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Abstract: We first consider properties and basic extensions of symmetric rings. We next
argue about the symmetry of some kinds of polynomial rings, and show that if R is a reduced
ring then R[x]/(xn) is a symmetric ring, where (xn) is the ideal generated by xn and n is a
positive integer. Consequently, we prove that for a right Ore ring R with Q its classical right
quotient ring, R is symmetric if and only if Q is symmetric.
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1. Introduction

Throughout this paper, all rings are associative with identity, and n is a positive integer. A

ring R is called symmetric if abc = 0 implies bac = 0 for a, b, c ∈ R. Anderson-Camillo[1] took the

term ZC3 for this notion. A ring R is called reversible if ab = 0 implies ba = 0 for a, b ∈ R. A ring

R is called semicommutative if ab = 0 implies aRb = 0 for a, b ∈ R. Reduced rings (i.e., rings with

no nonzero nilpotent elements) are symmetric by [1, Theorem I.3], commutative rings are clearly

symmetric, symmetric rings are clearly reversible, and reversible rings are semicommutative by

[2, Proposition 1.3]. But these implications are irreversible by [1, 3], and symmetric rings without

identity need not be reversible by [4]. In this paper, we continue to study symmetric rings and

related rings. First we consider properties and basic extensions of symmetric rings. We next

argue about the symmetry of some kinds of polynomial rings, and show that if R is a reduced

ring then R[x]/(xn) is a symmetric ring, where (xn) is the ideal generated by xn. Consequently,

we prove that for a right Ore ring R with Q its classical right quotient ring, R is symmetric if

and only if Q is symmetric.

2. Symmetric rings and related rings

We have the following lemma by [5, Proposition 1], while Anderson-Camillo proved the

result in [1, Theorem I.1].

Lemma 2.1 For a ring R the following statements are equivalent:

(1) R is symmetric;
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(2) For r1, r2, . . . , rn(n ≥ 3) ∈ R, r1r2 · · · rn = 0 implies rσ(1)rσ(2) · · · rσ(n) = 0 for any

permutation σ of the set {1, 2, . . . , n}.

Given a ring R and a bimodule RMR, the trivial extension of R by M is the ring T (R, M) =

R
⊕

M with the usual addition and the following multiplication

(r1, m1)(r2, m2) = (r1r2, r1m2 + m1r2).

This is isomorphic to the ring of all matrics

(

r m
0 r

)

, where r ∈ R, m ∈ M and the usual

matrix operations are used.

Proposition 2.2 Let R be a reduced ring. Then T (R, R) is a symmetric ring.

Proof Let
(

a b
0 a

)

,

(

c d
0 c

)

,

(

e f
0 e

)

∈ T (R, R)

with
(

a b
0 a

) (

c d
0 c

) (

e f
0 e

)

= 0.

Then ace = 0 and acf + ade + bce = 0. Since R is reduced, we have cae = cea = eac = 0, and

so 0 = ceacf + ceade + cebce = cebce, which implies (bce)2 = 0, hence bce = 0 = cbe. Similarly,

we have ade = acf = 0 and so dae = caf = 0. Hence
(

c d
0 c

) (

a b
0 a

) (

e f
0 e

)

= 0.

Based on Proposition 2.2, we may conjecture that if a ring R is reduced, then

(1) T =

(

R R
0 R

)

is symmetric.

(2) S =











a b c
0 a d
0 0 a





∣

∣

∣

∣

∣

a, b, c, d ∈ R







is symmetric.

However the following example erases the possibility.

Example 2.3 Let R be a reduced ring. Then

(1) T =

(

R R
0 R

)

is not symmetric. Because

(

1 1
0 0

) (

1 1
0 −1

) (

0 0
0 1

)

= 0,

but
(

1 1
0 −1

) (

1 1
0 0

) (

0 0
0 1

)

=

(

0 1
0 0

)

6= 0.

(2) S =











a b c
0 a d
0 0 a





∣

∣

∣

∣

∣

a, b, c, d ∈ R







is not symmetric. We have that S is semicommu-

tative but not reversible by [3, Proposition 1.2], so S is not symmetric.

Lemma 2.4 Symmetric rings are semicommutative.
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Example 2.3 shows that the converse of Lemma 2.4 is not true in general.

Lemma 2.5 The class of symmetric rings is closed under subrings and direct products.

The following example shows that if R is symmetric, then T (R, R) is not symmetric.

