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Research Article

A system of model fertility schedules
with graphically intuitive parameters

Carl P. Schmertmann !

Abstract

I propose and examine a new family of models for age-specific fertility schedules, in
which three index ages determine the schedule's shape. The new system is based on
constrained quadratic splines. It has easily interpretable parameters, is flexible enough
to fit a variety of "noiseless" schedules well, and is inflexible enough to avoid
implausible estimates from noisy data. Across a set of over two hundred contemporary
ASFR schedules, the new model fits a majority better, and in some cases much better,
than the Coale-Trussell model.

When fit to a recent Swedish time series, model parameters exhibit simple, regular
changes over time, suggesting utility in forecasting applications. In simulated small-
sample data the new model produces plausible ASFR estimates, with errors similar to
Coale-Trussell.
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1. Introduction

Parametric models have many important applications in demographic research. They
are useful when creating hypothetical rate schedules in forecasting and projection
exercises. They can serve to condense complex data into meaningful indices, in the
manner of Coale and Trussell’s (1974) m index of fertility control. They are also
essential for statistical estimation and smoothing when demographers have only partial
or noisy data.

In this paper I examine a new family of parametric models for age-specific fertility
rate (ASFR) schedules. In this family three index ages define the shape of the ASFR
schedule. The new system satisfies several requirements for a good mathematical
description of fertility patterns. It conforms to known regularities in ASFR schedules,
has easily interpretable parameters, is flexible enough to fit a variety of “noiseless”
schedules very well, and is inflexible enough to avoid producing highly implausible
estimates from noisy data.

2. Description of fertility schedules by means of index ages

The model system that I propose describes the shape of the ASFR schedule in terms of
the ages at which the schedule reaches certain characteristic points, specifically

o, the youngest age at which fertility rises above zero,
P, the age at which fertility reaches its peak level, and
H, the youngest age above P at which fertility falls to half of its peak level.

This approach builds model fertility schedules from easily visualized, geometric
parameters measured in common units — namely “years”. Figure 1 illustrates with a
period schedule of empirical |f; values from the Netherlands in 2001 (Statistics
Netherlands 2003). The schedule is standardized so that the value at the mode is one, a
convention that I will use frequently in this paper.

The Netherlands 2001 schedule reaches its peak at P=31.5 (the midpoint of the
single-year age group “31") and falls to half of its peak level at H~36.6 (interpolated).
These two ages are marked with solid squares in Figure 1. Given only the values of P
and H, together with the initial age o, most demographers could draw the shape of the
ASFR schedule fairly accurately by hand.

One can also use an age-based approach to describe the ASFR schedule in loose,
but useful, behavioral terms. Fertility reaches its peak in the Coale-Trussell natural
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Figure 1: Single-year ASFR schedule for Netherlands 2001, standardized with
value at mode = 1.

schedule Ny at P=20, and very few empirical schedules have P <20. The age difference
D=P-20

can therefore serve as a useful index of the “delay” in achieving peak fertility. In the
Netherlands 2001 schedule, D=11.5. Higher values of D suggest more delayed
childbearing, perhaps due to later intercourse, later marriages, or to greater educational
and employment opportunities for women.

On the right-hand side of the ASFR curve at ages x > P, demographers often use
the degree of concavity of f{x) as an indicator of parity- or duration-specific fertility
control. In the Coale-Trussell system this concavity is measured in terms of vertical
displacement, at ages above 20, from a standard schedule. It is equally informative,
however, to measure the degree of concavity in terms of horizontal displacement. The
arrow labeled “Stopping” in Figure 1 illustrates such an index of post-peak fertility
control, defined mathematically as
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S= (P+50)2 - H

If fertility fell linearly from a peak at age P to zero at age 50 (straight diagonal line), it
would reach the halfway point of descent at age (P+50)/2. The S index therefore
indicates how many years earlier than that fertility actually reaches its halfway point. In
the Netherlands 2001 schedule, S=4.2. High values of S correspond to greater
concavity in the right-hand side of the ASFR schedule.

Note that on this scale S could be negative, indicating convexity in f{x) after its
peak. For example, S=-5.2 in the Coale-Trussell N, schedule. In addition, if P and H
both increase equally (similar to the general rightward drift in the ASFR schedule
examined in Bongaarts and Feeney 1999), then a decreasing portion of the eventual fall
toward zero fertility at the highest ages would be attributed to “stopping”.

S is empirically similar to the Coale-Trussell m index. Across the 3822 Coale-
Trussell model schedules in Appendix A (discussed more fully in later sections) the
correlation between S and m is +.82. In 226 contemporary empirical schedules (also
discussed later) the correlation between estimated S and m is +.88.

3. Mathematical definitions

3.1. The spline model

The formal model used throughout this paper represents age-specific fertility rates
between age « and an upper age [3 as a piecewise quadratic spline function. There is a
small literature on spline functions as fertility models. McNeil, Trussell, and Turner
(1977) discussed using splines to smooth and interpolate fertility data. As an
illustration, they used a quartic spline to model a continuous schedule f{x) that exactly
matched a published set of fertility rates for five-year age groups. Hoem et al. (1981)
found that cubic spline functions fit Danish fertility schedules from 1962-1971 far more
accurately than other models, including Coale-Trussell. Gilks (1986) used cubic splines
to model duration-specific effects of covariates on birth hazards.

