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Abstract: We first consider properties and basic extensions of symmetric rings. We next
argue about the symmetry of some kinds of polynomial rings, and show that if R is a reduced
ring then R[z]/(z") is a symmetric ring, where (z™) is the ideal generated by z" and n is a
positive integer. Consequently, we prove that for a right Ore ring R with Q its classical right
quotient ring, R is symmetric if and only if @ is symmetric.
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1. Introduction

Throughout this paper, all rings are associative with identity, and n is a positive integer. A
ring R is called symmetric if abc = 0 implies bac = 0 for a, b, ¢ € R. Anderson-Camillo!* took the
term ZCs5 for this notion. A ring R is called reversible if ab = 0 implies ba = 0 for a,b € R. A ring
R is called semicommutative if ab = 0 implies aRb = 0 for a, b € R. Reduced rings (i.e., rings with
no nonzero nilpotent elements) are symmetric by [1, Theorem 1.3], commutative rings are clearly
symmetric, symmetric rings are clearly reversible, and reversible rings are semicommutative by
[2, Proposition 1.3]. But these implications are irreversible by [1, 3], and symmetric rings without
identity need not be reversible by [4]. In this paper, we continue to study symmetric rings and
related rings. First we consider properties and basic extensions of symmetric rings. We next
argue about the symmetry of some kinds of polynomial rings, and show that if R is a reduced
ring then R[z]/(z™) is a symmetric ring, where (z™) is the ideal generated by z™. Consequently,
we prove that for a right Ore ring R with @ its classical right quotient ring, R is symmetric if

and only if @ is symmetric.

2. Symmetric rings and related rings

We have the following lemma by [5, Proposition 1], while Anderson-Camillo proved the
result in [1, Theorem I.1].

Lemma 2.1 For a ring R the following statements are equivalent:

(1) R is symmetric;
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(2) For ri,ra,...,rn(n > 3) € R, mira---1rp = 0 implies 1,172y - - To(n) = 0 for any
permutation o of the set {1,2,...,n}.

Given a ring R and a bimodule g Mg, the trivial extension of R by M is the ring T (R, M) =
R & M with the usual addition and the following multiplication

(r1,m1)(r2, ma) = (rire, rima + myra).

This is isomorphic to the ring of all matrics < 6 T >, where r € R, m € M and the usual

matrix operations are used.

Proposition 2.2 Let R be a reduced ring. Then T(R, R) is a symmetric ring.

(62) (5¢) (5 1)ermn
o) (s D) (5 1)-o

Then ace = 0 and acf + ade + bce = 0. Since R is reduced, we have cae = cea = eac = 0, and

Proof Let

with

so 0 = ceacf + ceade + cebce = cebce, which implies (bee)? = 0, hence bee = 0 = cbe. Similarly,

we have ade = acf = 0 and so dae = caf = 0. Hence

(o) (8 a) (5 0)=>

Based on Proposition 2.2, we may conjecture that if a ring R is reduced, then

(1) T = 1(1)% g is symmetric.

a b c
(2) S = 0 a d a,b,c,d € R} is symmetric.
0 0 a

However the following example erases the possibility.

Example 2.3 Let R be a reduced ring. Then

(1) T= ( 1(1)% g ) is not symmetric. Because

(DD -
(G 2)ERED-( )

a,b,c,d € R} is not symmetric. We have that S is semicommu-

but

2) 8= 0
0

SIS U

a
0
tative but not reversible by [3, Proposition 1.2], so S is not symmetric.

<

Lemma 2.4 Symmetric rings are semicommutative.
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Example 2.3 shows that the converse of Lemma 2.4 is not true in general.

Lemma 2.5 The class of symmetric rings is closed under subrings and direct products.

The following example shows that if R is symmetric, then T (R, R) is not symmetric.

Example 2.6 Let H be the Hamilton quaternions over the real number field and R be the trivial
extension of H by H. Then R is symmetric by Proposition 2.2. Let S be the trivial extension
of R by R. However S = T(R, R) is not semicommutative by [3, Example 1.7], hence S is not
symmetric by Lemma 2.4.