Example 2.6 Let H be the Hamilton quaternions over the real number field and R be the trivial

extension of H by H. Then R is symmetric by Proposition 2.2. Let S be the trivial extension

of R by R. However S = T (R, R) is not semicommutative by [3, Example 1.7], hence S is not

symmetric by Lemma 2.4.

One may suspect that R is a symmetric ring if for any symmetric nonzero proper ideal I

of R, R/I symmetric, where I is considered as a ring without identity. However the following

example erases the possibility.

Example 2.7 Let S be a division ring and consider the ring R =

(

S S
0 S

)

. Then R is not

symmetric by Example 2.3. First notice that R has only the following nonzero proper ideals

I1 =

(

0 S
0 S

)

, I2 =

(

S S
0 0

)

, I3 =

(

0 S
0 0

)

.

The following results are based on Lemma 2.5 and the result that division ring is clearly reduced

ring.

(1) I1 =

(

0 S
0 S

)

is not symmetric. Because

(

0 1
0 1

) (

0 1
0 0

) (

0 0
0 1

)

= 0,

but
(

0 1
0 0

) (

0 1
0 1

) (

0 0
0 1

)

=

(

0 1
0 0

)

6= 0.

(2) I2 =

(

S S
0 0

)

. Let

α =

(

a b
0 0

)

, β =

(

c d
0 0

)

, γ =

(

e f
0 0

)

∈ I2

with αβγ = 0. Then ace = acf = 0 and so cae = caf = 0, hence βαγ = 0. Therefore, I2 is

symmetric. R/I2 is symmetric because R/I2
∼= S.

(3) I3 =

(

0 S
0 0

)

. We easily prove that I3 is symmetric and R/I3 is also symmetric by

R/I3
∼= S

⊕

S.

But we have an affirmative answer if we take a stronger condition as follows.

Proposition 2.8 Suppose that R/I is a symmetric ring for some ideal I of a ring R, If I is

reduced then R is symmetric.

Proof Let a, b, c ∈ R with abc = 0 and ā = a + I. Then āb̄c̄ = 0, which implies b̄āc̄ = 0 by

condition, and so bac ∈ I. By R/I symmetric, we have that R/I is semicommutative. So R
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is semicommutative by [6, Theorem 6], hence abc = 0 implies acbc = 0 implies acbac = 0. So

bac = 0 and R is symmetric.

Dually, one may conjecture that if a ring R is symmetric then R/I is also symmetric for

any ideal I in R. However, according to [3, Example 2.1], let Z2 be the field of integers modulo 2

and A = Z2〈a0, a1, a2, b0, b1, b2, c〉 be the free algebra of polynomials with zero constant terms in

noncommutative indeterminates a0, a1, a2, b0, b1, b2, c over Z2. I is the ideal of the ring Z2 + A,

and generated by the following elements

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2), and r1r2r3r4,

where r, r1, r2, r3, r4 ∈ A. We have that (Z2 + A)[x] is a domain and so clearly symmetric, but

the factor ring (Z2 +A)[x]/I[x] ∼= ((Z2 +A)/I)[x] is not semicommutative and so not symmetric.

Specially, I is an ideal of R that is an annihilator in R, the argument is true, and Proposition

1.14 (1) in [3] is the corollary of the following proposition.

Proposition 2.9 Let R be a symmetric ring and I be an ideal of R that is an annihilator in

R. Then R/I is a symmetric ring.

Proof Set I = rR(J) with J ⊆ R and r̄ = r + I. Let āb̄c̄ = 0. Then abc ∈ I and Jabc = 0, so

Jbac = 0 since R is symmetric. We have b̄āc̄ = 0 and hence R/I is symmetric.

Proposition 2.10 For a ring R the following statements are equivalent:

(1) R is symmetric;

(2) eR and (1 − e)R are symmetric for some central idempotent e of R;

(3) ∆−1R is symmetric, where ∆ is a multiplicatively closed subset of R consisting of central

regular elements.

Proof It suffices to show (2)=⇒(1) and (1)=⇒(3) by Lemma 2.5.

(2)=⇒(1). Suppose that eR, (1 − e)R are symmetric, then R is symmetric. Let a, b, c ∈ R

with abc = 0. Then eabc = 0 and (1 − e)abc = 0, so we have ebac = 0 and (1 − e)bac = 0 by

supposition. Hence bac = ebac + (1 − e)bac = 0 and so R is symmetric.