Throughout the paper, f(x) denotes the ASFR function, while ¢(x) denotes a shape
function that is proportional to f{x), but measured in arbitrary units — i.e., there is some
scalar R such that f{x) =R ¢(x) for all x. I define a parametric model for the shape
function ¢; R may then be chosen so that some property of f{x), such as the TFR or the
height of the curve at the mode, equals a specified target. I will also use the
abbreviations CT and QS for the Coale-Trussell and Quadratic Spline models,
respectively.
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The QS function used to build the new set of model fertility schedules in this paper
is:

S (%) = Rp(x) M

where the shape function is a quadratic spline

) = ;Hk(x—tk)A . a<x<p .

0 otherwise

“knots” #y<t|<...<t4 fall in the interval between « and P (in all models in this paper 7=,
the lowest age of childbearing), and (x-t). = MAX]O, x-t]. For future reference, note
that the QS function yields a closed-form expression for TFR:

B B 4
TFR = j f(x)dx= Rj¢(x)dx= gzgk (B-1) 3)

The f{x) function is continuous, with quadratic subsections joined at knot values.
The slope of f'is also continuous:

f'(x) = Rg'(x) = 21?24149k(x—t,()+ , a<x<pf 4

In contrast, the second derivative is discontinuous, with discrete jumps at knot
values:

f”(x):R(p”(x):2RZ4:9k][x>tk] , a<x<pf )

where I ] is an indicator function equal to one if the condition in brackets is true and
equal to zero otherwise.

Setting #;=c. guarantees that f{&)=f"(«)=0. Thus the first section of the spline curve,
between ages « and #y, is the right-hand side of a parabola rising from a minimum at
vertex (e,0). The 0y parameter controls the steepness and curvature of this initial
parabola. Equation (5) shows that the other 6 parameters represent additive shifts to the
second derivative of f{x) that occur at ages #,...t4. For example f”(x) equals 2R6, over
the initial age interval o <x < ¢, jumping to 2R(0yt0;) over the next interval
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t1 <x < b, to 2R(0p10,1+0,) over the interval after that, and so on. The slope of fis
continuous, but a positive 0y indicates an increase in upward curvature (or a decrease in
downward curvature) beginning at age fr. An initial parabola can then be bent into a
variety of shapes over [«,3] by selecting different sets of knots ¢ and curvature shifts 6.

NETHERLANDS 2001
QS Approximation
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Figure 2: Quadratic Spline approximation to Netherlands 2001 schedule. Spline is
assembled from five separate quadratic sections, as shown.

Figure 2 depicts an example that approximates the shape of the Netherlands 2001
schedule in Figure 1, using five distinct quadratic pieces and Equation (2) with

t=[ 156, 268, 324, 345, 429]
6= [+.00533, -.01609, -.03018 , +.05039, -.00840 ]

This quadratic spline function approximates the shape of the empirical schedule well,

and with an appropriate choice of R, Equation (1) will serve as a good approximation to
the period f{x) schedule.

3.2. Linking the spline model to index ages

The QS model is potentially useful for describing the shape of many fertility schedules,
but it has thirteen parameters (R, «, B, ¢, 0), and their meaning is somewhat opaque.
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Fortunately, it is possible to construct a spline model in which the three index ages
[e, P, H] uniquely determine the shape function ¢(x), and the multiplier R determines
the level of fertility. The keys to reducing the number of parameters are (1) to determine
knot positions from the index ages, and (2) to impose mathematical restrictions so that
the spline function mimics common features of ASFR schedules.

Shape restrictions and knot placements are dightly arbitrary, and more than one set
of assumptions could produce useful models. For the model system used in this paper,
the specific assumptions for the shape function are;

1. Knot Oisat the lowest age of fertility:
to =

2. Knot 1 is between the initial and peak ages of fertility (closer to peak if peak is

late— Note 1):
t; = (A-W)a+WP
W=min[ .75, .25+ .025(P-a) ]

3. Knot 2 is at the peak age of fertility:
tg =P

4. Knot 3 is halfway between the peak and the halfway point of descent
tz=(P+ H)/2

5. Childbearing ends at 50 (with minor adjustments for very steep or very flat
schedules— Note 2):
50 if H+1(H-P)<50<H +3(H -P)

1(H-P) if H+i(H -P)>50
+3(H-P) if H+3(H -P) <50
6. Knot 4 is halfway between the halfway point of descent and f:
ta=(H+ p)/2

7-9. Fertility at ages P, H, and  equals 1, 1/2, and O, respectively (arbitrary units)
HP)=1 @HH) =05 #PB)=0

10-11. Thefertility schedule has a zero slope at peak age P and at final age 8
$(P)=0 $(B)=0

http://www.demographi c-research.org 87
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For a wide range of reasonable values of index ages [e.,P,H], these restrictions imply a
unique shape function ¢(x):

a,P,H + restrictions = ¢,0 = ¢(x)

Note that spline knots and coefficients are not particularly important in their own
right; they are merely an intermediate step linking the age parameters [e,P,H] to the
shape function ¢. Knot values ¢ are given directly by assumptions 1-6. The spline
coefficients must solve the following system of linear equations based on 7-11:

(P-a) (P-1) 0 0 0 |[g] [1]
(H-a) (H-t) (H-t) (H-1) 0 6| |05
(B=a) (B-t) (B-t) (B-t) (B-t) ||%|=| 0] ©
2(P-a) 2(P-1) 0 0 0 0, 0
2(p-a) 2p-1) 2p-1) 2(p-1) 2p-r) 0] Lo

or more compactly

A6 =k 7

For demographically plausible values [e,P,H], A is non-singular, and the spline
coefficients are

0(a,P,H)= A" k ®)

These coefficients are then substituted into Equations (2) and (3)

Although this system of equations looks complicated, it is trivially easy to solve
with most contemporary software. For example, the spreadsheet in File I accompanying
this paper makes use of matrix formulas to solve for the spline coefficients, and on a
desktop personal computer (circa 2002) the computations and curve drawing appear to
be virtually instantaneous after one enters the indices. Without software that operates
directly on matrices and vectors, it remains possible to calculate spline coefficients
rapidly on a computer; the necessary formulas are less elegant, but simple to program
(see Appendix B).

