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ABSTRACT

Two different two-dimensional models of the thermohaline circulation of the ocean have been used to study
the loss of stability of a thermally dominated symmetrical two-cell circulation. Although the models differ in
their momentum budget, their behavior was qualitatively similar: the symmetrical solution was found to lose its
stability at a critical strength of the salinity forcing with respect to two asymmetrical solutions that are mirror
images of each other. The supercritical pitchfork bifurcation that describes this process was calculated with a
numerical continuation technique. An analysis of the linear stability of the system yields an eigenfunction
structure that allows the identification of the processes causing the instability. For the current surface forcing
and parameter values that put the system in a thermal regime, this physical mechanism can be understood from
meridional advection of salt and heat anomalies alone. This explains why the phenomenon of symmetry breaking
is observed in such a wide range of studies and that model properties such as the choice of the convection

scheme are only of quantitative importance.

1. Introduction

The thermohaline circulation (THC) of the ocean
has been the subject of many studies the last few years.
Different models, covering a great range of complexity,
have been developed to study different aspects of this
type of circulation. A good overview is provided by
Weaver and Hughes (1992). Stommel (1961) discov-
ered an important property of thermohaline flow: it can
have multiple steady states. In his two-box model the
existence of this multiplicity seems tied to a (nonlin-
ear) meridional exchange of properties and dissimilar
forcing of temperature and salinity: the restoring co-
efficients for temperature and salinity must be different.
The model has no vertical structure, so vertical pro-
cesses (like convection) are not a necessary ingredient
to cause the multiplicity of steady states.

A situation for which vertical structure does seem to
be crucial has been described by Welander (1986). He
found that a two-box model, with one box mounted on
top of the other (rather than next to the other), can
exhibit self-sustained oscillations. The surface forcing
is of mixed boundary conditions type: the temperature
is restored and the salinity flux is specified. For a cer-
tain parameter setting, no steady state can be reached,
and the system flip-flops between two states in which
vertical mixing is dominated by either convection or
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diffusion. This periodic solution is absent in the Stom-
mel (1961) model, and its existence seems related to
the combined effects of mixed boundary conditions and
convective mixing.

If it is true that these simple box models have iden-
tified the essential physical processes that lead to mul-
tiple equilibria and periodic solutions, these processes
must also be present in more realistic models of the
THC. Following the box models in complexity are two-
dimensional, zonally averaged models. Indeed, the ef-
fect of an extra space dimension can be investigated as
an intermediate stage, before considering the complete
three-dimensional system. Several two-dimensional
models have been described in the literature. All of
these models have in common that the transport of heat
and salt is governed by the two-dimensional advec-
tion—diffusion equations. The models differ, however,
in the manner in which the momentum of the flow is
calculated.

In their model, Marotzke et al. (1988 ) assume a bal-
ance between the meridional pressure gradient and ver-
tical viscosity. In this model, it is indeed found that
under mixed boundary conditions two different steady
states are possible. These equilibria persist when the
convective adjustment scheme is switched off. Besides
creating regions with static instability, the major influ-
ence of this switching off is seen in the transitional
behavior from an unstable to a stable equilibrium: the
timescale of this transition is faster with convection
present, and oscillatory behavior is reported, which
seems to be absent in the case without convection. The
existence of the asymmetric equilibria themselves is
not affected. These results thus support the conclusions
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that can be drawn from the experiments with box mod-
els with respect to instabilities of the thermohaline
system.

A two-dimensional model that attempts to represent
the effect of the rotation of the earth on the momentum
balance has been formulated by Wright and Stocker
(1991). The Coriolis force exerts a torque that must be
parameterized in zonally averaged models. With a par-
ticular choice for this parameterization Wright and
Stocker (1991 ) have carried out similar experiments as
had been done by Marotzke et al. (1988), but now in
a context more related to the oceanic situation. In gen-
eral terms, the experiments of Wright and Stocker
matched those of Marotzke et al. and show the insta-
bility of the symmetric state obtained under restoring
boundary conditions, with respect to a change to mixed
boundary conditions. Differences between the two
models concern the spatial structure of the overturning
cells and the internal timescales of transitions. The ef-
fect of a different momentum budget on the dynamical
behavior seems not to be significant in the cases that
have been reported.

This conclusion is confirmed by yet another two-
dimensional model of the THC. Quon and Ghil (1992)
have used the two-dimensional Navier—Stokes equa-
tions for the momentum budget, from which the Corio-
lis force is absent. This moves their model away from
the oceanic situation. They report that, for a geometry
with an aspect ratio of 0.1, at a certain strength of the
salt flux the symmetrical two-cell solution becomes un-
stable with respect to an asymmetrical one-cell solu-
tion. By performing a series of time integrations they
were able to construct the diagram of the associated
pitchfork bifurcation. Thus again the same behavior is
found (multiple equilibria under mixed boundary con-
ditions).

So, experiments with different models suggest that
the loss of symmetry under mixed boundary conditions
is a generic property of thermohaline flow. It is desir-
able to assess how sensitive this process is for details
of the momentum budget and, if this sensitivity is
small, why this should be so. For that purpose we have
subjected two models to the same experiment: the
model formulated by Quon and Ghil (1992) and the
one by Wright and Stocker (1992). Both models were
forced by mixed surface boundary conditions, and the
strength of the salinity flux was varied.

