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Abstract

The existence of 9-variable Boolean functions having nonlinearity strictly greater
than 240 has been shown very recently (May 2006) by Kavut, Maitra and Yücel.
The functions with nonlinearity 241 have been identified by a heuristic search in the
class of Rotation Symmetric Boolean Functions (RSBFs). In this paper we efficiently
perform the exhaustive search to enumerate the 9-variable RSBFs having nonlinearity
> 240 and found that there are such functions with nonlinearity 241 only and there is
no RSBF having nonlinearity > 241. Our search enumerates 8×189 many 9-variable
RSBFs having nonlinearity 241. We further show that there are only two functions
which are different up to the affine equivalence. Towards the end we explain the
coding theoretic significance of these functions.

Keywords: Boolean Functions, Covering Radius, Reed-Muller Code, Nonlinearity,
Rotational Symmetry, Walsh Transform.

1 Introduction

The class of Rotation Symmetric Boolean functions has received a lot of attention in
terms of their cryptographic and combinatorial properties [4–10, 13, 17, 18, 21, 24, 25]. The
nonlinearity and correlation immunity of such functions have been studied in detail in [4,
10,13,17,18,24,25]. It is now clear that the RSBF class is extremely rich in terms of these
properties. As an important support of that very recently 9-variable Boolean functions
having nonlinearity 241 have been discovered [14] in the RSBF class, which has been open
for almost three decades. One should note that the space of the RSBF class is much smaller

(≈ 2
2n

n ) than the total space of Boolean functions (22n
) on n variables.

The Boolean functions attaining maximum nonlinearity are called bent [23] which oc-
curs only for even number of input variables n and the nonlinearity is 2n−1 − 2

n
2
−1. For
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odd number of variables n, the maximum nonlinearity (upper bound) can be at most
2b2n−2 − 2

n
2
−2c [12]. Before [14], the following results related to maximum nonlinearity

(actually attained) of Boolean functions have been known. In 1972 [1], it was shown that
the maximum nonlinearity of 5-variable Boolean functions is 12 and in 1980 [19] it was
proved that the maximum nonlinearity of 7-variable Boolean functions is 56. Thus for odd
n ≤ 7, the maximum nonlinearity of n-variable functions is 2n−1 − 2

n−1
2 . In 1983 [20],

Boolean functions on 15 variables having nonlinearity 16276 were demonstrated and using
this result one can show that for odd n ≥ 15, it is possible to get Boolean functions having
nonlinearity 2n−1 − 2

n−1
2 + 20 · 2n−15

2 . There was a gap for n = 9, 11, 13 and the maximum
nonlinearity known for these cases prior to [14] was 2n−1−2

n−1
2 . Very recently [14] Boolean

functions having nonlinearity 241 have been discovered which belong to the class of Rota-
tion Symmetric Boolean functions. The technique used to find such functions is a suitably
modified steepest-descent based iterative heuristic [13, 14].

As the functions could be found by heuristic search only [14], there is a serious need
to study the complete RSBF class of 9-variables for nonlinearity > 240. Given the nice
combinatorial structure of the Walsh spectra for RSBFs on odd number of variables [17],
such a search becomes feasible with considerable computational effort. The complete details
of the exhaustive search strategy is explained in Section 2 of this paper. The search shows
that the maximum nonlinearity of 9-variable RSBFs is 241. We exploit certain results
related to binary nonsingular circulant matrices and their variations to show that there are
actually two different 9-variable nonlinearity 241 functions in the 9-variable RSBF class
up to the affine equivalence. This is described in Section 3. As the maximum nonlinearity
issue of Boolean functions is related to the covering radius of first order Reed-Muller code,
we briefly outline the coding theoretic implications of our results in Section 4.