It is possible to generate a very wide variety of shapes for the ASFR schedule
using the age parameters «, P, and H. At this point I recommend that the reader open
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File I, manipulate the parameters with the controls provided, and examine the resulting
changes in the ASFR schedule. Readers familiar with spreadsheet formulas may also
examine the calculations in detail.

4. Fitting good data, Example #1: Comparison with Coale-Trussell

4.1. Data

In order to test the utility of the new family of spline-based models, I fit both the QS
model and the single-year CT model to each of a set of 226 national and area fertility
schedules, from the U.S. Census Bureau’s International Data Base (IDB) (US Census
Bureau 2002. See Note 3). A disadvantage of these data is that they are for five-year,
rather than single-year, age groups. However, it is important to test the models across a
very wide variety of observed ASFR schedules, and I know of no similarly
comprehensive set of single-year-specific fertility rates. On balance, 1 believe that the
breadth of the IDB data outweighs the disadvantages of age aggregation (Notes 4, 5, 6).

4.2. Fitting procedure

The CT model uses three shape parameters (ay, k, m) and a level parameter (7FR) to
generate single-year age-specific fertility rates, as follows. The first three parameters
determine a shape function:

1
X+

¢(‘T(x+%) :[ Ig(a|ao,k)da]Nxexp(mvx) 9)

o

where Ny and vy are the predefined constants for x=12...49 given in Coale and Trussell
(1974; see Note 7), and

glalay,k) —(%jexp{(%](a—%—ﬁ%k) —exp{('zfglj(a—% —6-06/{)}}

(10)
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is a version of the Coale-McNeil (1972) nuptiality model with varying location (a,) and
scale (k). The level of fertility is set by specifying a TFR for ages 15-49 and multiplying
& (x) values by an appropriate constant:

49

ST =TFR- ¢ (x+ 1) [ ¢ (a+ 1) (11)

a=15

Single-year rates are then aggregated into standard five-year groups using the
formula

. 14450
A % > fTx+d i=1.T (12)
x=10+5i

The QS model uses index ages [e,P,H] to generate spline knots and coefficients
(t, 0) as described above, with the shape of the fertility schedule defined by

¢% (x) = Zﬁk (x—1,) (13)

With max[¢]=1 by construction, the level parameter R represents max[f{x)], and

S = R$% o+ d) (14)
Equation (3) contains a closed-form expression for the TFR.

For each observed fertility schedule [fi5.19...fs549], I fit both the CT and QS models by
selecting shape and level parameters that minimized the sum of squared errors (Note 8):

SSE = i(ﬁ.—fi)z (15)

i=1
where f; is the observed rate for age group i from the Census data base. I also use a
measure of relative error in the shape function:

()27
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RE measures the ratio of absolute prediction errors to TFR; Coale and Trussell
(1978:204) advocated its use as a goodness-of-fit measure when interpolating single-
year rates from observations on five-year age groups.

4.3. Fitting results

File II illustrates the complete set of 226 schedules, together with the corresponding CT
fits (red squares) and QS fits (blue lines). The relative errors for the QS and CT models
appear at the top of the graph for each schedule. In addition to this graphical
presentation, the complete set of observed fertility rates, parameter estimates, and REs
is included in File I1I.

Table 1 contains summary information on the OLS fits for the 226 schedules, and
Figure 3 plots the CT relative error against the QS relative error for each schedule.

Table 1: Summary Statistics for OLS Fits of CT and QS Models to International
Schedules

MODEL FIT Coale-Trussell Quadratic Spline
# Schedules 226 226
# Schedules with Lower Relative Error 66 160
Relative Error (%)
Mean 4.4 2.7
10 %ile 1.5 1.1
90 %ile 8.1 4.8

COALE-TRUSSELL EXTREMES
(ordered by CT relative error)

CT Relative Error (%) QS Relative Error (%)

1. Bulgaria 0.1 1.0
2. Poland 0.4 1.2
3. Micronesia 0.5 0.8
224. Guernsey 16.7 2.6
225. Jersey 16.9 4.5
226. Ireland 174 14

QUADRATIC SPLINE EXTREMES
(ordered by QS relative error)

CT Relative Error (%)

QS Relative Error (%)

1. Romania 0.6 0.5
2. Norway 58 0.6
3. Switzerland 9.1 0.6
224.Iraq 75 7.6
225. Somalia 8.1 7.6
226. Nauru 6.8 7.8
http://www.demographic-research.org 91


http://www.demographic-research.org/volumes/vol9/5/files/FILE II CT and QS fits to international schedules.pdf
http://www.demographic-research.org/volumes/vol9/5/files/FILE III CT and QS fits to international schedules.xls

Figure 3:

92

Demographic Research — Volume 9, Article 5

w |
=
S
= o |
T <
173
1%}
=3
2
=~
@
©
Q
o
7 k.
o
+F Malf: mean
EXTA A
+ s E Kuwalt
o,
y = Jordan
Pl
1 mSlgRe
© 1 " Bulgariq
T T T !
0 5 10 15
Quadratic Spline (QS)
Relative Errors
g
E
ui
@
o
7]
9
s
(o]
+
+
+ +
N +
P Tt 2oLt + + +
o *J;u " "4 *:: +:~::4+14 4o+ Y oL e s
C N N *
o Buidaria [ B
"
-ng‘&\{ﬁk#fe aITaBahamas ® Jordan Svazlan
T T T T T T 1
1 2 3 4 5 6 7

