第35卷第6期 2001年11月

Atomic Energy Science and Technology

文章编号:1000-6931(2001)06-0547-04

串列加速器上扰动角关联探针核 产生截面测量

徐勇军,王 荣,于伟翔,韩晓刚,崔保群,秦久昌,许国基,朱升云

(中国原子能科学研究院 核物理研究所,北京 102413)

摘要:在中国原子能科学研究院 HF13 串列加速器上通过⁶³ Cu (p, 2n) ⁶² Zn、Cd (p, xn) ¹¹¹ In 和 ¹⁸⁶W(d,p)¹⁸⁷W核反应产生⁶²Zn/⁶²Cu、¹⁸⁷W/¹⁸⁷Re 和¹¹¹ In/¹¹¹Cd 扰动角关联探针核,测量了生成这 些探针核的核反应截面。

关键词:探针核;产生截面;扰动角关联

中图分类号:0571.413 **文献标识码**:A

扰动角关联是一种原子尺度的微观核物理研究方法,通过测量放射性杂质原子或探针核 的衰变参数得到作用在其上的超精细相互作用,获得原子核的核矩以及原子核周围环境等信 息。它具有灵敏度高、准确性好等特点,在材料科学、生命科学、核物理和化学等方面得到了广 泛应用^[1]。扰动角关联探针核需满足一定的要求,自然界中不存在能使用的天然放射性探针 核,必须通过核反应等方法来产生。扰动角关联探针核是由放射性母核衰变而成,母核半衰期 在几个小时到几十天最为适宜,半衰期太长难以获得足够的放射性活度,太短又不便于测量; 扰动角关联探针核应有级联 衰变,且级联衰变的中间态有一定的寿命,如为 ns~µs 量级;探 针核衰变必须有明显的各向异性,以测量超精细相互作用。因此,满足上述要求的探针核很 少,寻找和合成新的探针核对发展和开拓扰动角关联研究有重要价值。

本工作通过⁶³Cu(p,2n)⁶²Zn、Cd(p,xn)¹¹¹In 和¹⁸⁶W(d,p)¹⁸⁷W 反应分别获得⁶²Zn/⁶²Cu、 ¹¹¹In/¹¹¹Cd 和¹⁸⁷W/¹⁸⁷Re 探针核,并测量它们的核反应截面和进行扰动角关联测量。

1 实验

放射性探针核的母核⁶² Zn、¹¹¹ In 和¹⁸⁷ W 分别由⁶³ Cu (p, 2n) ⁶² Zn、Cd (p, xn) ¹¹¹ In 和 ¹⁸⁶W(d,p) ¹⁸⁷W反应产生。实验采用 *4*22 mm 的金属铜、镉和钨靶,质量厚度分别为 16.9、

收稿日期:2000-09-13;修回日期:2001-02-12

基金项目:国家自然科学基金资助项目(19835050,19935040)

作者简介:徐勇军(1973 ---),男,四川大英人,在读硕士研究生,实验核物理专业

26.1、38.0 mg/cm²。实验在中国原子能科学研究院 HF13 串列加速器上进行。入射粒子束 斑直径为4 mm,入射粒子束流强度由束流积分仪测量。对⁶³Cu(p,2n)⁶²Zn反应,入射质子平 均能量为 22.9 MeV,流强 650 nA,总入射质子数 1.803 ×10¹⁶;对 Cd(p,xn)¹¹¹In反应,入射质 子平均能量为 16.9 MeV,流强 150 nA,总入射质子数 1.357 ×10¹⁶;对¹⁸⁶W(d,p)¹⁸⁷W反应,入 射氘束平均能量 12.6 MeV,流强 700 nA,总入射氘核数 3.154 ×10¹⁶。辐照后的样品经一定 时间冷却后进行放射性活度测量。活度测量使用高纯锗探测器,对⁶⁰Co 的 1.332 MeV 射线 的能量分辨率为 2.1 keV。实验中记录的特征 射线的计数不低于 2 ×10⁴。

2 结果和讨论

用探测器记录到的特征 射线计数由下式计算核反应截面:

$$N(t_0) = \frac{N_A}{M} \int_0^{t_0} I(t) \exp(-(t_0 - t)) dt$$
(1)

$$N = N(t_0) \exp(-(t_1 - t_0))(1 - \exp(-(t_2 - t_1))f_d \frac{1}{(1 + t_0)}$$
(2)

式中: t_0 为辐照时间; $N(t_0)$ 是辐照结束时生成的放射性核数;I(t)为束流强度; 为样品面密 度; 为同位素丰度;M为摩尔质量; 是生成放射性核素的衰变常量; N_A 为阿佛伽德罗常 数; $t_1 - t_0$ 是冷却时间; $t_2 - t_1$ 是放射性活度测量时间; 为探测效率; f_a 是分支比;1/(1 +)为发射 射线的几率, 为内转换系数。

实验测量误差主要包括:探测器效率误差 1.5 %,靶质量和不均匀性误差 2.5 %,统计误差 1.5 %,入射束流测量误差 1.5 %,射线强度和衰变参数等的误差 2.5 %,总误差为 4.4 %。

靶材料	质量厚度/mg cm ⁻²	核反应	入射能量/ MeV	10^{27} / cm ²
铜	16.9	⁶³ Cu(p,2n) ⁶² Zn	22.9 ±0.1	101 ±4
镉	38.0	$Cd(p, xn)^{111}In$	16.9 ±0.4	230 ±10
钨	26.1	¹⁸⁶ W(d,p) ¹⁸⁷ W	12.6 ±0.4	212 ± 9