Most large-scale ocean models apply a small aspect
ratio and hydrostatic approximation. In such models, a
parameterization must be implemented to mimic the
effect of nonresolved convective processes. To exam-
ine the influence of this parameterization on the process
of symmetry breaking, both models were modified on
that point. In their original formulation the models are
either nonhydrostatic (Quon and Ghil) or use the
‘‘complete mixing scheme’’ (Wright and Stocker). In
the present study, an implicit vertical diffusion scheme
(Marotzke 1991) has been included in the transport
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equations for heat and salt of both models. This choice
enables us to compare different parameterization
schemes (Wright and Stocker) and hydrostatic versus
nonhydrostatic effects (Quon and Ghil).

To perform such model analyses by time integration
is very time consuming. Moreover, unstable solutions
that connect branches of stable solutions cannot be
found in this way and must be guessed at. Therefore,
in this study a numerical continuation technique is used
with which one can calculate a branch of both stable
and unstable equilibrium solutions in parameter space.
We will construct bifurcation diagrams that give the
desired systematic answers to the following questions:
how many solutions exist for a certain parameter set-
ting, how are the solutions connected, what are their
stability properties and how do these change when a
model parameter is varied? This approach has already
been used to study low-dimensional systems, for ex-
ample, box-models like the one for the ocean—atmo-
sphere circulation by Wang and Birchfield (1992), as
well as more complicated systems like that of the wind-
driven circulation; see Speich et al. (1996). Only sta-
tionary and periodic solutions can be determined with
this technique, the transient solutions cannot.

The models are described in sections 2 and 3, the
numerical solution technique is described in section 4,
the experiments are shown in section 5, and an analysis
of the linear stability of the models is presented in sec-
tion 6. Conclusions and a discussion follow in sec-
tion 7.

2. The hydrostatic Navier—Stokes model
a. Equations and scaling

The model formulated in this section is based on the
Navier—Stokes (NS) equations simplified by the Bous-
sinesq approximation, the continuity - equation, the
transport equations for heat and salt, and a linear equa-
tion of state, all formulated on a nonrotating two-di-
mensional Cartesian frame. These equations also form
the basis of the model of Quon and Ghil (1992). How-
ever, there is an essential difference between their
model and the current one: the present model will ex-
ploit the smallness of the aspect ratio é that is so char-
acteristic for large-scale oceanic flow, typically
O(107?). This observation motivates why as a zeroth-
order approximation vertical accelerations that are of
O(6) can be neglected; that is, the hydrostatic approx-
imation will be applied to the vertical momentum equa-
tion. Quon and Ghil generally used an aspect ratio of
0.1 in their nonhydrostatic model. The model variables
are velocity v, w, temperature T, salinity S, density p
(constant reference density p,), and pressure § (where
the total pressure p is written as p = p — pogz). By
scale analysis it can be shown that for circulations on
a large spatial and temporal scale local accelerations
are negligible. The steady-state momentumn equations
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are used; that is, the velocity field follows diagnosti-
cally from the temperature and salinity fields. This step
does not affect the equilibrium solutions, and it is as-
sumed that even for unstable modes local accelerations
are unimportant:

v w 3”§=—i‘3—’§
- (%>g+Ahg;f+Av% (2)
o 3)
5(§;T)+U3(§;T)+w3(g,zT)
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We define 0 = (p — py)/po and introduce the fol-
lowing scaling to find the nondimensional equations
(primes denote dimensionless variables): t = L/Vt';
(v, w) =(V, VD/L)(v', w'); (y,2) = (L, D)(y', 2);
S_S()_—_-SS’T_T0=TT',0'=C¥TO";ﬁ
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With a combined viscous—diffusive velocity scale V
= (k,A,)'"*/L we apply this scaling to (1)—(5) to get
(omitting primes)
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As can be seen from the equation of state, S and 7 now
indicate fluctuations in the temperature and salinity
fields—that is, departures from the basic states, S,, and
To. The transport equations depend only on the gradi-
ents of § and T and are not affected by this re-definition.
In the above, the following dimensionless parameters
have been introduced:

6 = D/L: aspect ratio
Ra = gDaTL?/(x,A,): Rayleigh number
Pr= K,,_/A,, : frandtl number
Rs = BS/(aT): buoyancy ratio.
The factors that multiply the Prandtl number are

A, Ky
62Ah o Ta = 62Kh )

r, =

With typical values for the horizontal turbulent mixing
coefficients of 10> m? s~', 10™° m? s ! for the vertical
mixing coefficients, and a typical aspect ratio for the
large-scale circulation of 10~ we see that r, = r,
= 0(1). In (7) we take the limit § — 0, while Pr'/* is
assumed to be O(9) or bigger. The vertical momentum
equation thus simplifies (to zeroth order in 6) to the
hydrostatic balance:

9p
az

Finally, the number of unknowns can be reduced by
one if the pressure is eliminated. If (6) is differentiated
with respect to z and the hydrostatic equation (11) is
differentiated with respect to y, the two can be com-
bined to give

= —a.