1.1 Preliminaries

A Boolean function on n variables may be viewed as a mapping from Vn = {0, 1}n into
{0, 1}. The truth table of a Boolean function f(x1, . . . , xn) is a binary string of length 2n,
f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)]. The Hamming weight
of a binary string S is the number of 1’s in S denoted by wt(S). An n-variable function
f is said to be balanced if its truth table contains an equal number of 0’s and 1’s, i.e.,
wt(f) = 2n−1. Also, the Hamming distance between equidimensional binary strings S1 and
S2 is defined by d(S1, S2) = wt(S1 ⊕ S2), where ⊕ denotes the addition over GF (2), i.e.,
XOR.

An n-variable Boolean function f(x1, . . . , xn) can be considered to be a multivariate
polynomial over GF (2). This polynomial can be expressed as a sum of products repre-
sentation of all distinct k-th order products (0 ≤ k ≤ n) of the variables. More precisely,
f(x1, . . . , xn) can be written as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn,

where the coefficients a0, aij, . . . , a12...n ∈ {0, 1}. This representation of f is called the
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algebraic normal form (ANF) of f . The number of variables in the highest order product
term with nonzero coefficient is called the algebraic degree, or simply the degree of f and
denoted by deg(f).

Functions of degree at most one are called affine functions. An affine function with
constant term equal to zero is called a linear function. The set of all n-variable affine
(respectively linear) functions is denoted by A(n) (respectively L(n)). The nonlinearity of
an n-variable function f is

nl(f) = ming∈A(n)(d(f, g)),

i.e., the minimum distance from the set of all n-variable affine functions.
Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to {0, 1}n and x · ω =

x1ω1⊕. . .⊕xnωn. Let f(x) be a Boolean function on n variables. Then the Walsh transform
of f(x) is a real valued function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)⊕x·ω.

In terms of Walsh spectrum, the nonlinearity of f is given by

nl(f) = 2n−1 − 1

2
max

ω∈{0,1}n
|Wf (ω)|.

The autocorrelation spectrum [22,26] of a Boolean function is also important to study
its usefulness in a cryptosystem.

Let α ∈ {0, 1}n and f be an n-variable Boolean function. The autocorrelation value of
the Boolean function f with respect to the vector α is

∆f (α) =
∑

x∈{0,1}n

(−1)f(x)⊕f(x⊕α),

and the absolute indicator is

∆f = max
α∈{0,1}n,α 6=(0,...,0)

|∆f (α)|.

A function is said to satisfy PC(k), if

∆f (α) = 0 for 1 ≤ wt(α) ≤ k.

1.2 Rotation Symmetric Boolean Functions

To save space we refer to [25] for basic definitions related to Boolean functions. Let
xi ∈ {0, 1} for 1 ≤ i ≤ n. For some integer k ≥ 0 we define ρk

n(xi) as ρk
n(xi) = xi+k mod n,

with the exception that when i+k ≡ 0 mod n, then we will assign i+k mod n by n instead
of 0. This is to cope up with the input variable indices 1, . . . , n for x1, . . . , xn.
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Let (x1, x2, . . . , xn−1, xn) ∈ Vn. Then we extend the definition as

ρk
n(x1, x2, . . . , xn−1, xn) = (ρk

n(x1), ρ
k
n(x2), . . . , ρ

k
n(xn−1), ρ

k
n(xn)).

Hence, ρk
n acts as k-cyclic rotation on an n-bit vector. A Boolean function f is called

rotation symmetric (RSBF) if for each input (x1, . . . , xn) ∈ {0, 1}n,

f(ρk
n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ k ≤ n− 1.

That is, the rotation symmetric Boolean functions are invariant under cyclic rotation of
inputs. The inputs of a rotation symmetric Boolean function can be divided into orbits so
that each orbit consists of all cyclic shifts of one input. An orbit is generated by

Gn(x1, x2, . . . , xn) = {ρk
n(x1, x2, . . . , xn)|1 ≤ k ≤ n}

and the number of such orbits is denoted by gn. Thus the number of n-variable RSBFs is
2gn . Let φ(k) be Euler’s phi -function, then it can be shown by Burnside’s lemma that (see
also [24]) gn = 1

n

∑
k|n φ(k) 2

n
k .