One may suspect that R is a symmetric ring if for any symmetric nonzero proper ideal I
of R, R/I symmetric, where I is considered as a ring without identity. However the following
example erases the possibility.

S S

0o S
symmetric by Example 2.3. First notice that R has only the following nonzero proper ideals

0 s s s 0 S
ne(os)e=(00)e-(0 )

The following results are based on Lemma 2.5 and the result that division ring is clearly reduced

Example 2.7 Let S be a division ring and consider the ring R = ( ) Then R is not

ring.

(1) L = ( 8 g ) is not symmetric. Because

(o) (0 o))

but

a b c d e f
() o= (58) (0 §)en

with a8y = 0. Then ace = acf = 0 and so cae = caf = 0, hence Say = 0. Therefore, I is

symmetric. R/I5 is symmetric because R/Is = S.

(3) Is = ( 0 5 > We easily prove that I5 is symmetric and R/I3 is also symmetric by

0 O
R/I;~S@S.

But we have an affirmative answer if we take a stronger condition as follows.

Proposition 2.8 Suppose that R/I is a symmetric ring for some ideal I of a ring R, If I is

reduced then R is symmetric.

Proof Let a,b,¢c € R with abc = 0 and @ = a + I. Then abé = 0, which implies bac = 0 by

condition, and so bac € I. By R/I symmetric, we have that R/I is semicommutative. So R
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is semicommutative by [6, Theorem 6], hence abc = 0 implies acbc = 0 implies acbac = 0. So
bac = 0 and R is symmetric.

Dually, one may conjecture that if a ring R is symmetric then R/I is also symmetric for
any ideal I in R. However, according to [3, Example 2.1], let Z2 be the field of integers modulo 2
and A = Zo({ag, a1, az, by, b1, b, ¢) be the free algebra of polynomials with zero constant terms in
noncommutative indeterminates ag, a1, as, bg, b1, ba, c over Zo. I is the ideal of the ring Zs + A,

and generated by the following elements
agbo, apb1 + a1bo, agbs + a1b1 + azb0, a1b2 + azby, azba, agrbo, asrbs,

boag, boar + biag, boaz + biay + baag, bras + baay, baasz, borag, baras,
(ao —|— a1 —|— ag)T(bO —|— b1 —|— bg), (bo —|— bl —|— bQ)T(CLO —|— a1 —|— CLQ), and r171roT3Ty,

where 7,71, 79,173,174 € A. We have that (Zy + A)[z] is a domain and so clearly symmetric, but
the factor ring (Zo + A)[x]/I[z] & ((Z2 + A)/I)[z] is not semicommutative and so not symmetric.
Specially, I is an ideal of R that is an annihilator in R, the argument is true, and Proposition

1.14 (1) in [3] is the corollary of the following proposition.

Proposition 2.9 Let R be a symmetric ring and I be an ideal of R that is an annihilator in

R. Then R/I is a symmetric ring.

Proof Set I =rg(J) with J C R and 7 =7 + I. Let ab¢c = 0. Then abc € I and Jabc = 0, so

Jbac = 0 since R is symmetric. We have baé = 0 and hence R/I is symmetric.

Proposition 2.10 For a ring R the following statements are equivalent:
(1) R is symmetric;
(2) eR and (1 — e)R are symmetric for some central idempotent e of R;
(3) A~'R is symmetric, where A is a multiplicatively closed subset of R consisting of central

regular elements.

Proof It suffices to show (2)=(1) and (1)==(3) by Lemma 2.5.

(2)=(1). Suppose that eR, (1 — e)R are symmetric, then R is symmetric. Let a,b,c € R
with abc = 0. Then eabc = 0 and (1 — e)abc = 0, so we have ebac = 0 and (1 — e)bac = 0 by
supposition. Hence bac = ebac + (1 — e)bac = 0 and so R is symmetric.

