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ABSTRACT: The nongaussian (or nonnormal) distribution of sperm
concentration, and variables deriving from it, is a common practical
problem in the statistical evaluation of semen data. Yet it has been
little studied, and its importance to data analysis, as well as to prac-
tical remedies, is not widely appreciated. Inappropriate use of the
raw scale of measurement produces inflated estimates of mean and
variance, leading to false-negative (underpowered) statistical com-
parisons and excessive sample size estimates. This study employs
the Box-Cox family of power transforms to illustrate by a simple
graphical method how to identify optimal power transforms for se-
men data variables. Using robust statistical methods, it is shown that

the nongaussian distribution is due to right skewing rather than mul-
timodality or influential outliers. The optimal power transform, typi-
cally in the region of 0.15 to 0.35 (most easily implemented as a
cube-root transformation), usually performs better than the logarith-
mic transformation in normalizing the data. In addition, the power
transformation has an important practical advantage over the loga-
rithmic transformation in the appropriate handling of zeros (azoo-
spermia), a regular and important features of such data sets in prac-
tice.
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Following the first report of semen analysis in 1929
(Macomber and Sanders, 1929), the first systematic

study of large numbers of human semen samples was
published in 1951 (MacLeod and Gold, 1951). In that
classical study, John MacLeod involved a statistician,
Ruth Gold, as coauthor. Since then, it has been well
known, and readily confirmed, that sperm concentration
is consistently nongaussian in distribution. Although this
invalidates parametric statistical analyses in the natural
scale, there has been limited consideration of the prob-
lems this creates for semen data analysis (Berman et al,
1996), and the literature demonstrates continuing wide-
spread and uncritical usage of inappropriate statistical
methods.

The distribution of sperm concentrations is typically
nongaussian. This is primarily because of marked right
(positive) skewing and, to a lesser extent, because sperm
concentration is constrained to be nonzero. The nongaus-
sian nature can be readily identified because, in the nat-
ural scale, the lower 95% confidence limits of the distri-
bution (2 SDs below the mean) give biologically mean-
ingless negative values. The arithmetic mean is charac-
teristically vulnerable to excessive influence by high
outlying values. Right skewing typically increases the
arithmetic mean so that it deviates widely from the me-
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dian, the value usually regarded as the best estimate of
the center of the distribution. Furthermore, right skewing
also inflates sample-based estimates of variance to create
a falsely high standard deviation. This weakens the ability
to test for real differences between group means, as these
differences are compared with an unrealistically large
pooled standard deviation. For the same reason, skewing
also significantly distorts study power estimation, produc-
ing excessively large estimates of sample size.

Several remedies for this nongaussian distribution of
semen variables are available. One traditional (Gaddum,
1945) and widely used method is the logarithmic trans-
formation (Berman et al, 1996). This approach is often
effective and is a great improvement on raw data analy-
ses, although this hardly justifies its automatic applica-
tion, as advocated by some (Keene, 1995). Log transfor-
mation has the drawback of being unable to deal properly
with zeros (azoospermia), which are a frequent and im-
portant endpoint for many studies involving semen anal-
ysis data such as male infertility and contraception. In
addition, the log transform makes accurate graphical rep-
resentation of the data, consistent with the analysis, dif-
ficult, since a zero sperm output cannot be indicated on
the log scale. Typically, an ad hoc fix is to add an arbi-
trary offset to each zero data point, rendering them pos-
itive and thereby remedying the inability to perform the
log transform; however, altering data for analysis is both
undesirable in principle and may distort the data analysis
in practice, especially if the data include many zeros. In
this way, the statistical analysis of a data set could be
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influenced by the actual value of the arbitrarily selected
offset. Another alternative is the resort to nonparametric
statistics. Although effective and often useful, this has the
limitation of sacrificing both statistical power (especially
for small sample sizes that are common in andrology) and
flexibility for more complex statistical modeling, since
the most sophisticated parametric statistical analyses (but
those that require parametric assumptions) are not all
available for nonparametric analysis. A third, more sat-
isfactory but little-appreciated approach is the use of a
power transformation. Normalizing data transformations
retain the power and flexibility of parametric statistical
methods for valid application of parametric modeling on
a scale that renders the data effectively gaussian. Unlike
the log transformation, power transformations preserve
the ability to deal appropriately with zeros while simul-
taneously retaining access to the more powerful and flex-
ible parametric statistical methods. Empirical applications
of the logarithmic, square-root, and cube-root transfor-
mations for this purpose have been adopted for many
years, but there has been no systematic study or general
framework validating or comparing such empirical ap-
proaches.