An orbit is completely determined by its representative element Λn,i, which is the
lexicographically first element belonging to the orbit [25]. These representative elements
are again arranged lexicographically as Λn,0, . . . , Λn,gn−1. In [25] it was shown that the
Walsh transform takes the same value for all elements belonging to the same orbit, i.e.,
Wf (u) = Wf (v) if u ∈ Gn(v). In analyzing the Walsh spectra of RSBFs, the nA matrix
has been introduced [25]. The matrix nA is defined as nAi,j =

∑
x∈Gn(Λn,i)

(−1)x·Λn,j , for
an n-variable RSBF. Using this gn × gn matrix, the Walsh spectra for an RSBF can be
calculated as Wf (Λn,j) =

∑gn−1
i=0 (−1)f(Λn,i)

nAi,j.

2 Search Algorithm

In this section we present the search algorithm that exhausts the 9-variable RSBFs having
nonlinearity > 240. To understand the search method, we first need to study the structure
of nA under some permutation of the orbit leaders as explained in [17].

2.1 Structure of nA [17] for n odd

The structure of nA has been studied in detail for odd n in [17]. Instead of ordering
the representative elements in lexicographical manner, the ordering was considered in a
different way to get better combinatorial structures. Define Λ̂n,i as the representative
element of Gn(x1, x2, . . . , xn) that contains complement of Λn,i. For odd n, there is a
one-to-one correspondence between the classes of even weight Λn,i’s and the classes of

odd weight Λn,i’s by Λn,i → Λ̂n,i. Hence, the set of orbits can be divided into two parts
(of same cardinality) containing representative elements of even weights and odd weights
respectively.
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Let us consider the ordering of the representative elements in the following way. First
the representative elements of even weights are arranged in lexicographical order and they
are termed as Λn,i, for i = 0 to gn

2
−1). Then the next gn

2
representative elements correspond

to the complements of the even weight ones, i.e., these are of odd weights. These are
recognized as Λn,i = Λ̂n,i− gn

2
for i = gn

2
to gn− 1. Thus following [17], the matrix nA needs

to be reorganized. The resulting matrix is denoted by nAπ, which has the form [17]

nAπ =

(
nH nH
nH −nH

)
,

where nH is a sub matrix of nAπ. Using this matrix nAπ, the authors of [17] showed that
Walsh spectra calculation could be reduced by almost half of the amount compared to [25].

Given the new ordering of Λn,i’s, we represent two strings

µf = ((−1)f(Λn,0), . . . , (−1)
f(Λn,

gn
2 −1)

) and νf = ((−1)
f(Λn,

gn
2

)
, . . . , (−1)f(Λn,gn−1))

corresponding to an n-variable RSBF f . Note that µf , νf are vectors of dimension gn

2
.

Let us now consider the vectors uf = µf nH, vf = νf nH. Then the Walsh spectra
values of f will be (uf [i]+vf [i]) for the first gn

2
many representative elements (which are of

even weights) and (uf [i] − vf [i]) for the next gn

2
many representative elements (which are

of odd weights).

2.2 Walsh Spectra of 9-variable RSBFs having nonlinearity > 240

Let us start with a technical result which is easy to prove.

Proposition 1 Let a, b and M be three integers with M > 0. Then |a+b| ≤ M , |a−b| ≤ M
iff |a|+ |b| ≤ M .

The matrix 9Aπ for 9-variable RSBFs is a 60 × 60 matrix, as the number of distinct
orbits is 60. The matrix 9H is a 30× 30 matrix.

For an RSBF f on 9 variables, which has nonlinearity strictly greater than 240, the
values in the Walsh spectrum are in the range [−30, 30]. Thus for a pattern µf ||νf , one must
get |uf [i] + vf [i]| ≤ 30 and |uf [i] − vf [i]| ≤ 30; using Proposition 1, these two conditions
are equivalent to |uf [i]|+ |vf [i]| ≤ 30 for 0 ≤ i ≤ g9

2
− 1 = 29.