(1)==(3). Let afy = 0 with a = u~ta,8 = v71b,y = w™'c, where u,v,w € A and
a,b,c € R. Since A is contained in the center of R, we have 0 = afy = v lav " 'bw lc =

u~ v lw labe and so abc = 0. But R is symmetric by condition, so bac = 0 and we have

Bay = v lbu " taw e = v lu'w bac = 0. Hence A~ R is symmetric.

3. Polynomial rings and classical quotient rings

In this section we are concerned with the symmetry of two important kinds of exten-

sions of symmetric rings. A ring R is called Armendariz if whenever polynomials f(z) =
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Sgaia’,g(x) = Y7 o bja’ € Rla] satisty f(x)g(z) = 0, then a;b; = 0 for each 4,5 (see [§]
for details). Reduced rings are Armendariz by [9, Lemma 1] and reduced rings are symmetric
by [1, Theorem 1.3]. Hence there may be relations between Armendariz rings and symmetric
rings. The ring of Laurent polynomials in x with coefficients in a ring R consists of all formal
sums >, m;x* with obvious addition and multiplication, where m; € R and k,n are (possibly

negative) integers. Denote it by R[z;z~1].
Lemma 3.1 For a ring R, R[] is symmetric if and only if R[x;x~1] is symmetric.

Proof By Lemma 2.5, it suffices to show the necessity. Let A = {1,z,22,...}. Then clearly A
is a multiplicatively closed subset of R[z]. From R[z;z~!] = A7'R[z] it follows that R[z;xz~!]

is symmetric by Proposition 2.10.

Proposition 3.2 Let R be an Armendariz ring. Then the following statements are equivalent:
(1) R is symmetric;
(2) R|z] is symmetric;

(3) Rlx;x~ 1] is symmetric.

Proof By Lemmas 2.5 and 3.1, it suffices to show (1)==(2). Let f(z) = Y/*,a;z’, g(x) =
> im0 bjz! h(z) = 22:0 cxx® € R[z] such that fgh = 0. Then since R is Armendariz, a;b;cy = 0
by [7, Proposition 1] for all 4,7, k. But R is symmetric so bja;c;, = 0 for all ¢, 5, k. Thereby,
gfh =0 and so R[z] is symmetric.

The following result, similar to [7, Theorem 5|, extends the class of symmetric ring, and

Theorem 2.5 in [3] is its corollary .

Theorem 3.3 If R is reduced ring, then R[x]/(z™) is a symmetric ring, where (z™) is the ideal

generated by z™.

Proof Let u = x + (2"). Then R[z]/(2") = R[u]. Set A = ap + a1u+ -+ + ap_1u" 1, B =
bo+biu+ -+ b, qu"t, C=co+ciu+--+cp1ut € R[u] such that ABC = 0. Notice
that a;bjcpu9tk =0 for all i + j + k > n. So it suffices to check the cases of i +j + k < n.
From ABC = 0, we have 0 = ABC' = Y"1 (Xit ks aibjeru') and so

> abjo=0, 1=0,1,...,n—1. (1)

it +h=l
Let I = 0. Then ¢ = j = k = 0. We have agbpcyp = 0 by (1). Inductively, we may assume that
abjcr, = 0since l =i+ j+k <n—1, and prove that a;bjc;, =0 sincel =i+j+k=n—1. Set
Q ={0,1,...,1}, with the usual order. Consider Q% = Q x Q x @ with the lexicographic order.
Set W = {(i,j, k) € Qi + j + k = 1}. Clearly, (0,0,1) € W is the minimal element of W. From

(1),
Z aibjck =0.

itj+k=1

Ifi > 1, then 0+ j+ %k <l =mn—1. Thus, by the assumption, agb;jc; = 0 implies bjcyag = 0.
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Hence

O:( Z aibjck)ao—l—( Z aobjck)aoz( Z aobjck)ao. (2)

i+jt+k=l 0+j+k=l 0+j+k=l
i>1

If j > 1, then 04 0+ k < I. Thus, by the assumption, apbpcr, = 0 implies cxapby = 0. From (2),

