,000848 0,058775 0,000869 0,000000 -13,71 10,66 1,05 0,01

2045 -0,000226 0,047299 0,000579 0,000000 -3,66 8,58 0,70 0,01

2050 0,000475 0,041644 0,000410 0,000000 7,67 7,56 0,50 0,00

2055 0,000523 0,034152 0,000279 0,000000 8,44 6,20 0,34 0,00

2060 0,000067 0,028414 0,000189 0,000000 1,08 5,16 0,23 0,00

2065 -0,000296 0,024733 0,000134 0,000000 -4,79 4,49 0,16 0,00

2070 -0,000245 0,019354 0,000090 0,000000 -3,96 3,51 0,11 0,00

2075 0,000038 0,016296 0,000062 0,000000 0,62 2,96 0,08 0,00

2080 0,000201 0,013913 0,000044 0,000000 3,24 2,52 0,05 0,00

2085 0,000119 0,010552 0,000029 0,000000 1,92 1,91 0,04 0,00

2090 -0,000051 0,009003 0,000020 0,000000 -0,83 1,63 0,02 0,00

2095 -0,000117 0,007559 0,000014 0,000000 -1,88 1,37 0,02 0,00

2100 -0,000046 0,005927 0,000009 0,000000 -0,74 1,08 0,01 0,00
‘Kullback’ stands for the Kullback information distance; ‘Abs’ stands for the weighted sum of age-specific absolute deviations from

stable equivalent; ‘Abs^2’ stands for the weighted sum of age-specific quadratic deviations; and ‘Abs^4’ stands for the weighted
sum of age-specific deviations in the 4th power. Percents of initial values are presented in addition to absolute values.