Thus one needs to find a 9-variable RSBF f (represented by a 60-bit vector µf ||νf )
such that |uf [i]|+ |vf [i]| ≤ 30 for 0 ≤ i ≤ 29. By a naive method this requires to exhaust
the search space of 260, i.e., generating all the µf ||νf patterns and then checking whether
the condition |uf [i]|+ |vf [i]| ≤ 30 is satisfied for 0 ≤ i ≤ 29 for each of such patterns.

Next we present an efficient method for this. Note that if we look at the patterns µf and
νf separately, then each of these patterns must satisfy the necessary conditions |uf [i]| ≤ 30
and |vf [i]| ≤ 30 respectively for 0 ≤ i ≤ 29. Thus we first search for all the patterns µf ’s
such that |uf [i]| ≤ 30 for 0 ≤ i ≤ 29. Let us denote the set of such patterns by S. This
search requires checking for 229 such patterns by fixing µf [0] = (−1)0 = 1. The reason why
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we fix uf [0] is presented in Proposition 2 and the discussion after it. In a computer with
the specification 3.6 Ghz Intel Xeon and 4 GB RAM, it took little less than half an hour
to generate the file containing all these patterns and it contains 24037027 many records,
i.e., |S| = 24037027. Note that 224 < 24037027 < 225.

Clearly the search for all the patterns νf ’s such that |vf [i]| ≤ 30 for 0 ≤ i ≤ 29 will
produce the same set S. Hence the search for µf ||νf with the property |uf [i]|+ |vf [i]| ≤ 30
for 0 ≤ i ≤ 29 requires choosing any two patterns µf , νf from S and checking them. To
explain how we select two patterns, we first need to present the following technical result.

Proposition 2 Consider a 9-variable RSBF f which is represented as µf ||νf such that
|uf [i]|+ |vf [i]| ≤ 30 for 0 ≤ i ≤ 29. Consider the functions g such that any of the following
holds:

1. µg = µf , νg = νc
f , i.e., g(x1 . . . x9) = f(x1, . . . , x9)⊕ l9,

2. µg = µc
f , νg = νf , i.e., g(x1 . . . x9) = f(x1, . . . , x9)⊕ l9 ⊕ 1,

3. µg = µc
f , νg = νc

f , i.e., g(x1 . . . x9) = f(x1, . . . , x9)⊕ 1,

4. µg = νf , νg = µf , i.e., g(x1 . . . x9) = f(1⊕ x1, . . . , 1⊕ x9),

5. µg = νf , νg = µc
f , i.e., g(x1 . . . x9) = f(1⊕ x1, . . . , 1⊕ x9)⊕ l9,

6. µg = νc
f , νg = µf , i.e., g(x1 . . . x9) = f(1⊕ x1, . . . , 1⊕ x9)⊕ l9 ⊕ 1,

7. µg = νc
f , νg = µc

f , i.e., g(x1 . . . x9) = f(1⊕ x1, . . . , 1⊕ x9)⊕ 1,

where l9 = x1 ⊕ x2 . . .⊕ x8 ⊕ x9, the rotation symmetric linear function containing all the
variables. Then |ug[i]|+ |vg[i]| ≤ 30 for 0 ≤ i ≤ 29.

Thus from a single 9-variable RSBF f one can get 8 many (including f) RSBFs having
the same nonlinearity. This is the reason we fix µf [0] = 1. We initially check that repeating
a pattern from S twice (i.e., µf ||νf , when νf = µf ) one can not satisfy the condition
|uf [i]|+ |vf [i]| ≤ 30 for 0 ≤ i ≤ 29. Thus one requires

(
24037027

2

)
= 288889321480851 many

pairs to check. Note that 248 < 288889321480851 < 249.
We first apply a sieving method to reduce the size of S. The idea is to fix some t,