Relative errors of Coale-Trussell and Quadratic Spline model fits to
observed five-year schedules. Top panel depicts relative percentage
errors for each schedule. Bottom panel depicts difference in relative
errors (CT minus QS) as a function of total fertility. Schedules for which
0S model has lower relative error fall above the 45-degree line in top
panel and above horizontal “0" line in the bottom panel. Schedules with
biggest relative error differences in favor of OS or CT are labeled and
marked with blue dots or red squares, respectively.
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Because readers may examine the fits at any desired level of detail in Files II and
HI, I provide only an overview here. Some broad conclusions from fitting the 226
schedules in the IDB are:

1. CT and QS fits are very similar for most schedules.

2. Both models fit most empirical schedules well (e.g., for 150 of 226 schedules,
both have relative errors < 5%). These good fits are comforting, but not especially
surprising, because both models fit seven target values using four parameters (3 shape,
1 level).

3. The QS model fits the majority of schedules more accurately (160 of 226)

4. There are no schedules in the IDB for which the CT model fits well and the QS
model fits badly. This is evident in both panels of Figure 3.

5. In contrast, there are schedules for which the CT model fits badly and the QS
model fits well. The QS model has notably lower relative errors than CT for schedules
with low TFRs, delayed childbearing, high modal ages, and steep right-hand sides.
Examples include many Western European countries (e.g, Spain, Netherlands, Ireland,
and Liechtenstein) and other high-income countries such as Canada and Australia. The
right-hand panel of Figure 3 illustrates this point by plotting TFR against the difference
REc1-REqs: note that schedules for which the CT model has a much larger relative
errors are primarily those with below-replacement levels of TFR.

4.4. Discussion

Fitting models to the IDB schedules demonstrates the utility of the QS model as a tool
for summarizing and interpolating fertility schedules. The QS model fits a wide variety
of schedules well.

QS is notably better than CT at fitting many schedules from low-fertility countries,
particularly in Western Europe. Because the CT model is well known and widely used,
it is important to understand its inability to describe this class of modern fertility
schedules. The key is that the empirical schedules combine steep right-hand sides with
high modal ages, while in the CT model steep right-hand sides generally go together
with Jow modal ages. It requires a high value of m to generate a CT model schedule
with a steep right-hand side. By construction, increases in m lower f{x) at all ages above
20 (the lowest age for which v,#0), with greater proportional decreases at higher

http://www.demographic-research.org 93
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maternal ages. As a consequence, increases in m make the right-hand side of the
schedule steeper and lower the modal age (P).

This CT tradeoff between the peak age P and the rate of descent after P can lead to
awkward compromises that fail to fit either side of the ASFR schedule well. As an
example, Figure 4 once again depicts the Netherlands 2001 single-year schedule (from
Figure 1, approximated with a QS model in Figure 2), this time including the best CT
approximation (in a least-squares sense, as in Hoem et al. 1981). The dashed line in the
figure represents the best-fitting member of the CT family, specifically
(ao,k,m)=(21.4,2.01, 3.41). The high values of ay and k (representing late starts and
slow marriage rates, respectively) act to push the peak age to the right. The high level of
m (high control) makes fertility fall sharply over post-peak ages. However, neither the
peak nor the right-hand slope comes out quite right. Raising ay and k further to push the
peak rightward would worsen the fit too much at low ages. On the other hand, raising
m further to increase post-peak steepness would push the mode leftward and
(paradoxically) worsen the fit at high ages. This particular schedule represents the best
compromise to be found, but it is not a particularly good representation of the
Netherlands schedule.

NETHERLANDS 2001

Best CT Fit
[a0,k,m] =[21.4, 2.0, 3.4]

0.756 7

3
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Figure 4:  Best (least squares) fit for Coale-Trussell model to Netherlands 2001
single-year schedule.
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Appendix A reports more fully on lacunae in CT schedules’ shapes. The central
point in this discussion is not criticism of the CT model, which was not designed to
describe contemporary schedules with very low fertility. Instead, the point is that the
QS model system is flexible enough to describe the geometry of “new” ASFR
schedules such as those in Western Europe. As such, the QS model could be a useful
framework for projections, forecasts, and explorations of fertility in developed, as well
as the developing, countries. The next section provides an example.

5. Fitting good data, Example #2: Patterns in contemporary Sweden

Parametric models are useful for summarizing patterns in high-dimensional data. In this
section I briefly illustrate use of the QS model for this purpose, by fitting models to
contemporary Swedish fertility schedules and examining parameter changes over time.
Kohler and Philipov (2001) analyzed 1975-1996 Swedish period fertility trends
thoroughly. I use their data (Note 9).

For each of the 22 years, I fit a QS schedule to the observed single-year rates for
Sweden by selecting [e,P,H] to minimize the sum of squared errors

Y [/oaeh - o] an

x

The QS model fits all 22 years well. Relative errors range from a low of 2.4% in
1979 to a high 0f 4.4% in 1995. In the later years of the time series the QS model tends
to overestimate fertility rates at the maternal ages 40+, but that problem is small. The
complete set of fits, including plots of time series for estimated , P, and H, is contained
in a spreadsheet in File IV. I encourage the reader to open the spreadsheet, manipulate
the controls to change the year, and examine the fits and parameter values in detail.