(11)
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Solving (12) gives the baroclinic part of the flow. An
additional condition is needed to determine the baro-
tropic component, and thereby the complete flow. Con-
servation of mass gives this extra condition: for any
latitude y, the surface integral of the continuity equa-
tion over the area defined by [y, L] X [0, D] is ex-
pressed as a contour integral (using Green’s theorem).
It states that if no water is entering or leaving the basin,
there can be no net northward mass flux:
1
f v(y,2)dz =0 (13)
0
Equations (12) and (13) together fully determine the

flow field and form, together with (8), (9), and (10),
the NS model.
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b. Boundary conditions

The equations are solved on a rectangular geometry
with insulating vertical walls at y = %1, a flat bottom
at z = 0, and the sea surface at z = 1. The boundary
conditions that go with the equations of the hydrostatic
NS model are the following (in dimensionless form, n
defines the normal direction):

v=w=0 at z=0 (14)
@=o; w=0 a z=1 (15)
0z
v=QLv=O at y==*1 (16)
Oy
or oS
on om0 A 20 an
os .
—5Z—=#s(5*5*(}’))+QsQ§"()’) at z=1 (18)
oT

e pi(T = T*(y)) + Q@i (y) at z =1, (19)
where S*(y) and Q¥ (y) are O(1) shape functions of
the restoring salinity field and the salinity flux, respec-
tively. The same applies to the shape functions in the
boundary condition for the surface temperature. 0,
= Q,0D/(A,S) is the scaled amplitude of the salt flux,
similarly for the heat flux. The nondimensional restor-
ing coefficient y! follows from its dimensional coun-
terpart p,: pt = p,D/A,, similarly for y),. In the for-
mulation of the surface flux of salt and heat, the re-
storing coefficient y!, and flux strength Q,, allow the
use of restoring (¢/ # 0, O = 0) or flux boundary
conditions (' = 0, 0 # 0). Mixed boundary condi-
tions result if y! = 0, O, # 0, ) is “‘large,”” and
0, =0.

If the system is forced at the surface by a flux con-
dition on, say, salinity, the salinity field is determined
up to an additive constant. This is so because the model
does not depend on the density and salinity itself but
only on the respective gradients. One method of ob-
taining a unique solution would be to impose a global
salinity constraint. Since this involves a global integral
of the salinity field, which is very unattractive from a
computational point of view, we do not use this
method. Instead, out of the whole family of solutions
that satisfy the model equations one is selected where
the salinity in a certain point has a fixed value. Lest we
introduce any artificial asymmetry in the system, the
centermost point of the basin is chosen for this. If the
solution were calculated by means of time integration,
the initial condition would determine this salinity value.

c¢. Convection scheme

The hydrostatic approximation eliminates vertical
accelerations from the model. An implicit vertical dif-
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fusion scheme (IVD) has been used as a parameteriza-
tion for convective processes. It is assumed that con-
vective mixing causes a vertical homogenization of the
salinity and temperature fields in those areas where
stratification would be gravitationally unstable. In the
IVD parameterization this is achieved by letting the
strength of vertical diffusion of heat and salt strongly
increase if the vertical density gradient becomes posi-
tive (e.g., see Marotzke 1991). In view of the numer-
ical continuation method that will be used, this depen-
dence of the diffusion coefficient on density, although
strong, needs to be continuous. This can be realized if
the strength of convective mixing is modeled via a hy-
perbolic tangent. That is, we write in (9)

Ty Pr'? = rdPrl/2[1 + F(aO/az)] (20)

with

F(0ol07) = F0/2<1 + tanh[la—a]) .
a 0z

The strength of the convective mixing is measured by
the coefficient F,,. The slope of the shape function F at
neutral stability (do/0z = 0) is 1/a, thus indicating
that the smaller a is, the steeper the jump that separates
situations with and without convective activity. Due to
the finite value of a, convective adjustment near neutral
stability (0o /9z = 0) is not “‘perfect’’: weak instabil-
ities may survive and subcritical mixing for weakly sta-
ble stratifications occurs. Extremely steep jumps for
very small a greatly increase the numerical burden of
calculating solutions. In the experiments a = 0.1 and
Fy, = 6 is used.

3. The Wright and Stocker model
a. Equations

The equations that form the starting point of the
Wright and Stocker (1992, hereafter WS) model are
the zonally averaged geostrophic equations, the hydro-
static equation, the continuity equation, the transport
equations for heat and salt, and the equation of state.
For the scaling of all but the first two equations, the
reader is referred to section (2a) on the hydrostatic NS
model—the two models do not differ in that respect.
The WS model is formulated on a spherical coordinate
frame (N, 6, z). For the sake of brevity, the formulation
of the continuity equation and transport equations for
heat and salt on the spherical frame is omitted. It can
be found in Pedlosky (1987). The (dimensional ) mo-
mentum equations of the WS model are

1 1 AP
—2Qu sind = — — = 21
2Qw sind 2o 7o cosd AA (21)
10
-2 _ —-og. (22)
po aZ
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The notation is conventional; AP is the east—west pres-
sure difference, and AA the zonal width of the basin
(assumed constant). Equation (21) is differentiated
with respect to z, while the hydrostatic approximation
is applied to the east—west pressure difference. Com-
bining the results gives a thermal wind equation:

Ov g 1
—=2Q sinf — = ———— Ag.
s 9z  reAA cosé o

This equation is now scaled with the same scaling
quantities as the NS model, in section 2a, with the only
difference that for the horizontal length scale L the ra-
dius of the earth r, is chosen