0 ≤ t ≤ 29 and list all the µf patterns from S such that |uf [t]| = 30 and store them in
the set S30,t. Similarly, we form the set S0,t consisting of νf patterns from the same set S
such that |vf [t]| = 0. Then we choose each of the µf patterns from S30,t and each of the
νf patterns from S0,t. If for some µf and νf , the condition |uf [i]| + |vf [i]| ≤ 30 for all i
such that 0 ≤ i ≤ 29 holds, then µf ||νf is a 9-variable RSBF having nonlinearity 241. We
store these RSBFs with nonlinearity 241 and update S by S \ S30,t as the elements of S30,t

when considered as µf , can not be attached with any νf of S except the elements of S0,t

to generate an RSBF having nonlinearity > 240.
We do this by fixing t taking all integers in [0, 29]. The result found is presented

in the following table. Before running the algorithm we like to note the following two
observations.
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1. For t = 28, in the set S, there is no µf such that |uf [28]| ≤ 2. Thus we initially
remove all the µf patterns such that 28 ≤ |uf [28]| ≤ 30. This reduces the number of
patterns in S from 24037027 to 18999780.

2. For t = 0, in the set S, there is no µf such that |uf [0]| = 30. Thus we do not consider
this.

t |S30,t| |S0,t| # of µf ||νf such that nl(f) = 241

29 747073 37584 0
15 552651 77328 27
1 687215 37584 0
27 613686 37584 0
26 542078 37584 0
24 597941 37584 0
16 531456 37584 0
4 545152 37584 0
2 514474 37584 0
19 495350 37584 0
12 464475 37584 0
5 408014 37584 0
14 385125 37584 0
13 364029 37584 0
8 338321 37584 0
23 320685 37584 0
20 272767 37584 0
6 255915 37584 0
10 237525 37584 0
17 222237 37584 0
9 206952 37584 0
21 192113 37584 0
3 132406 77328 27
7 126821 77328 27
11 121290 77328 27
18 115705 77328 27
25 110174 77328 27
22 104643 77328 27

Table 1: Initial search result for 9-variable RSBFs having nonlinearity > 241.

In Table 1, we try to fix t such that more number of rows can be removed by lesser
search, however this is done only by observation and no specific strategy is involved here.
That is the reason the indices in the table are not in order. We find 7 × 27 = 189 many
RSBFs by this method and hence following Proposition 2, we get 8× 189 many 9-variable
RSBFs having nonlinearity 241. Thus after this experiment the set S is reduced to 9540580
elements which is less than half of its initial size 24037027. The experiment requires little
more than a day in a PC having 3.6 Ghz Intel Xeon and 4 GB RAM.

Then we go for exhaustive search by taking any two patterns in
(
9540580

2

)
ways. Note

that 245 <
(
9540580

2

)
< 246. We use 20 computers in parallel that work for 30 hours to check

this and we do not find any other function having nonlinearity > 240. The specification of
computers are 2.8 GHz Pentium IV with 256 MB RAM.

Thus we have the following result.

Theorem 1 There are 8 × 189 many 9-variable RSBFs having nonlinearity 241 and this
is the highest nonlinearity for the 9-variable RSBF class.

Now let us present the Walsh spectra of the 189 functions available from Table 1 and
interestingly all of them are same.
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Wf (ω) -30 -22 -14 -6 2 10 18 26
# of ω’s 127 27 36 18 55 39 54 156

Table 2: Walsh spectra of the functions found in Table 1.

We found two classes of functions out of them (63 functions in one class and rest in
another class) having different autocorrelation spectra as follows.

∆f (ω) -52 -44 -36 -20 -12 -4 4 12 28
# of nonzero ω’s 9 9 9 18 81 85 198 81 21

∆f (ω) -76 -36 -28 -20 -12 -4 4 12 20 28
# of nonzero ω’s 1 9 18 36 81 135 108 54 48 21

Table 3: Autocorrelation spectra of the functions found in Table 1.

Thus it is expected that the 189 functions found in Table 1 are linear transformations
of two different functions up to affine equivalence and we justify this in the next section.