This study develops a systematic framework for valid
parametric statistical analysis of seminal data based on
applying the Box-Cox family of power transforms (Box
and Cox, 1964) to nongaussian sperm data. Applications
of the Box-Cox transformations have proved useful in
other areas of biology (Peltier et al, 1998; Meloun et al,
2000). The cube-root transformation is shown to be a use-
ful rule of thumb for seminal variables. This general ap-
proach leads to the valid application of parametric statis-
tical methods while handling azoospermia appropriately,
and a simple graphical method is demonstrated to identify
empirically optimal power transforms in any semen data
set.

Materials and Methods

Primary Data and Variables
The main data for this study were derived from semen analysis
results from 469 consecutive unselected healthy men screened
as potential sperm donors in Sydney (Handelsman et al, 1984;
Handelsman, 1997). Briefly, healthy men recruited without re-
gard to marital or fertility status being screened as potential
sperm donors provided semen samples prior to acceptance or
rejection as donors. An additional large data set was obtained
from the first semen samples of 671 men participating in 2 large
World Health Organization (WHO) multicenter male contracep-
tive efficacy studies organized by the WHO’s Human Reproduc-
tion Program (1990, 1996). These samples came from 16 centers
where men in stable relationships requiring contraception were
recruited to enter the study if they had no history of infertility,
chronic medical illness, or reproductive pathology and had 2

normal semen analyses. Unlike the first group, this population
was selected for potentially normal fertility according to their
fertility history and semen analysis results.

Semen samples collected by masturbation were examined ac-
cording to the standard methods described in the contempora-
neous edition of the WHO manual. From each semen sample,
the volume of the ejaculate (in milliliters), sperm concentration
(million sperm per milliliter), and motility (percentage moving
or category ‘‘a’’ 1 ‘‘b’’) were determined by examination of the
liquefied sample in a counting chamber. Morphology of sper-
matozoa is determined from a stained smear and expressed as a
percentage of all ejaculated spermatozoa. For this study, only
the first semen sample was analyzed. From the raw data variables
of semen volume, sperm concentration, motility, and morpho-
logically abnormal forms, derived variables can be calculated to
reflect the concentrations and total output of all sperm, motile
sperm, and morphologically normal sperm in the ejaculate.

Analytical Approach
Three distributional criteria—the coefficients of skewness (s) and
kurtosis (k) and the Shapiro-Wilks W statistic—were used. The
first two were employed as standardized normal deviates calcu-
lated as centered coefficients (subtract 3 for kurtosis and 0 for
skewness) divided by their respective standard errors—Zs for
skewness and Zk for kurtosis (Sokal and Rohlf, 1995). The W
statistic, being inherently standardized, was used directly. The
Shapiro-Wilks W statistic (Shapiro and Wilks, 1965) is considered
the most powerful omnibus test (ie, a single measure sensitive to
departures both from symmetry (skewness) and spread (kurtosis)
of data distributions) for normality (Royston, 1982). It estimates
the deviation from a gaussian distribution by comparing the sam-
ple values (arrayed in order) with the idealized gaussian distri-
bution for the same sample size. Using an analysis of variance
(ANOVA), the W value reflects the proportion of variance ex-
plained by the idealized gaussian distribution. Data distributions
close to gaussian have a higher W, approaching the maximum
value of 1.0, and lower W values indicate more extreme departures
from a gaussian distribution. Optima for the power transforms
were estimated by linear or quadratic regression, and confidence
limits were calculated by backtransformation to the natural scale.
All data were analyzed using the BMDP 2D (Dixon, 1992).