—sind i = _gDal’ 1
0z 2QVr,AA cosé
Wright and Stocker (1992) postulate that the east—west
density difference Ao can be expressed in terms of the
north—south density gradient (dimensional as well as
nondimensional ) :

Ag. (23)

Jo
Ao = —eAA sin26 — .
o € AA sin2 20

From comparison with GCM results, typically the
tuning parameter ¢, is O(0.1). The usefulness of this
parameterization has been shown in different appli-
cations, for example, Wright and Stocker (1992),
Stocker et al. (1992), Harvey (1992), and Hovine
and Fichefet (1994). In a more rigorous analysis
based on vorticity dynamics Wright et al. (1995)
have demonstrated that a relation between the east—
west density difference and the zonally averaged
density exists, though generally a more complicated
one than that of (24). If (24) is inserted into the
thermal wind equation (23), one finds the relation
between the meridional velocity and the density field
that replaces (12):

(24)

@_ 1/2 ?£= Qg
aZ—ZeoPr ERaGG_BBG’

E is the Ekman number: E = A,/(2Qr3). The param-
eter B controls the strength of the forcing of the velocity
by the density field.

(25)

b. Boundary conditions

The boundary conditions on the temperature and sa-
linity field are identical to those for the hydrostatic NS
model and can be found in section 2b. The equation for
v (25) is first order in z. So, formally, only one con-
dition in the z direction can be imposed. As in section
2b, an integral form of the continuity equation provides
this condition:

1
f v(0, z) cosbdz = 0. (26)
0
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Equation (25) for v does not allow other boundary con-
ditions, such as one of no-normal flow at meridional
walls. At those points we demand that v be zero, a con-
dition to which the solution adapts through a boundary
layer that falls within the grid resolution and that is not
explicitly resolved. For the velocity field, we then have
the following set of boundary conditions:

v=0 at 6= %0,

w=0 at z=0 andat z=1.

Bottom stress (friction) and surface stress (wind
forcing) are neglected here. The latter could be in-
cluded either by imposing a vertical Ekman velocity at
the surface of the model (then representing the base of
the Ekman layer) or by distributing this stress over the
top (Ekman) layer of the model as a body force, like
in Wright and Stocker (1992).

4. Numerical solution procedure

The partial differential equations (8), (9), (12), and
(25) are discretized in space on an Arakawa C-grid
(see Arakawa and Lamb 1977), which ensures con-
servation of mass, salt, and heat. Central differences
have been used to calculate fluxes across cell bound-
aries. An equidistant Cartesian grid was used in the
experiments with the NS model and a spherical grid for
solving the equations of the WS model. This results in
a set of ordinary differential equations:

dq

+A(q,r;7)=0,
o A(q,r;7)=0Q

B(q,r;7)=R,, 27

where q is an n-dimensional vector that contains the
salinity and temperature at all grid points, the m-di-
mensional vector r contains the other model variables,
for which no time-derivatives occur: density and the
two velocity components. Here, 4 and B are two (non-
linear) operators: 4 : R"*” = R", B : R"*" = R™. They
model, among other things, advection and diffusion of
heat, salt, and momentum. The right-hand sides, (.,
and, R,, are inhomogeneous terms due to surface forc-
ing; 7 represents all model parameters, some of which
appear in the surface forcing Q. and R, . For a typical
experiment with a resolution of 40 X 20 grid points 7
= 1600 and m = 2400. If at a given parameter setting
Ty a steady-state solution (go, ro) of the system is
known, a new equilibrium can be calculated when one
of the parameters, for instance the Rayleigh number or
the strength of the salinity flux, is changed by a small
amount, (79 — 7,). Pseudo-arclength continuation is
used to calculate the new steady-state solution (q,, 7).
For a technical introduction to this numerical technigue
the reader is referred to Seydel (1988). This method
enables one to calculate a branch of equilibrium solu-
tions and detect bifurcation points at which the behav-
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TABLE 1. Parameter settings. e saltflux WS model - - - - - restoring profile
saltflux NS model
Parameter Value ) Surface forcing 12
5 107 1 ANt
Pr 2.25 1 \\ = //\ L1
Ra 5% 10° - N ST
E 4 %107 N 0.8
. ?0 n 0 \ / A
Tos Ty I\ A -_ ]
Rs 0.32 * 2\ ;A 0.6 @
a 0.1 o-1 . i 3
3 p ~ \ / 3 0.4 3
; N L0.2
7 ’ N . L
. o P - - M NN B )
ior and the stability of the system change. To assess the 260 -40  -20 0 20 40 60

linear stability of the solution (q,, r, ), suppose that we
perturb it by infinitesimal perturbations (6q, ér). They
satisfy the homogeneous equations:

dé
thﬂ-é(ql +6q, 1 +6r;7) =0

g(ql + 5q, r, + 51‘, T‘) = 0. (28)
If we assume that the perturbation is of the form &g
= 6§ exp(At), and similar for dr, then the linear sta-
bility of the equilibrium solution (g, r;) follows from
the linear eigenvalue problem:

N6G + Ly(84, 67) = 0

Lg(64, 67) = 0, (29)

where L, and L, denote the respective linearizations of
A and B at (gq,, ry, 7). The structure of the eigenfunc-
tion (4, #) at a bifurcation point gives information
about what perturbation critically results in a balance
between stabilizing and destabilizing effects. For more
details on the numerical continuation technique, how
to efficiently solve the eigenvalue problem, etc. the
reader is referred to Dijkstra et al. (1995), Speich et
al. (1996), or Seydel (1988).