3 Affine equivalence of RSBFs having nonlinearity

241

Given two Boolean functions f, g on n variables, we call them affinely equivalent if there
exist a binary nonsingular n × n matrix A, two n-bit binary vectors b, d and a binary
constant c such that g(x) = f(xA⊕ b)⊕d ·x⊕ c. Thus it is clear that given the function f
in Proposition 2, all the other seven functions are affinely equivalent to f . In this section
we will try to find out affine equivalence among the 189 functions available from Table 1.

Given (a1, . . . , an) ∈ {0, 1}n, the n × n circulant matrix generated by (a1, . . . , an) is
given by

C(a1, a2, . . . , an) =


a1 a2 a3 . . . an

an a1 a2 . . . an−1

an−1 an a1 . . . an−2
...

...
a2 a3 a4 . . . a1

.

The determinant of the matrix C(a1, a2, . . . , an) is given by

det[C(a1, a2, . . . , an)] =
n−1∏
i=0

(a1 + a2ωi + a3ω
2
i + . . . + anω

n−1
i ),
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where ωi’s (0 ≤ i ≤ n− 1) are the n-th roots of unity. In particular we denote ω0 = 1. We
are interested in the binary circulant matrices which are nonsingular.

Proposition 3 Let α, β ∈ {0, 1}n such that α ∈ Gn(β) and A be an n × n nonsingular
binary circulant matrix. Then αA ∈ Gn(βA).

Proof: As α ∈ G(β), we have α = ρk(β), for some k such that 0 ≤ k < n. It is also clear
that the columns A1, A2, . . . , An of the matrix A = C(a1, a2, . . . , an) are cyclic shift of each
other, precisely, Aj = ρj−1(A1). Now,

βA = (βA1, βA2, βA3, . . . , βAn)
= (βA1, βρ1(A1), βρ2(A1), . . . , βρn−1(A1))
= (βA1, ρn−1(β)A1, ρn−2(β)A1, . . . , ρ1(β)A1)

Again,

αA = (αA1, αA2, αA3, . . . , αAk+1, αAk+2, . . . , αAn)
= (αA1, ρ

n−1(α)A1, ρ
n−2(α)A1, . . . , ρ

n−k(α)A1, ρ
n−k−1(α)A1, . . . , ρ

1(α)A1)
= (ρk(β)A1, ρ

n−1(ρk(β))A1, ρ
n−2(ρk(β))A1, . . . , ρ

n−k(ρk(β))A1,
ρn−k−1(ρk(β))A1, . . . , ρ

1(ρk(β))A1)
= (ρk(β)A1, ρ

n−1+k(β)A1, ρ
n−2+k(β)A1, . . . , ρ

n−k+k(β)A1,
ρn−k−1+k(β)A1, . . . , ρ

1+k(β)A1)
= (ρk(β)A1, ρ

k−1(β)A1, ρ
k−2(β)A1, . . . , βA1, ρ

n−1(β)A1, . . . , ρ
k+1(β)A1)

This shows αA ∈ Gn(βA).

Proposition 4 Let f(x) be an n-variable RSBF and A be an n × n nonsingular binary
circulant matrix. Then f(xA) is also an RSBF.

Proof: Let g(x) = f(xA). Consider x1, x2 ∈ Gn(Λ). Now g(x1) = f(x1A) and g(x2) =
f(x2A). As x1A, x2A ∈ Gn(ΛA) (from Proposition 3) and f is an RSBF, g(x1) = f(x1A) =
f(x2A) = g(x2). Thus g is also an RSBF.

We have enumerated all the 21 distinct nonsingular binary circulant 9× 9 matrices up
to equivalence corresponding to the row permutations. Based on Proposition 4 we first
try to identify whether one of the 189 functions found in Table 1 are affinely equivalent
to another function using any of these 21 matrices. We find that this is indeed true and
the 189 functions can be divided into 9 classes each containing 21 functions. One example
matrix used for this purpose is as follows:

A = C(0, 0, 0, 1, 0, 1, 1, 1, 1) =



0 0 0 1 0 1 1 1 1
1 0 0 0 1 0 1 1 1
1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1
1 1 1 1 0 0 0 1 0
0 1 1 1 1 0 0 0 1
1 0 1 1 1 1 0 0 0
0 1 0 1 1 1 1 0 0
0 0 1 0 1 1 1 1 0


.