The Box-Cox family of power transformations (Box and Cox,
1964) was employed as defined by X9 5 (Xk 2 1)/k for k . 0,
and, in the limit for k 5 0, X9 5 log(X), where X is the raw
data, X9 is the transformed data, and k is a nonzero exponent
ranging from 1.0 (untransformed data) to 0. For each variable,
a series of power transforms from 0.05 to 1.0 was created in
increments of 0.05. For each transformation and for each vari-
able, the 3 distributional criteria were then calculated and
graphed against the exponent.

Results

In the natural scale, all semen variables are severely non-
gaussian in distribution (Table). This is predominantly be-
cause of right skewing (nonsymmetrical), although there
was also some kurtosis (flank bulge) (Sokal and Rohlf,
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Location, dispersion and distributional effects of various transformations on semen analysis variables

Semen
Volume Sperm Density Total Sperm

Motile Sperm
Density

Total Motile
Sperm

Normal Sperm
Density

Total Normal
Sperm

Optimal k 0.30 0.25 0.20 0.25 0.20 0.20 0.15

Location
Median
Arithmetic mean
Geometric mean
Power mean*

3.0
3.2
2.8
2.9

74.0
89.7
69.9
74.9

208
293
198
216

46.8
58.0
42.2
46.3

132
188
120
137

41.7
56.1
39.1
42.4

125
182
112
122

Dispersion†
Empirical
Natural scale
Log scale
Power scale

0.8, 7.4
20.1, 6.6

1.1, 8.7
0.8, 7.5

6.0, 280
234.7, 214

15.8, 309
13.0, 251

13.0, 1120
2275, 861

30.4, 1291
23.7, 996

3.5, 176
229.3, 145

7.4, 242
5.9, 179

7.7, 699
2186, 562

15.0, 959
10.0, 654

3.4, 203
7.9, 104
6.5, 236
5.1, 187

8.6, 611
217, 381

13.7, 917
11.0, 711

Distribution
Skewness‡

Natural scale
Log scale
Power scale

8.69
25.61
20.76

13.51
25.79
20.07

26.43
26.09

0.72

12.79
28.59
21.09

24.21
27.69
20.32

14.97
24.51
20.13

27.16
24.93
20.48

Kurtosis‡
Natural scale
Log scale
Power scale

5.96
3.66

20.22

13.01
4.33
0.70

61.90
6.82
2.52

11.07
10.14
0.44

52.23
8.62
1.65

18.18
1.64

20.45

71.67
3.37
0.79

W
Natural scale
Log scale
Power scale

0.926
0.965
0.981

0.866
0.962
0.982

0.739
0.969
0.988

0.867
0.952
0.985

0.754
0.958
0.987

0.829
0.967
0.983

0.713
0.971
0.987

* Determined by backtransformation of mean of power scale distribution.
† 95% confidence limits determined from empirical or natural scale distribution or by backtransformation from log or power scales.
‡ Expressed as standardized normal deviates.

1995). Further examination of the distribution of sperm
concentration showed that the asymmetrical deviation
from gaussian was not due to excessively influential out-
liers, because none of 3 robust estimates of location
(Hampel, 15% trimmed, and biweight) was any improve-
ment over the arithmetic mean in its deviation from the
median. Similarly, the empirical distribution gave no in-
dication of multimodality as another potential explanation
for the nongaussian distribution.

The 3 distributional criteria calculated for each of the
7 semen variables are illustrated (Table). For each vari-
able, the raw data were nongaussian by all 3 criteria, and
in each case, logarithmic transformation improved but did
not achieve a gaussian distribution. Furthermore, for each
variable, the convexity of the graph of W vs the exponent
indicated that a power transformation always existed that
was superior to logarithmic transformation.