5. Results

A comparison is made between two 2D models: the
Navier—Stokes model and the model by Wright and
Stocker. Both models experiments were performed
similar to the one described by Quon and Ghil (1992):
under mixed surface boundary conditions, the ampli-
tude Q, of the applied salt flux is varied. Although the
physical relevance of mixed boundary conditions is
questionable, they have nevertheless been used for the
purpose of comparison with earlier results. For the
same reason, the Rayleigh and Prandtl numbers are
given the same value as in the paper by Quon and Ghil
(1992): Ra = 5.10%, Pr = 2.25. These values result
when the following scales, viscosities, and diffusivities
are chosen:

Latitude (deg) ->
FiG. 1. The surface forcing for both models: the restoring profile
for S$* and T* is shown by the dashed—dotted line (right-hand axis).
The salinity fluxes Q ¥, diagnosed from this in the restoring boundary

conditions experiment, is shown by the solid (NS model) and the
dotted (WS model) lines (left-hand axis).

L=10°m; D=10m; g=10ms™ %

=10"* K, B=10"*(ppm)~;
T=25K; §=32ppm;
A, =47-10*m?s™!;
A, =47-102m?s ™.

Kk, = 10°m?s~;

kK, = 107" m?*s™!;

The geometrical scales are not precise but roughly
those of a schematic ocean. In the WS model the same
Prandtl numbers are used, together with ¢, = 0.3. Under
identical restoring boundary conditions the WS model
was tuned to yield a density distribution corresponding

Mixed boundary conditions
hydrostatic Navier-Stokes model

12 ey

08|
A 06
o 041

02}
0f

02t
0

Fic. 2. Bifurcation diagram of the Navier—Stokes model. Plotted
along the vertical axis is ¢: the value of the streamfunction in a point
at middepth at y = —0.85. Solid lines indicate linearly stable equi-
libria; the dotted line linearly unstable equilibria.
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to that of the NS model. This suggested B = 50, mean-
ing that E = 4 X 107*. The values of all nondimen-
sional parameters of the model are listed in Table 1.

The salt flux applied to both models was diagnosed
from a preliminary experiment. In this experiment, sur-
face salinity and surface temperature were relaxed to
the symmetrical idealized profile (Fig. 1):

S*(8) = T*(8) = 1/2(1 + cos38).

The profiles correspond roughly to the observed merid-
ional structure of sea surface temperature and salinity:
high at low latitudes and low at high latitudes. The
restoring coefficients p] and y;, see (18) and (19),
were set to 10 so that the surface temperature and sa-
linity are essentially fixed (‘‘restoring boundary con-
ditions’’). The salt fluxes diagnosed from this solution
are symmetrical and are also shown in Fig. 1. Note the
similarity between the fluxes of the two models.

a. Navier—Stokes model

The aspect ratio 6 of the large-scale ocean geometry
(6 = 107*) is much smaller than in the original paper
by Quon and Ghil (1992) (6§ = 107'). It is this small-
ness of § that motivated the hydrostatic approximation
of section (2a). In this zeroth-order equation ¢ itself,
obviously, does not appear any more. However, its fi-
nite magnitude is felt in the parameters r, and r, in the
transport equations (cf. section 2). If no salt flux is
applied, O, = 0, the solution is in a thermal regime and
consists of two symmetrical cells with downwelling at
high latitudes, where surface density is highest. If the
strength of the salt flux is increased from zero, the in-
tensity of the circulation diminishes. The salinity flux
has a structure that ‘‘introduces’’ salt through the sur-
face at low latitudes and ‘‘removes’’ salt at high lati-
tudes, thus opposing (and reducing) the density gra-
dient set by the surface temperature. This slows down
the flow, shown in the bifurcation diagram for the NS
model (Fig. 2). It shows ¢, a scalar measure for the
complete solution: the value of the streamfunction in a

point at mid-depth near the southern boundary. At 9, -

= 0.67 the symmetrical two-cell circulation becomes
unstable and two asymmetrical solutions branch off:
one with a dominant northern cell, represented by the
lower branch, and one with a dominant southern cell,
the upper branch. When Q, is increased further, the
dominant cell gains in strength, and the small cell dis-
appears completely. Two solutions are shown at O,
= 1: the symmetrical one (Fig. 3), which is linearly
unstable, and an asymmetrical one (Fig. 4), which is
linearly stable. The symmetrical one corresponds with
the solution obtained under restoring boundary condi-
tions. This accounts for the identical temperature and
salinity distributions in this case, Fig. 3c. Quon and
Ghil found similar behavior and similarly looking so-
lutions. Their value for the bifurcation point was dif-
ferent: Qs = 0.40. So, the absence of nonhydrostatic
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effects results in a circulation that is slightly (but not
dramatically) more stable. The most unstable eigen-
function (with eigenvalue zero) has been calculated in
the bifurcation point (Fig. 5). It will be discussed in
the next section, when it is compared with the eigen-
functions of the WS model.