9



Given one function f(x), the other functions are generated as f(xA), f(xA2), . . . , f(xA20)
(in each class containing 21 functions). There are 9 such classes containing 21 functions each
and the functions in each class are affinely equivalent. Now let us take one function from
each of the 9 classes. Out of these nine functions, three functions follow the autocorrelation
spectra presented in the top one of Table 3 and six functions follow the autocorrelation
spectra presented in the bottom one of Table 3. However, using these 21 matrices no
further affine equivalence could be achieved.

Thus we need to concentrate on some larger class of nonsingular matrices than the bi-
nary circulant matrices. We study the matrices whose rows are certain kinds of permutation
of the rows of binary circulant matrices. Note that if a circulant matrix is nonsingular,
then by making the permutation of rows the nonsingularity will not be disturbed. In a
circulant matrix we start with a row and then rotate the row one place (we use the right
rotation in this paper) to generate the next row. Instead, given the first row, we may go
for i-rotation where i, n are coprime.

Let us define Ci(a1, a2, . . . , an) as the matrix obtained by taking (a1, a2, . . . , an) as the
first row and other rows are the i-rotations of (a1, a2, . . . , an), i.e., Ci(a1, a2, . . . , an) =

a1 a2 a3 . . . an

an+1−i an+2−i an+3−i . . . an+n−i

a2n+1−2i a2n+2−2i a2n+3−2i . . . a2n+n−2i
...

...
a(n−1)n+1−(n−1)i a(n−1)n+2−(n−1)i a(n−1)n+1−(n−1)i . . . a(n−1)n+1−(n−1)i

.

Proposition 5 Let α, β ∈ {0, 1}n such that α ∈ Gn(β). Let B be a nonsingular matrix,
B = Ci(a1, a2, . . . , an), where n and i are coprime and (a1, a2, . . . , an) ∈ {0, 1}n. Then
αB ∈ Gn(βB).

Proof: As α ∈ G(β), then α = ρk(β), for some k such that 1 ≤ k < n. It is also clear
that the columns B1, B2, . . . , Bn of the matrix B = Ci(a1, a2, . . . , an) are i-cyclic shift of
each other, precisely, Bj = ρ(j−1)iB1. Now,

βB = (βB1, βB2, βB3, . . . , βBn)
= (βB1, βρi(B1), βρ2i(B1), . . . , βρ(n−1)i(B1))
= (βB1, ρn−i(β)B1, ρn−2i(β)B1, . . . , ρi(β)B1)

Again,
αB = (αB1, αB2, αB3, . . . , αBn)

= (αB1, ρ
n−i(α)B1, ρ

n−2i(α)B1, . . . , ρ
i(α)B1)

= (ρk(β)B1, ρ
n−i(ρk(β))B1, ρ

n−2i(ρk(β))B1, . . . , ρ
i(ρk(β))B1)

= (ρk(β)B1, ρ
n−i+k(β)B1, ρ

n−2i+k(β)B1, . . . , ρ
i+k(β)B1).

Since i and n are coprime, for some integer γ we have, γi ≡ 1 mod n, i.e., γki ≡
k mod n, i.e., ri ≡ k mod n, as γk ≡ r mod n, for some r, 0 ≤ r < n. Therefore, in the
expression of αB, we have, ρ(n−ri+k)(β)B1 = βB1, ρ(n−(r+1)i+k)(β)B1 = ρ(n−i)(β)B1 and
this continues. Therefore αB ∈ Gn(βB). Hence the proof.

Similar to the Proposition 4, using Proposition 5 we get the following.
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Proposition 6 Let f(x) be an n-variable RSBF and B be an n × n nonsingular binary
matrix as explained in Proposition 5. Then f(xB) is also an RSBF.