0= ( Z aobjck)aobo = (aobocl)aobo + ( Z aobjck)aobo = (aobocl)aobo.
jrk=l J+k=l

j=1
It follows that agboc; = 0. Now supposing that (r, s,t) € W such that a;bjc,, = 0 when (i, 7, k) €
W with (4,4, k) < (r,s,t), we will show a,.bsc; = 0. If we multiply (1) on the right side by a,.,
then

O:( Z aibjck)aT:( Z arbjck)ar—i-( Z aibjck)ar—i-( Z aibjck)ar.

i+jtk=l r+j+k=l it+j+k=l i+j+k=l
i<r i>r
If i <7, then (i,5,k) < (r,s,t). Thus, a;bjc,, = 0 by the assumption. If § > r, then r+j+k < [.

Thus, a,bjc; = 0 and so bjcia, = 0. Hence

( Z arbjck)aT:O. (3)

r+j+k=I

If we multiply (3) on the right side by b, then

0= ( Z arbjck)arbs = (a,bsct)arbs + ( Z aTbjck)aTbs + ( Z arbjck)arbs.

rjrk=l r+j+k=l r+j+k=l
J<s Jj>s

If j < s, then (r,j,k) < (r,s,t). If j > s, then r + s+ k < I. Thus a,bsc,, = 0 and so ¢xa,bs = 0.

Hence a,bsciarbs = 0 and so arbse; = 0. So we have shown that a;b;c;, = 0 when (4,5,k) € W.

By induction, a;bjc; = 0 for any i + 37+ k = 0,1,2,...,n — 1 and so bja;c; = 0. Therefore,
BAC =0. i.e., R[x]/(z™) is symmetric.

Proposition 2.2 can be a corollary of Theorem 3.3 since T'(R, R) = R[z]/(2?). A ring R

is called right Ore ring if given a,b € R with b regular there exist a1,b; € R with by regular

such that ab; = bay. It is well-known that R is a right Ore ring if and only if the classical right

quotient ring of R exists.

Theorem 3.4 Let R be a right Ore ring and () be the classical right quotient ring of R. Then

R is symmetric if and only if Q) is symmetric.

Proof By Lemma 2.5, it suffices to show the necessity. Let « = ab™!, 3 = cd™!,v = ef ~! with
afy = 0. By the assumption, for b, ¢ there exist by, ¢c; € R with by regular such that be; = ¢by and
b~le = clbfl; for d, e there exist dq, e; € R with d; regular such that de; = ed; and d~'e = eldfl;
for by, e; there exist by, ea € R with by regular such that bies = ejby and by 'e; = eaby . So
0=afy =ab ledlef ! = aclbl_leldl_lf’1 = aclegbz_ldl_lffl = (aciea)(fdiby)™1, which

implies acieas = 0. But, by the assumption, for d, a there exist ds, as € R with dy regular such that
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das = ady and d"la = agdgl; for b, e there exist bz, e3 € R with bs regular such that bes = ebs and
b~ le = €3b§1; for e3, ds there exist eq,dy € R with dy regular such that dses = esdy and d;leg =
ead;t. So fay = cd tabtef! = cagdz_legbglf’l = CCL264d4_1b3_1f71 = (cageq)(fbzdy) L.
Next we prove caseq = 0. The following computations are based on Lemma 2.1 and R symmetric.
Multiply acies = 0 on the left hand side by b, then 0 = bacies = abcies = acbies = byaces implies
aces = 0. Similarly multiply ace; = 0 on the left hand side by ds, then azces = 0; multiply
asces = 0 on the right hand side by b1, then asce; = 0; multiply asce; = 0 on the right hand side
by d, then asce = 0; multiply asce = 0 on the right hand side by b3, then asces = 0; multiply
asces = 0 on the right hand side by d4, then ascey = 0, and so casey = 0 implies Say = 0.

Hence @ is symmetric.
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