For sperm concentration (Figure 1), as the exponent
decreases from 1.00 (untransformed data) to 0.05, the
rightward skew is progressively corrected to reach a gaus-
sian distribution and then eventually to developing a left
skew. Estimating the intersection of Zs on k by linear re-
gression (r2 5 0.997) leads directly to a point estimate of
0.31 as the optimal power transform with approximately

67% confidence intervals (0.24–0.45). For kurtosis, the
parabolic regression of Zk on k (r2 5 0.991) provided 2
optimal exponents (k 5 0.15 and 0.53), giving a wide
range of power transforms that rectified the relatively
mild nonkurtosis. The W statistic displayed a smoothly
parabolic function of the exponent with an optimum pow-
er transform represented by the maximum, estimated as k
5 0.37 by quadratic regression.

Similar results were obtained for each of the other 6
variables that were rendered gaussian or nearly so by frac-
tional power transforms (Table; Figure 2). Two other se-
men variables, sperm motility and morphology, both ac-
tually rescaled fractions, remained nongaussian despite
power or angular transforms (data not shown).

The WHO data set had similar properties, with the ex-
ception that the improvement in performance of the op-
timal power transform over the logarithmic (k 5 0) was
smaller, presumably due to the exclusion by design of
lower sperm concentrations (Figure 3).

Discussion

This study confirms that the underlying distribution of all
conventional semen variables is intrinsically nongaussian
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Figure 1. Plot of Shapiro-Wilks W statistic (upper panel) and skewness
and kurtosis (lower panel) ranging from an exponent (k) of 1.0 (untrans-
formed raw data) to 0 (logarithmic transformation). Note that the convex-
ity of the W statistic demonstrates that a range of k provides more nor-
malizing transformations than the log transform. In the upper panel, note
optimum at k approximately equal to 0.37. In the lower panel, both skew-
ness and kurtosis have optima near the same region as indicated for W.

Figure 2. Plot of Shapiro-Wilks W statistic ranging from an exponent (k)
of 1.0 (untransformed raw data) to 0 (logarithmic transformation). Note
similarity of optimum k for all 7 sperm variables.

Figure 3. Plot of Shapiro-Wilks W statistic for a range of power trans-
formations ranging from an exponent (k) of 1.0 (untransformed raw data)
to 0 (logarithmic transformation). Data consist of sperm donors (filled
circle) and World Health Organization (WHO) study (gray-filled dia-
monds). Note sharper optimum at k 5 0.37 for sperm donors but flatter
optimum over range 0–0.4 for the WHO study. In both cases, the con-
vexity of the curve indicates that there is a range of power transforms
that perform better than the log transform at transformation to gaussian
distribution.

in the natural scales of measurement (MacLeod and Gold,
1951; Berman et al, 1996). Furthermore, the ubiquitous
positive skewing is not attributable to multimodality or
influential outliers, which is consistent with the concept
that we are dealing with an intrinsic biological character-
istic. Severe intrinsic skewing in the natural scale has im-
portant implications for valid statistical analysis and mod-
eling of data derived from semen analysis. The severe,
systematic distortion in estimates of location and of dis-
persion can invalidate frequently used parametric meth-
ods such as the t test, ANOVA, and linear regression.
Despite this basic caveat on the use of parametric statis-
tical analyses, misapplications are still common in the
published literature.

In principle, the consistently nongaussian distribution
of seminal variables could be handled by either a non-
parametric approach or suitable normalizing transforma-
tions. Despite methodological advances, nonparametric
methods still sacrifice power (particularly for small sam-
ples, as are most common in andrology) and flexibility
(in not allowing access to the most sophisticated para-
metric methods generally preferred in practice). This has
led to an ad hoc adoption of data transformations, most
notably the logarithmic (Berman et al, 1996) but occa-
sionally the square- and cube-root transformations (Ba-
hamondes et al, 1979). The logarithmic transform, how-
ever, is not ideal, as it cannot directly handle zeros (azo-
ospermia), a regular and important feature of male fertil-

ity studies. In many situations in andrology research, men
may be rendered azoospermic (Handelsman, 2001), or
treatment is designed to increase sperm output from azo-
ospermia (Liu et al, 2002). Power transforms used pre-
viously have been used on a purely empirical basis with-
out a coherent framework for their adoption or evaluation.
The lack of a rational framework for valid statistical anal-
ysis of seminal data may have contributed to the limited
use of both power calculations and effect size calculations
in the design and analysis of clinical trials investigating
various aspects of male fertility.