QS model parameters exhibit simple, regular patterns of change over the 22 years.
Specifically, both P and H increase nearly linearly, while, remains approximately
constant. P rises steadily from 25.3 in 1975 to 29.2 in 1996 (the average change is
+.18/year), and H rises in near lock-step, from 31.7 to 35.1 (+.16/year). Estimates of
initial age change more irregularly, and on a smaller scale; rises in fits and starts from
14.1 to 15.0 over 1975-1996 (+.04/year).

Using Sweden during this period as a representative case study of recent patterns
in European fertility change, Kohler and Philipov examined in detail the relationships
between changes in the mean age at childbearing, variance in age of childbearing, and
the accuracy of the Bongaarts-Feeney (BF) formula for “tempo adjustment” of period
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TFR (Bongaarts and Feeney 1998). Kohler and Philipov stressed that changes in
Sweden matched one important mathematical assumption of the BF formula fairly well
(mean age of childbearing exhibited approximately linear increase), but did not match
another main BF assumption (the variance of the age of childbearing increased, rather
than staying constant as assumed in BF).

Parameter changes in the QS model provide a parsimonious explanation that
reconciles linear changes with increasing variance. Taken together, the nearly constant
o with linearly increasing P and H suggest that the peak and the right-hand side of the
fix) schedule were sliding rightward at a fairly constant rate (as in BF), but that variance
increased because the left-hand side of the ASFR schedule was being stretched
horizontally as « rose more slowly than P (contrary to BF) and P-« increased.

The changes in estimated QS parameters are very regular, making them useful for
studying behavior. Figure 5 depicts the time series of the estimated D and S indices
(described previously) for Sweden over the period under study. Childbearing was
increasingly delayed, pushing D up steadily as the age of peak fertility rose. As
measured by S, post-peak fertility rates exhibited decreasing concavity, suggesting
small, steady decreases in fertility control at higher ages (Note 10).

Trends in QS Parameters
Sweden 1975-1996

Years
~
|

| T Stopping'

T T T T 1
1975 1980 1985 1990 1995

Calendar Year

Figure 5: Time trends in estimated D and S values for Sweden 1975-1996.
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Most importantly for the purposes of this paper, the simple time series patterns in
Figure 5 demonstrate the QS model’s ability to capture and highlight meaningful
mathematical regularities in empirical fertility schedules. They also signal the potential
utility of using times series for D(f) and S(f) as a language in which to express

5. .

projections and forecasts about future changes in fertility’s “tempo”.

6. Fitting noisy data

Data are frequently less abundant than in the cases studied so far. Model schedules are
often used to estimate fertility from small samples or from other data subject to random
errors. In these circumstances it is important that models not be too flexible, in the
sense that coincidental variations in a sample should not be overinterpreted as
representing real features of the fertility regime. In loose statistical terms, we would like
models with enough degrees of freedom to produce a variety of shapes and levels for
estimated fertility schedules in response to reliable evidence, but also with enough
mathematical rigidity to remain fairly stable in response to sampling noise. These are of
course competing goals, and much of the art of statistical modeling consists of finding
approaches that balance flexibility (low bias) against stability (low variance).

I investigated the flexibility and stability of the QS model by running a series of
Monte Carlo experiments in which I estimate single-year ASFR schedules from small
samples. In each sample I assume that the true single-year age-specific fertility rates for
ages 15-49 belong to one of five schedules:

a. the CT fit to the El Salvador schedule from the US Census International data
base [ESA02], taken from File IIl: (TFR,aq,k,m)=(3.29, 12.3, .52, .81)

b. 1999 period fertility for the Czech Republic [CZE99], from the Czech POPIN
website (Czech Republic 2002)

c. 1971-75 period fertility for South Korea [KOR71], from Coale, John, and
Richards (1985)

d. 1996 period fertility for Sweden [SWE96], from Kohler and Philipov (2001)

e. 2000 period fertility for Australia [AUS00], from Dr. Rebecca Kippen (personal
communication)
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I selected these schedules because of their differences in shape and level, as
illustrated in Figure 6.

Figure 6:  Single-year period ASFR schedules (1000 ) for El Salvador 2002,
Czech Republic 1999, South Korea 1971, Sweden 1996, and Australia
2000. EIl Salvador schedule is a Coale-Trussell model fit to five-year
data; other schedules are empirical observations.

The five schedules a-e are ordered in terms of peak ages of fertility, which are 22, 25,
26, 29, and 30, respectively. From results with IDB schedules in Section 3, we would
expect that the QS model would fit all five of these “true” schedules well, while the CT
model might have difficulty fitting the Swedish and Australian curves. At this point we
do not know whether the extra flexibility of the QS model comes with a high price in
terms of sampling variability; the purpose of the Monte Carlo sampling experiment is
mainly to investigate these bias-variance tradeoffs.