Apparently the process of symmetry breaking is ro-
bust to the way in which vertical mixing of buoyancy
is described at different aspect ratios: either through
accelerations in the vertical momentum equation at a
small but finite aspect ratio or through a parameteriza-
tion based on the IVD scheme in the transport equations
in a hydrostatic context.

b. Wright and Stocker model

A comparison between the WS and hydrostatic NS
models will bring out whether details of the formula-
tion of the flow dynamics are of great importance to
the stability of the flow. Stated differently: does the

pitchfork bifurcation survive if the meridional momen-
tum equation (6) is replaced by a zonally averaged
variant of the geostrophic balance (25) as discussed in
section 3b. The surface salinity flux that has been di-
agnosed under restoring boundary conditions is shown
in Fig. 1 by the dashed line. The same experiment as
in the previous section has been carried out for the WS
model. The corresponding bifurcation diagram in Fig.
6 features ¢ again and indicates that the dynamical be-
havior of the WS model is quite similar to that of the
NS model. If no salt flux is applied, Q. = 0, the model
is in a thermal mode with two symmetrical circulation
cells. It becomes linearly unstable if 0, is increased to
1.07. The basic solution in the bifurcation point is
shown in Fig. 7. At that point the symmetrical solution
loses its stability, and two asymmetrical solutions
branch off in a subcritical pitchfork bifurcation. The
general features of the symmetrical and asymmetrical
solutions are much like that of the NS model. When
the dominant cell has grown to a size that occupies
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nearly all of the basin, a further increase of the salt flux
hardly alters the flow near its rising branch. This results
in ¢ (the streamfunction near the southern wall) show-
ing little dependence on Q, for the northern sinking
solution (the ‘‘flat’” part of the lower branch of
Fig. 6).

The bifurcation structure implies that the WS model
at this parameter setting is linearly stable to a switch
from restoring to mixed boundary conditions, at Q,

= I. That the bifurcation point need not always be sit-
uated below Q, = 1 is interesting : It means that a switch
from restoring to mixed boundary conditions is not nec-
essarily accompanied by loss of linear stability from
the (symmetrical) solution. For different forcing, a pa-
rameter setting that was less diffusive, and a different
convection scheme Wright and Stocker (1991) found
the symmetrical solution to be unstable for such a
switch. Thus, within the range of modeling uncertain-
ties (values for diffusivities, parameterization of con-
vection, etc.), it is feasible that the bifurcation point

can have a value of either more or less than unity. In
fact, it was found that, when vertical diffusivity was
quadrupled while everything else was unaltered, the
system becomes unstable for a switch since bifurcation
occurs at Q, = 0.9. The critical location of the bifur-
cation value can be observed in GCMs as well. The
circulation found by Bryan (1986), which he called
‘‘essentially equatorially symmetric’’ after the switch
and after a salinity perturbation, suggests a bifurcation
slightly below one: under the diagnosed flux 0, =1)
the system could be driven to one of the stable branches
by an asymmetric perturbation. Being so close to the
bifurcation point, at @, = 1 the asymmetrical features
must have been little developed.

Although the symmetrical solutions of the two mod-
els lose their stability for different values of the strength
of the salt flux, it is remarkable how robust this pitch-
fork bifurcation appears to be: with two 2D models that
have completely different momentum budgets the same
qualitative behavior is found under mixed boundary
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conditions. The qualitatively similar behavior, how-
ever, suggests that the essentials of symmetry breaking
of the thermally dominated circulation are not in the
dynamics, but can be deduced from the transport equa-
tions for heat and salt. This is in agreement with the
results of a study by Thual and McWilliams (1992),
in which advection of momentum was neglected alto-
gether but still a transition from symmetrical to asym-
metrical solutions was found. In the next section an
analysis of the linear instability of the symmetrical cir-
culation will be presented.:

6. Linear stability analysis

For both models the eigenfunctions that correspond
with the zero eigenvalue at the bifurcation were cal-
culated. These eigenfunctions consist of all five simu-
lated fields, that is, temperature, salinity, density, and
the two velocity components (Figs. 5 and 8). Since the
basic solutions satisfy the boundary conditions of sec-
tions 2b and 3b respectively, the eigenfunctions have
to satisfy the corresponding homogeneous boundary
conditions. In particular, the temperature eigenfunction
and the salinity flux must be zero at the surface. Since
all boundary conditions for the salinity eigenfunction
are of flux type, it is not uniquely determined. As with
the basic solution, one salinity field is selected that is
zero in a certain grid point. The eigenfunctions are de-
termined up to a multiplicative constant, as can be seen
from (29). Of course, the ratio of the five components
is fixed.

As was the case for the basic solutions, there is again
a strong qualitative similarity between the eigenfunc-
tions of both models. This essentially means that be-
yond the respective bifurcation point, the basic solution
of each model can be destabilized by infinitesimal per-
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turbations with similar spatial structures. An infinites-
imal perturbation to the basic solution in the bifurcation
point of for instance the WS model, which has the
structure of the eigenfunction of Fig. 8, will remain
stationary. Its interaction with the basic solution results
in a critical balance between stabilizing and destabiliz-
ing processes: the perturbation neither grows nor de-
cays. By looking at this interaction in some detail one
can learn about the cause of the symmetry breaking that
occurs if the perturbation were added at a slightly
higher value of Q,.