This study indicates that fractional power transforms
can provide a consistent framework of normalizing trans-
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formations for semen data that unifies various ad hoc ap-
proaches, including logarithmic, square-, and cube-root
transformations. The present study shows that, while the
logarithmic transformation was a major improvement
over the natural scale, an optimal power transform could
be found that was superior to logarithmic transformation
in normalizing even highly skewed nongaussian semen
data. Modification of the exponent provides a very flex-
ible range of transforms that render the raw nongaussian
data suitable for parametric statistical analysis and mod-
eling analysis. Furthermore, unlike logarithmic transform,
power transforms have the advantage of appropriate han-
dling of the structural zeros (azoospermia), which are a
regular and important feature of studies of male fertility.
This is desirable not only for the data analysis but also
for the graphical representation of data, which ideally
should be congruent with the data analysis by using the
same scale. On the basis of these findings, it is suggested
that the logarithmic transformation will always improve
but rarely be the best transformation for semen data. In
practical terms, it is proposed that the cube-root transfor-
mation be considered the first option but that, if not ef-
fective, then a comparison of the logarithmic, square-root,
and cube-root transformations should provide an indica-
tion of the direction in which to search for improved es-
timates of k. Ultimately, a graphical approach similar to
that demonstrated can identify the region of optimal pow-
er transform. Thus, the power transform approach has the
desirable property of preserving power and efficiency
while availing the investigator of the most flexible para-
metric methods for data. The use of power transforms is
easily implemented on computer software using the ex-
ponentiation function.

Wide experience indicates that the optimal transfor-
mation identified in these 2 data sets is generally the most
efficient for other studies involving semen variables. The
2 large data sets in this study were consistent in showing
the superiority of a power transform in the region of 0.15
to 0.35 over logarithmic transform. The magnitude of this
advantage differed between the data sets, presumably due
to the different biases in their constitution, leading to sys-
tematic differences in sperm concentrations in the lower
range. Such variations in recruitment biases of other data
sets may yield similar differences. Whether or not this is
true, the approach to identifying optimal power trans-
forms would be generally applicable. Another limitation
of power transforms is that some semen variables such as
sperm motility and morphology may not be amenable to
normalization. The variables failing to be normalized by
power transforms were those requiring subjective evalu-
ation and quantitated on what is effectively a fractional
scale—assessment of sperm motility and morphology.
These variables are characteristically those involving
manual estimation and subjective judgments with the po-

tential for rounding errors and systematic variability be-
tween observers. The failure of the traditional angular
transformation (Sokal and Rohlf, 1995) to normalize the
distributions of both motility and morphology (both of
which are essentially fractions expressed as a percentage)
may be due to the inherently subjective nature of these
variables, whereby human scoring for these subjective
variables may be intrinsically ordinal and hence discon-
tinuous in nature. More objective methods of recording
sperm motility and morphology using computer-based im-
age analysis may make these variables more statistically
tractable.

Finally, it is interesting to consider whether the ex-
istence of an optimal power transform for sperm data
may have biological interpretation as a power law rath-
er than merely representing an empirically convenient
prelude to valid parametric statistical analysis. For ex-
ample, a cube-normal distribution of sperm output
might reflect output of spheroidal generators having a
gaussian distribution of radii. Structurally, the testis can
be viewed as comprising a limited number of long, cy-
lindrical seminiferous tubules, each coiled and tightly
packed within its own lobular compartment with both
ends emptying sperm into the rete testis. The testis
could then be viewed as an ellipsoid packed by a num-
ber of roughly spherical foci of sperm-producing tissue.
In this fashion, a gaussian distribution of radii could
then explain the apparent power law relating to sperm
output. Regardless of this speculation, the observation
that sperm concentration has a cube-root normal distri-
bution has important implications for the valid and sta-
tistically efficient analysis of sperm data.
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