For each of the five schedules {f} I tried three sample sizes, consisting of N=10,
100, or 1000 women per single-year age group (Note 11). There are therefore 15 basic
experiments, one for each combination of [{f;},V]. For each of these 15 experiments the
computer program generated 200 Monte Carlo samples of births {By} , using
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B, ~ Binomial(N,p=f.), x=15..49 5=1..200

The computer program then chose the QS parameters [R,o«,P,H| that minimized the
sum of squared errors for each sample s=1...200:

0 =Y.(f. - B,/N) (18)

and calculated the mean squared error across both ages and samples:

" 35, 200;;5 (-1 1)

If we denote the average fitted rate at age x by

1 20,

T ;f (20)

then MSE may be further decomposed into squared bias and variance terms:

MSE = %Z [(fx—f;)z} + —35,12002(421 [(f;s—f_;)z} @1)

x=15
or, in more intuitive notation:

RMSE® = BIAS® + STDEV’ (22)

where RMSE represents the root mean squared error, BIAS represents the estimated
effects of systematic fitting errors (i.e., the inability of the model to fit the “true” ASFR
schedule), and STDEV represents the estimated effects of sampling variability (i.e., the
average amount of noise in a typical f; estimate). I also fit the CT model to the same
set of Monte Carlo samples, calculated MSEs, and separated them into bias and
variance components.
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Monte Carlo sample results. Left-hand panels are for CT fits; right-hand
panels for QS fits. Points (+) are “true” f(x) schedules; solid lines are
best fits in “noiseless” samples (N=o); dashed lines are 10" and 90"
percentiles of fits when N=100 women are sampled at each age.
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Figure 7 displays some of the Monte Carlo results from small-sample fitting. In the 5x2
grid of panels, each row corresponds to one of the five “true” schedules, which are
depicted with + signs. The first column of panels (with red lines) represents Coale-
Trussell fits, and the second column (blue lines) represents Quadratic Spline fits. Solid
lines in each panel show the best model fit to the true schedule (i.e., the limiting sample
fit as N-e), and dashed lines show the 10™ and 90™ percentiles of sample fits when
N=100.

The fits to the true schedules provide information about the models’
flexibility/bias. Consistent with earlier results, the QS model is able to fit all five
schedules accurately, but the CT model exhibits small biases for SWE96 and fairly
large biases for the AUS00 schedule. The CT model’s lack of fit for AUSO0 (bottom
left panel) is very similar to that in the Netherlands schedule in Figure 4: rates are too
low at young ages, the peak is too early, and the right-hand side is too flat.

Distances between the lower and upper dashed lines provide information about the
models’ sensitivity/variance. Figure 7 shows that pointwise 80% confidence bands for
the CT and QS models are quite similar in the N=100 case. Bands for N=10 and
N=1000 are not shown, but the conclusion is the same: CT and QS estimates exhibit
similar levels of variability across the Monte Carlo samples at all sample sizes.

Table 2 provides a more complete summary of the Monte Carlo experiments. It
includes information from N=10 and N=100 experiments, and it reports |BIAS|, STDEV,
and RMSE measures (as defined in Equation 22) across the 200 samples for each
[{fx},N] combination. Data in Table 2 show that the CT and QS models have similar
levels of small-sample variability. In very small samples the QS model may be more
susceptible to sampling noise, but only slightly. Both models converge rapidly in the
direction of the true {f;} as sample sizes increase, but for schedules with late peaks,
such as SWE96 and especially AUS00, the CT model may have much more bias than
the QS model, even in the limit. As a consequence of this higher bias, CT model fits
may have higher average errors (RMSEs) than QS models for such schedules, even in
small- to medium-sized samples.
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Table 2: Summary Data from CT and OS fits to Monte Carlo Samples

SCHEDULE f(x) N [BIAS] STDEV RMSE
cT Qs cT as cT as
ESA02* 10 7 7 36 38 37 39
[P=22, TFR=3276] 100 1 2 1 1 1 1
1000 0 1 3 3 3 4
o 0* 1 0 0 0* 1
CZE99 10 4 5 29 30 29 31
[P=25, TFR=1133] 100 3 2 8 8 8 8
1000 2 2 2 2 3 3
o 2 2 0 0 2 2
KOR71 10 9 9 42 43 43 44
[P=26, TFR=3819] 100 6 6 12 12 13 13
1000 6 6 4 4 7 7
® 6 6 0 0 6 6
SWE96 10 7 7 32 33 33 34
[P=29, TFR=1598] 100 4 2 8 9 9 10
1000 4 2 2 3 4 3
o 4 2 0 0 4 2
AUS00 10 10 7 33 32 35 33
[P=30, TFR=1749] 100 9 3 9 9 13 9
1000 10 3 3 3 10 4
® 10 3 0 0 10 3

Note:

* The assumed “true” schedule for ESA02 is the Coale-Trussell fit to five-year data for El Salvador from Section 4. By construction
the CT model will fit this schedule perfectly and the limiting value of CT bias is zero.

The main conclusion from the Monte Carlo study is that, when compared to the CT
model, the extra flexibility inherent in the QS model does not come with a cost of
higher sampling variance. In other words, the QS model is flexible enough to represent
a variety of schedules, but it also has enough mathematical restrictions (zero values at
endpoints, a single mode at age P, etc.) to ensure that estimated schedules are plausible
even in very noisy samples. Small-sample STDEVs and confidence bands are nearly
identical for the CT and QS models, and the QS model retains the advantage of notably
lower bias for schedules with late peaks.
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7. Conclusion

The QS model system proposed in this paper includes a wide variety of shapes for
ASFR schedules. This includes some schedules (mainly from contemporary Western
Europe) for which the most familiar demographic model, Coale-Trussell, cannot fit
well. Because QS parameters [a, P, H] are ages at which the ASFR schedule has
certain characteristics, back-and-forth translation between model parameters and shape
functions becomes simple and intuitive. The QS model also produces a continuous
ASFR function f{x) and closed-form expressions for quantities such as TFR, features
which may be analytically convenient.

QS fits to recent Swedish time series find simple, easily interpretable patterns that
describe the changing timing of fertility very well. This suggests that the QS model
could be a good tool for simulation and projection exercises, particularly for scenarios
which include changes in the “tempo” of fertility.