(1)=⇒(3). Let αβγ = 0 with α = u−1a, β = v−1b, γ = w−1c, where u, v, w ∈ ∆ and

a, b, c ∈ R. Since ∆ is contained in the center of R, we have 0 = αβγ = u−1av−1bw−1c =

u−1v−1w−1abc and so abc = 0. But R is symmetric by condition, so bac = 0 and we have

βαγ = v−1bu−1aw−1c = v−1u−1w−1bac = 0. Hence ∆−1R is symmetric.

3. Polynomial rings and classical quotient rings

In this section we are concerned with the symmetry of two important kinds of exten-

sions of symmetric rings. A ring R is called Armendariz if whenever polynomials f(x) =
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∑m

i=0 aix
i, g(x) =

∑n

j=0 bjx
j ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i, j (see [8]

for details). Reduced rings are Armendariz by [9, Lemma 1] and reduced rings are symmetric

by [1, Theorem I.3]. Hence there may be relations between Armendariz rings and symmetric

rings. The ring of Laurent polynomials in x with coefficients in a ring R consists of all formal

sums
∑n

i=k mix
i with obvious addition and multiplication, where mi ∈ R and k, n are (possibly

negative) integers. Denote it by R[x; x−1].

Lemma 3.1 For a ring R, R[x] is symmetric if and only if R[x; x−1] is symmetric.

Proof By Lemma 2.5, it suffices to show the necessity. Let ∆ = {1, x, x2, . . .}. Then clearly ∆

is a multiplicatively closed subset of R[x]. From R[x; x−1] = ∆−1R[x] it follows that R[x; x−1]

is symmetric by Proposition 2.10.

Proposition 3.2 Let R be an Armendariz ring. Then the following statements are equivalent:

(1) R is symmetric;

(2) R[x] is symmetric;

(3) R[x; x−1] is symmetric.

Proof By Lemmas 2.5 and 3.1, it suffices to show (1)=⇒(2). Let f(x) =
∑m

i=0 aix
i, g(x) =

∑n

j=0 bjx
j , h(x) =

∑l

k=0 ckxk ∈ R[x] such that fgh = 0. Then since R is Armendariz, aibjck = 0

by [7, Proposition 1] for all i, j, k. But R is symmetric so bjaick = 0 for all i, j, k. Thereby,

gfh = 0 and so R[x] is symmetric.

The following result, similar to [7, Theorem 5], extends the class of symmetric ring, and

Theorem 2.5 in [3] is its corollary .

Theorem 3.3 If R is reduced ring, then R[x]/(xn) is a symmetric ring, where (xn) is the ideal

generated by xn.

Proof Let u = x + (xn). Then R[x]/(xn) ∼= R[u]. Set A = a0 + a1u + · · · + an−1u
n−1, B =

b0 + b1u + · · · + bn−1u
n−1, C = c0 + c1u + · · · + cn−1u

n−1 ∈ R[u] such that ABC = 0. Notice

that aibjckui+j+k = 0 for all i + j + k ≥ n. So it suffices to check the cases of i + j + k < n.

From ABC = 0, we have 0 = ABC =
∑n−1

l=0

(
∑

i+j+k=l aibjckul
)

and so

∑

i+j+k=l

aibjck = 0, l = 0, 1, . . . , n − 1. (1)

Let l = 0. Then i = j = k = 0. We have a0b0c0 = 0 by (1). Inductively, we may assume that

aibjck = 0 since l = i + j + k < n− 1, and prove that aibjck = 0 since l = i + j + k = n− 1. Set

Q = {0, 1, . . . , l}, with the usual order. Consider Q3 = Q × Q × Q with the lexicographic order.

Set W = {(i, j, k) ∈ Q3|i + j + k = l}. Clearly, (0, 0, l) ∈ W is the minimal element of W . From

(1),
∑

i+j+k=l

aibjck = 0.

If i ≥ 1, then 0 + j + k < l = n − 1. Thus, by the assumption, a0bjck = 0 implies bjcka0 = 0.
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Hence

0 =
(

∑

i+j+k=l
i≥1

aibjck

)

a0 +
(

∑

0+j+k=l

a0bjck

)

a0 =
(

∑

0+j+k=l

a0bjck

)

a0. (2)

If j ≥ 1, then 0 + 0 + k < l. Thus, by the assumption, a0b0ck = 0 implies cka0b0 = 0. From (2),

0 =
(

∑

j+k=l

a0bjck

)

a0b0 = (a0b0cl)a0b0 +
(

∑

j+k=l
j≥1

a0bjck

)

a0b0 = (a0b0cl)a0b0.