Suppose that we add to the basic solution (indicated
by subscripts 0) a salinity perturbation 6S that has the
shape of the salinity eigenfunction (Fig. 8c): that is, it
is nearly vertically homogeneous and has a monotonic
meridional gradient, weakening toward the high lati-
tudes. Forgetting for the moment about temperature ef-
fects, this salinity perturbation gives rise to a density
gradient that causes a velocity perturbation éu = (v,
éw) with roughly the shape of the one-cell circulation
of Fig. 8a. The two perturbation fields interact with the
basic solution to determine the time evolution of 6S
(quadratic perturbation terms are neglected):

068
— = —~| V- (8Suy) + V- (S;6u) — Pr'’2v?%5S
at —— ——

direct indirect

Diffusion will attempt to destroy the perturbation, so it
is particularly the two advective fields that interest us
here: this interaction of perturbation and basic solution
can enhance or impede the growth of the perturbation.
The first advective term represents the direct advection
of the perturbation by the basic solution (direct salt
feedback). Its meridional component is shown in Fig.
9a. The second advective term (indirect salt feedback)
describes the advection of the basic salinity field by the
velocity perturbation. Its meridional component is
shown in Fig. 9b. The vertical components of both
fluxes are either small themselves, or yield little con-
tribution to the divergence, when compared to the me-
ridional components, and are not shown. Regions
where the divergence of either flux is positive are in-
dicated by dark shading. Those regions where the di-
vergence is negative are marked by a light shade.
Regions with negligible divergence in the transport are
white.

Over much of the ‘‘Northern Hemisphere’s’’ surface
layer the direct salinity feedback will reduce 6S. Con-
sequently, the meridional gradient of the salinity per-
turbation, its main feature, will decrease here. The di-
rect feedback is thus found to have a stabilizing effect.
Due to the symmetry of both basic salinity S, and the
velocity perturbation éu, the indirect salinity feedback
is symmetrical around the equator. The divergence of
this field, however, is antisymmetrical and enhances
this gradient by increasing (decreasing) the salinity
perturbation over the whole Northern (Southern)
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FiG. 7. Basic solution of the Wright and Stocker model at 0, = 1.07: (a) streamfunction,
(b) density, (c) salinity, and (d) temperature.

Hemisphere. The indirect salinity feedback thus has a
destabilizing effect. At this parameter setting these two
fluxes, together with the diffusive fluxes (that have not
been discussed ), are critically at balance. A loss of sta-
bility can be expected if the indirect advective flux were
to gain in strength. It is important to remember that
during this interaction no salt is ‘‘lost”” or ‘‘gained’’
from the atmosphere, due to the no-flux condition.
Now we turn to the temperature perturbation. The
velocity perturbation interacts with the basic tempera-
ture T, to give a meridional heat transport 6vT, (Fig.
9c) that closely resembles the ‘‘indirect salinity trans-
port”” évS,. The corresponding vertical flux éwT, is
again an order of magnitude smaller and hardly con-
tributes to the divergence. This divergence gives rise
to a temperature perturbation 67 (Fig. 8d) that has a
quadrupole-like structure that is markedly different
from the salinity perturbation (Fig. 8c). Although the
transport equations for both fields are exactly the same,
the surface boundary conditions are different: zero per-
turbation salinity flux versus a zero perturbation tem-

perature. The latter condition inhibits the isotherms
from having a vertical intersection with the surface, like
they have at the bottom (no perturbation heat flux
through the bottom). The isohalines of 45, on the other
hand, intersect surface and bottom vertically. Note also
that the amplitude of the temperature perturbation is
two orders of magnitude smaller than the salinity per-
turbation. The buoyancy ratio density Ry (section 2a)
is set to 0.32 in this experiment. Because of this, the
effect of the perturbation temperature is enhanced and
the isopycnals do not run parallel to the isohalines.
However, the overall structure of the density as implied
by salinity remains, and only details of the velocity
field are changed by the temperature.

Now one may wonder what the role of temperature
is then in the whole process of symmetry breaking.
First, remember that the direct salinity feedback acts in
a stabilizing way. To reduce its influence the basic ve-
locity u, should be decreased. Since the flow is in a
thermally dominated regime, it is the reduced role of
temperature that makes that an increase of the salinity
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FiG. 8. Most unstable mode of the Wright and Stocker model in the bifurcation point: (a) perturbation streamfunction,
(b) perturbation density, (c) perturbation salinity, (d) perturbation temperature.

flux results in a smaller basic velocity other than just
increasing basic salinity. These two factors combine to
shift the balance between the direct and indirect advec-
tive salinity fluxes suggested above. In a point on the
symmetrical branch beyond the bifurcation (linearly
unstable solution), this is exactly what is found (see
Fig. 10). This figure shows the same interaction fields
at O, = 1.2.

That the salinity eigenfunction has a nearly ver-
tically homogeneous structure supports the view
that the onset for the loss of stability is not the mod-
ification of the surface salinity, and a resulting shut-
down of convection. Rather, this instability is trig-
gered by an advective process as described above.
It is consistent with reasoning by, for instance, Mar-
otzke et al. (1988).

With this mechanism, the factors that determine the
value for the bifurcation point can be understood.
Given a certain basic solution to which an infinitesimal
salinity perturbation is added. The velocity perturbation

that results from this should be strong enough to over-
come the stabilizing effect of the direct feedback to
bring about a loss of symmetry.