Small-sample Monte Carlo experiments demonstrate that the QS model is not
oversensitive to sampling noise (a serious problem for some spline-based models), and
that it produces reasonable ASFR estimates even in very small samples. Average errors
are very similar to those obtained with the Coale-Trussell model.

Splines are an extraordinarily flexible family of continuous functions. They are
often too flexible for demographic purposes, because a specification such as Equation
(2) often includes not only a wide array of plausible functional forms for a particular
application, but many implausible forms as well. One main idea behind the QS model
is to “tame” spline functions by insisting that they have certain features (peak at P, zero
value and zero slope at f3, etc.), and by limiting knot values and parameters to subspaces
that correspond to “good” demographic models. This taming process reduces the
number of parameters necessary to describe a function. Another main idea behind the
QS model is that for demographic models the reduced parameter set can consist of ages
at which the function has certain features. The combination of constrained splines and
age-index parameters produces a family of good demographic models with easily
understood arguments. Demographers could use these ideas in many other models and
applications.
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Notes
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Knot value #; always falls between o and P. Condition 2 places ¢, exactly halfway
between « and P if P-a=10, closer to P if the interval between initial and peak
fertility is more than 10 years, and closer to « if the interval is less than 10 years. |
had initially set #;=(a+P)/2 for all parameter values, but examination of a small
number of empirical f; schedules (different from those used in the Monte Carlo
study in Section 6) suggested that the inflection point of the ASFR schedule tends
to be at higher ages when P is high, and vice-versa. The changing value of W in
condition 2 allows the left-hand (pre-peak) side of the fertility schedule to match
the empirical observations more closely, by becoming more concave for schedules
with wider left-hand sides and more convex when the left-hand side is narrower.

Under this definition the maximum age of childbearing  equals 50 for most sets of
parameters. However, to ensure a non-positive slope for the ASFR schedule at all
ages above P, adjustments to 3 become necessary when the “half life” of fertility
(H-P) is either very small or very large (corresponding to very steep or very flat
post-peak schedules, respectively). Analysis shows that post-peak slopes are non

positive if H+(H-P)/C<p <H+C(H-P), where C=(3+V17)/2%~3.5616. The
definition in the text replaces C with 3; this simplifies the formula and ensures that
B falls within even narrower bounds.

The data consist of 226 sets of seven period fertility rates [f}5_jo...fss.49], €ach from
the latest available year for each country or area.(From the web site I selected:
“Table 28", “All Countries”, “Latest Available Year”. In all cases the “latest
available year” was labeled “2002".)

I corresponded with the US Census Bureau to verify that the IDB schedules were
not themselves constructed or adjusted with spline or Coale-Trussell models. They
are not. Peter Johnson (personal communication) indicates that IDB reporting
procedures vary for different schedules, and that in some cases the Census Bureau
uses demographic models (although not splines or CT models) to adjust reported
fertility levels. However, the shapes of the IDB schedules are unaffected by these
procedures.

Potential inaccuracies are also a concern in the IDB data set. For example, the
first schedule is for Afghanistan, a country with notoriously sparse and unreliable
demographic data. However, the point of the fitting exercise is not to reproduce
individual schedules accurately, but rather to examine the ability of the two models
to fit a wide variety of shapes. In this sense it does not matter if any of the
schedules are correct, as long as they vary.
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5. There are several ways of fitting the CT and QS models to observations from five-
year age groups. Coale and Trussell (1974) present both a complete version of their
model, for single-year age groups, and an abridged version for five-year groups. In
the QS model fertility rates are a continuous function of exact age, and there are
closed-form expressions (not shown in the text) for .f; values. For purposes of
comparison I opted to use “single-year” versions of both models, in which sf; is
approximated by [f{x+0.5) + ... + fix+4.5)]/5.

6. With data in five-year groups beginning at age 15, both the CT and QS models may
use implausibly low (or even negative) values of the initial age parameter (ao or c,
respectively) to fit schedules with high values of sfjs. In the fits reported here I
have constrained initial age parameters in both models to be positive, but not
necessarily >10. The results include several schedules (e.g. Bangladesh, Cuba,
Grenada) in which the initial age parameter helps the fit at ages 15+, but should not
be interpreted as anything other than an arbitrary mathematical value. With single-
year data this problem tends to disappear. I thank students in Joe Potter’s Spring
2003 Demographic Methods class at the University of Texas for alerting me to this
detail.

7. Although the text of Coale and Trussell (1974) contains N and v values for five-
year age groups only, single-year values are available from the Fortran code in
their Appendix A (p. 202).

8. Minimizing this particular SSE criterion is one of many possible fitting procedures.
For a brief discussion of alternative objective functions, and a pragmatic argument
for using unweighted least squares, see Hoem et al. (1981:231-232).

9. Data for Sweden are 1975-1996 period schedules of single-year ASFRs (all parities
combined). These are originally from the Eurostat New Cronos data base (1998),
as cited in Kohler and Philipov (2001), and are available on Kohler’s web site
(Kohler 2003).

10. Coale-Trussell models fit to the Swedish time series (not shown) have less regular
patterns. However, estimated control m decreases almost linearly from a high of 3.7
in 1980 to a low of 3.0 in 1995.