It follows that a0b0cl = 0. Now supposing that (r, s, t) ∈ W such that aibjck = 0 when (i, j, k) ∈

W with (i, j, k) < (r, s, t), we will show arbsct = 0. If we multiply (1) on the right side by ar,

then

0 =
(

∑

i+j+k=l

aibjck

)

ar =
(

∑

r+j+k=l

arbjck

)

ar +
(

∑

i+j+k=l
i<r

aibjck

)

ar +
(

∑

i+j+k=l
i>r

aibjck

)

ar.

If i < r, then (i, j, k) < (r, s, t). Thus, aibjck = 0 by the assumption. If i > r, then r + j + k < l.

Thus, arbjck = 0 and so bjckar = 0. Hence

(

∑

r+j+k=l

arbjck

)

ar = 0. (3)

If we multiply (3) on the right side by bs, then

0 =
(

∑

r+j+k=l

arbjck

)

arbs = (arbsct)arbs +
(

∑

r+j+k=l
j<s

arbjck

)

arbs +
(

∑

r+j+k=l
j>s

arbjck

)

arbs.

If j < s, then (r, j, k) < (r, s, t). If j > s, then r + s + k < l. Thus arbsck = 0 and so ckarbs = 0.

Hence arbsctarbs = 0 and so arbsct = 0. So we have shown that aibjck = 0 when (i, j, k) ∈ W .

By induction, aibjck = 0 for any i + j + k = 0, 1, 2, . . . , n − 1 and so bjaick = 0. Therefore,

BAC = 0. i.e., R[x]/(xn) is symmetric.

Proposition 2.2 can be a corollary of Theorem 3.3 since T (R, R) ∼= R[x]/(x2). A ring R

is called right Ore ring if given a, b ∈ R with b regular there exist a1, b1 ∈ R with b1 regular

such that ab1 = ba1. It is well-known that R is a right Ore ring if and only if the classical right

quotient ring of R exists.

Theorem 3.4 Let R be a right Ore ring and Q be the classical right quotient ring of R. Then

R is symmetric if and only if Q is symmetric.

Proof By Lemma 2.5, it suffices to show the necessity. Let α = ab−1, β = cd−1, γ = ef−1 with

αβγ = 0. By the assumption, for b, c there exist b1, c1 ∈ R with b1 regular such that bc1 = cb1 and

b−1c = c1b
−1
1 ; for d, e there exist d1, e1 ∈ R with d1 regular such that de1 = ed1 and d−1e = e1d

−1
1 ;

for b1, e1 there exist b2, e2 ∈ R with b2 regular such that b1e2 = e1b2 and b−1
1 e1 = e2b

−1
2 . So

0 = αβγ = ab−1cd−1ef−1 = ac1b
−1
1 e1d

−1
1 f−1 = ac1e2b

−1
2 d−1

1 f−1 = (ac1e2)(fd1b2)
−1, which

implies ac1e2 = 0. But, by the assumption, for d, a there exist d2, a2 ∈ R with d2 regular such that
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da2 = ad2 and d−1a = a2d
−1
2 ; for b, e there exist b3, e3 ∈ R with b3 regular such that be3 = eb3 and

b−1e = e3b
−1
3 ; for e3, d2 there exist e4, d4 ∈ R with d4 regular such that d2e4 = e3d4 and d−1

2 e3 =

e4d
−1
4 . So βαγ = cd−1ab−1ef−1 = ca2d

−1
2 e3b

−1
3 f−1 = ca2e4d

−1
4 b−1

3 f−1 = (ca2e4)(fb3d4)
−1.

Next we prove ca2e4 = 0. The following computations are based on Lemma 2.1 and R symmetric.

Multiply ac1e2 = 0 on the left hand side by b, then 0 = bac1e2 = abc1e2 = acb1e2 = b1ace2 implies

ace2 = 0. Similarly multiply ace2 = 0 on the left hand side by d2, then a2ce2 = 0; multiply

a2ce2 = 0 on the right hand side by b1, then a2ce1 = 0; multiply a2ce1 = 0 on the right hand side

by d, then a2ce = 0; multiply a2ce = 0 on the right hand side by b3, then a2ce3 = 0; multiply

a2ce3 = 0 on the right hand side by d4, then a2ce4 = 0, and so ca2e4 = 0 implies βαγ = 0.

Hence Q is symmetric.V^`a�
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