Can we then understand why the NS model can be
destabilized at a lower value of the salinity flux than
can the WS model? If we look in more detail to the
velocity eigenfunctions, we see that in the NS model
the perturbation streamfunction possesses reflection
symmetry with respect to the lines z = 1/ and y = 0
(Fig. 5a). Stated differently, the center of circulation
of the velocity eigenfunction lies in the center of the
basin. In the WS model, this eigenfunction has no sym-
metry of reflection around the line z = 1/2. The center
of circulation is shifted downward to approximately z
= 0.4 (Fig. 8). To guarantee a vanishing northward
mass flux, the meridional velocity in the upper part is
smaller than in the lower part. For the destabilizing role
of the indirect salinity advection this means that the
northward advection of salt in the upper half is com-
paratively weakened. So, for a given density pertur-
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bation, the WS model generates a less effective indirect
salinity feedback than the NS model, so that the latter
can be destabilized for a lower value of the salt flux,
or a stronger circulation of the basic solution.
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7. Conclusions

I have used two different models of a two-dimen-
sional thermohaline flow to study the impact of an in-
creased salt flux on a state that is thermally dominated.
The two models differ only in their momentum budget:
one model essentially represents a ndnrotating (verti-
cal) sheet of water with a very small aspect ratio. The
other model accounts for the Coriolis torque that acts
on the meridional plane when the system is subjected
to rotation. The two models further have the same fea-
tures, for example, the transport equations for heat and
salt and the implicit vertical diffusion scheme, which
removes static instability (convective adjustment). To
assess the influence of nonhydrostatic effects and as-
pect ratio one can compare the current results with
those of Quon and Ghil (1992).

With similar parameter settings the two models of
the present study were subjected to the same experi-
ment: under mixed boundary conditions, the strength
of the applied salt flux was increased from zero onward.
This experiment gives, in a systematic way, insight into
the behavior of the system when moving from a thermal
to a more haline but still thermally dominated regime.
The thermal solution consists originally of two sym-
metrical cells but becomes unstable at some critical
strength of the salt flux, and two new branches of asym-
metrical solutions emerge. Although the points of bi-
furcation differ in the two models, in a qualitative sense
they are identical. This is reflected in the structure of
the most unstable eigenfunction at the respective bi-
furcation points. When the current experiments with
the NS model and those described by Quon and Ghil
(1992) are compared, it appears that the loss of sym-
metry of the thermal circulation is affected only in a
quantitative way by nonhydrostatic effects at a larger
aspect ratio. This correspondence in the dynamical be-
havior of different models confirms the idea that, at
least in the thermal regime, the loss of symmetry is very
insensitive to the details of the momentum budget
(such as the presence of rotation) and can be under-
stood by examining the transport equations for heat and
salt. It also explains why the phenomenon of multiple
equilibria occurs in such a wide range of models—
Stommel’s (1961) box model, the different two-di-
mensional models (Marotzke et al. 1988; Wright and
Stocker 1991; Quon and Ghil 1992) and GCMs (Bryan
1986; Weaver et al. 1993 ) —as long as some advection
mechanism is present. Symmetry breaking does not de-
pend critically on the particular convection scheme that
is used.

In none of the experiments have we encountered any
periodic solutions. This obviously means that in this
part of parameter space a sustained oscillation is not an
equilibrium state of the system, neither stable nor un-
stable. It has been observed that the spinup run for a
model under restoring surface boundary conditions
ends in a *‘quasi steady’’ state, where intermittent con-
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vection causes small oscillations (e.g., see Bryan 1986;
Hovine and Fichefet 1994). Marotzke (1991) argued
that an (oscillating) numerical mode can be excited
with the ‘‘standard GFDL convection scheme.’” In the
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present steady-state experiments with the IVD param-
eterization scheme no such behavior has been found.
Different models appear to have periodic behavior un-
der steady mixed boundary conditions, for example,
Weaver et al. (1993) for a GCM under strong salinity
forcing and Wright and Stocker (1991) with a single-
hemispherical experiment with their model. However,
it is difficult to assess from time integration whether a
periodic solution is really an equilibrium or a transient
solution of the system.

With regard to periodic solutions, it is of interest
to follow the branches into the more salinity-domi-
nated regime where salinity and temperature effects
at a critical balance might cause periodic behavior.
This will give us an idea to the importance of zonal
extent or the choice of the convection scheme on pe-
riodic solutions. The behavior of the models at higher
Rayleigh numbers will have to be investigated. One
would expect that the behavior of the two models will
diverge qualitatively for an increasing Rayleigh
number. At a given density field, advection becomes
stronger, and differences in the velocity field will be-
come more pronounced. Finally, it is desirable to
couple the ocean to a more realistic, that is, active,
atmosphere. A surface boundary condition that al-
lows for variable atmospheric heat transport has been
found to increase stability of the thermohaline cir-
culation (Rahmstorf and Willebrand 1995), when
compared to an ocean forced by mixed boundary
conditions. Similarly, a more realistic freshwater flux
boundary condition (evaporation minus precipita-
tion) that in some way depends on sea surface tem-
perature has been shown to affect stability. In the
context of box models, Nakamura et al. (1994) dem-
onstrated a destabilizing effect. Stocker et al. (1992)
found that details of the parameterization of precip-
itation can strongly determine the attraction proper-
ties of a global ocean model. In a future study, atten-
tion will be given to both these issues. For analysis
of such simple coupled models the continuation tech-
nique provides a useful tool.
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