11. The assumption of a uniform age distribution simplifies analysis, but it is
unrealistic. In real samples one might, for example, have more women at young
ages and fewer at old ages. Such a pattern might increase the precision of
estimators for « and P while decreasing the precision of estimated H.
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Appendix A: Shape limitations of the CT model

In order to examine the range of possible shapes inherent in the CT model system, I
computed f(x) schedules over a grid of 13x14x21=3822 (ay,k,m) values defined by

(ao, k, m) € {8,9, .., 20} x {0.1,0.4,0.7, ..., 4.0} x {0,0.2,0.4, ..., 4.0}

and recorded the modal age P and halfway point of descent H for each schedule. A CT
schedule consists of a vector of 38 rates [f}2, f13, -..,fao] for single- year age groups, so
there is some natural ambiguity about exact-age values of P and H. For the crude
purposes of the table below, I call P the integer age corresponding to the highest of the
39 rates in a schedule, and H the lowest integer age x for which x > P and f{x) < f(P)/2.

Appendix Table Al shows the distribution of (P,H) combinations across the 3822
schedules. Each cell corresponds to a particular (P,H) combination, and therefore to a
particular “shape” for the right-hand side of the ASFR schedule. Cells marked with
dashes are logically impossible. Cells for other combinations contain the number of
schedules with that particular combination of P and H. The focus is on the right-hand
side of the fertility schedule. I omit other details for the sake of brevity.

The main finding from this analysis is that the CT family does not include
schedules with rapid drops after peak fertility is reached, and that this is particularly
true for schedules with peak ages in the low- to mid-30s. Such schedules have small
values of H-P and would fall near the main diagonal in the table. Shaded cells represent
logically possible (P,H) combinations for which there were no corresponding CT model
schedules, and they tend to lie along this diagonal.

As an example, the Netherlands 2001 schedule in Figures 1 and 4 belongs to the
(31,37) cell, for which there were no matching CT models. Like many contemporary
schedules with late peak ages, the Netherlands schedule falls into a gap in CT coverage.
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Appendix Table Al:

Number of schedules with given (P,H) values out of 3822 CT models

(a0,km) = {8.9,...,20} x {0.1, 0.4, ....4.0} x {0, 0.2, ..., 4.0}

Halfway Point of Descent (H)

<25 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

P
19 0 41 38 17 16 16 7 0 0 0 O 0O O O O O O 0 0 0 0 ©
20 0 20 50 47 28 18 16 17 13 2 13 1 12 1 0 12 0 9 0 0 0 0
21 0 0 7 26 32 17 9 7 4 5 3 2 2 2 0 3 0 5 0 0 0 0
22 0 0O O 9 3 70 4 16 8 5 3 2 3 2 2 2 1 2 0 0 0 O
23 0 0 0 0 5 30 110 104 33 12 7 4 3 3 3 1 3 2 0 0 0 0
24 - 0 0 0 0 5 22 46 47 20 7 4 4 1 2 1 2 1 0 0 0 0
25 - - 0 0O O O 11 39 62 40 20 6 5 4 1 4 2 4 0 0 0 O
26 - - - 0 0 0 0 18 90 120 83 57 33 21 9 6 3 6 0 0 0 0
27 -- - - - 0 0 0 0 8 31 43 32 26 20 13 7 6 3 1 0 0 0
28 - - - - - 0 0 O O 13 51 67 8 64 53 40 16 7 2 0 0 O
29 - - -~ - - - 0 0 0 0 0 4 24 4 61 78 7 39 5 0 0 O
30 - - -- - - - - 0 0 0 0 0 0 0 4 22 47 68 13 0 0 0
31 - - - - - - - - 0 0 0 0 0 0 0 2 19 55 28 0 0 0
32 - - - - - - - - - 0 0 0 0 0 0 0 1 46 80 0 0 0
33 - - -- - - - - - - -- 0 0 0 0 0 0 0 3 60 12 0 0
34 - « « « « « « « =« =« =~ 0 0 0 0 0 0 0 71 4 0 0
3 - ~ « « « « « « « o« =« -~ 0 0 0 0 0 0 12 11 0 0
36 - - o« =« « =« =« <« <« <« =« .« -~ 0 0 0 0 0 0 9 0 0
37 - o« =« « « « « « « « .+« - « -~ 0 0 0 0 0 61 4 0
38 - - o« o« o« « « « « - - - - - - 0 0 0 0 0 109 0
39 - -« o« e« . . . . - - = - - 0 0 0 0 4 4
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Appendix B: Non-matrix calculation of spline coefficients

Calculating the spline parameters for the ASFR schedule is more awkward without
matrix functions, but it is feasible. The derivation has two distinct steps, for parameters
affecting the curve to the left and right of the peak, respectively.

The knots #...t4 are defined as in the text. Parameters for the left-hand part of the
curve can be calculated from this sequence:

W = MIN[.75,25+.025(P-a)] 6, = ﬁ 6, = 6
W(P-a

Spline coefficients for the right-hand side can be calculated via a set of
intermediate variables:
2 2
H-t), Zy,=(H-t,)
2 2 2
) ZD:(ﬂ_t3) > ZE:(ﬂ_t4)
F=2(B-1,), Z;=2(B-1,), Z,=2(B-1,)

N N N
a
I
=
[

2,=05-|0,(H-a) +6(H-1)" |
2,0 -[6,(-a) +6,(8-1) |
Z,=0 —[ 20,(B-a)+26,(B-1,)]
DENOM =Z,2,7, — Z,Z, 2~ ZoZyZ, + 2, 2,7,
The right-hand side parameters are calculated from these intermediate variables as:

6, =12,2,2, ~Z,2;)-Z,(Z,Z,,)+ Z,(Z,Z,)|| DENOM
0, =[2(2,2,-2.2,)+2,(2,Z,,)-Z,(Z,Z,))|/ DENOM
0, =222~ 2,2.)+ 2,(Z,Z, — 2,2)+ Z,(Z,Z,, — Z5Z..) || DENOM
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