In our case, n = 9 and we choose i = 2. As for example, one may consider the matrix

B =



0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0


.

Using this matrix we find that the nine RSBFs can be represented by two distinct
functions up to affine equivalence. Note that these two functions are not affinely equivalent
as there autocorrelation spectra are different as given in Table 3. Below we present these
two functions, the first one with maximum absolute value in the autocorrelation spectra
52 and the second one with 76. The two functions are as follows.

05777A7A6ED82E887CFCE3C549E994947AE4FBA5B91FE46674C3AC8386609671

3FCCAC20EE9B9966CAD357AAE921286D7A20A55A8DF0910BC03C3C51866D2B16

04757A727ED96F087EFCE2C768EB04947AECFBA5B91DE42E7CC1AC8B1060D671

2FCCEDB0EE8B8926CAD357A2E92148ED3AB4A1128DF0918B46143C51A66D2B16

4 Coding Theoretic Implications

Since the maximum nonlinearity question of Boolean functions is related to the covering
radius of First order Reed-Muller code R(1, n), we explain the coding theoretic implications
of the 9-variable functions having nonlinearity 241. We like to refer to the papers [2, 3, 9,
11,12,15] for relevant coding theoretic discussions.

We present the basic definitions following [15]1. Let us consider a binary code C of
length N . Here we consider R(1, n), i.e., C consists of the 2n+1 many truth tables (of length
N = 2n) of the affine functions on n variables. Now consider any coset D of the code C,
i.e., the elements of the coset D are f ⊕ l, where l ∈ R(1, n) and f is a nonlinear Boolean
function. The weight of the minimum weight vector in D is considered as the weight of
D. Let the minimum weight be w. Then all the vectors having weight w constitute the
set of the leaders in D, denoted as L(D). One can define a partial ordering on FN

2 by
S ≤ T between two binary vectors S, T of length N if Si ≤ Ti for 0 ≤ i ≤ N − 1. A partial

1We like to acknowledge Prof. Philippe Langevin for pointing out the coding theoretic issues presented
in this section.

11



ordering on the space of cosets of C can be defined as follows. Given two cosets D, D′ of
C, D ≤ D′ means there exist S ∈ L(D) and S ′ ∈ L(D′) such that S ≤ S ′. We define a
coset D as an orphan or urcoset of C if D is a maximal coset in this partial ordering. This
concept was first presented in [11] as urcoset and then in [2, 3] as orphan coset. One can
check [15] that a coset D is an orphan or urcoset when ∪g∈L(D)supp(g) = {0, 1}N .

We have checked by running computer program that given any of the two functions
described in the previous function (say f, g), each of the cosets f ⊕R(1, n) and g⊕R(1, n)
is an orphan or urcoset. It is clear from Table 2 that the weight of each of the leaders is 241
and there are 127 leaders in each coset. Since each coset is an odd weight orphan, according
to [15, Proposition 7], one coordinate position (out of the 512 positions numbered as 0 to
511) must be covered by all the 127 leaders (i.e., the leaders will have the value 1 at that
position). In both of the cosets, the 0th position, the output of the 9-variable function
corresponding to input (0, 0, . . . , 0, 0), is covered by all the leaders.

In [9], orphan cosets having minimum weight of 240 have been reported. This is the first
time orphan cosets having minimum weight 241 are demonstrated. Further it is reported
in [2, Page 401] that X.-D. Hou has constructed odd weight orphans of R(1, n) for n ≥ 11.
Our result shows that this is true for n = 9 also.

Let ρ(C) be the covering radius [16,20] of C, the weight of the coset of C having largest
weight. We like to point out a conjecture in this direction presented in [3]. The conjecture
says that the covering radius of R(1, n) is even. For n = 9 we found that the covering
radius is at least 241, and searching the space of 9-variable RSBFs we could not get higher
nonlinearity. In fact some heuristic attempts to increase the nonlinearity did not work yet.
It will be an interesting open question to settle the covering radius of R(1, 9). The bound
presented in [12] for R(1, 9) gives the value 244.
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