表 1 ⁶² Zn、¹⁸⁷ W 和¹¹¹ In 的核反应产生截面 Table 1 The measured cross sections for production of ⁶² Zn,¹⁸⁷ W and ¹¹¹ In

表 1 列出了实验测量的上述几个反应的截面值及误差。在本工作前,国内外对⁶²Zn、¹⁸⁷W 和¹¹¹In 的产生截面也有测量,但分歧较大。以往的测量大多采用迭靶技术,误差较大。本工 作采用薄靶方法,测量的数据较为可靠。

Andelin^[2]和陶振兰等^[3]在 1 ~ 16 MeV 能区测量了¹⁸⁶ W(d,p)¹⁸⁷ W 反应截面,在 12.6 MeV时的截面值分别为 2.67 ×10⁻²⁵ cm² 和 1.99 ×10⁻²⁵ cm²,两家数据分歧较大。本工 作的结果与陶振兰的数据在误差范围内一致。

Tarkanyi^[4]、Skakun^[5]、Marten^[6]和 Otozai 等^[7]采用浓缩同位素靶测量了¹¹¹Cd(p,n)¹¹¹In 和¹¹²Cd(p,2n)¹¹¹In 的反应截面。在 16.9 MeV 时,Skakun 和 Otozai 测量的¹¹²Cd(p,2n)¹¹¹In 的截面值约为 8.20 ×10⁻²⁵ cm²,Tarkanyi、Skakun 和 Marten 测量的¹¹¹Cd(p,n)¹¹¹In 的截面值 约为 1.40 ×10⁻²⁵ cm²。Tarkanyi 给出的¹¹²Cd(p,2n)¹¹¹In 激发曲线在约 16 MeV 和约20 MeV

处出现 2 个峰,约 20 MeV 处的峰与 Skakun 和 Otozai 的结果一致。这种蒸发型反应的激发曲 线一般都是单峰, Tarkanyi 在约 16 MeV 附近的峰是不合理的。Tarkanyi 在 16.9 MeV 下测量 的¹¹²Cd(p,2n)¹¹¹In 的截面值约为 1.014 ×10⁻²² cm²,也明显偏高。迄今,尚未见到用天然 Cd 测量产生¹¹¹In 的截面。本工作采用了天然 Cd,在 16.9 MeV 下测量了¹¹¹In 的产生截面,测量 值为 2.30 ×10⁻²⁵ cm²。

 $h^{63}Cu(p,2n)^{62}Zn 反应产生^{62}Zn 的截面测量值比较分散。在 22.9 MeV 时, Kopecky^[8]的 测量值为 6.5 ×10⁻²⁴ cm², Ghoshal^[9]的为 2.00 ×10⁻²⁵ cm², Meadows^[10]的 1.19 ×10⁻²⁵ cm², Greene 等^[11]的为 8.7 ×10⁻²⁴ cm², Grutter^[12]的为 7.5 ×10⁻²⁴ cm², Wiliams 等^[13]的为 1.35 × 10⁻²⁵ cm²。本结果在误差范围内与 Greene 和 Meadows 的符合。$

另外,对在 HF13 串列加速器上产生的 62 Zn/ 62 Cu、 111 In/ 111 Cd 和 187 W/ 187 Re 扰动角关联探 针核进行了扰动角关联测量,取得了满意的结果。测量中使用的探针核的衰变参数 141 列于 表 2。

表 2 扰动角关联探针核⁶² Zn/⁶² Cu、¹⁸⁷ W/¹⁸⁷ Re 和¹¹¹ In/¹¹¹ Cd 的衰变参数 Table 2 Decay parameters for ⁶² Zn/⁶² Cu,¹⁸⁷ W/¹⁸⁷ Re and ¹¹¹ In/¹¹¹ Cd

物社技			1		囚状坐古地山	子核中间态	
/米·T1核	E/ MeV	强度	E/ MeV	强度	吋核干 表期/ h	平均寿命/ns	1
⁶² Zn/ ⁶² Cu	0. 597	0.26	0.041	0.26	9.2	6.6	2 +
187 W/ 187 Re	0.480	0.22	0.072	0.11	23.7	801.3	9/ 2 +
¹¹¹ In/ ¹¹¹ Cd	0.171	0.90	0.245	0.94	67.3	122.7	5/ 2 +

as probe nuclei of perturbed angular correlation

参考文献:

- Christiansen J. Hyperfine Interactions of Radioactive Nuclei [M]. Spinger-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. 45 ~ 280.
- [2] Andelin RL. Cross Section Measurement for the Reaction¹⁸⁶W(d,p)¹⁸⁷W at Energy From 1 to 16 MeV: LA-2880[R]. USA: Los Alamos National Laboratory, 1963.
- [3] 陶振兰,朱福英,袭惠源.^{182~186}W(d,2n)^{182~186}Re和¹⁸⁶W(d,p)¹⁸⁷W反应的激发函数[J]. 原子核物理, 1981,3:242~248.
- [4] Tarkanyi F, Szelecsenyi F, Kopecky P, et al. Cross Section of Proton Induced Nuclear Reaction on Enriched ¹¹¹Cd and ¹¹²Cd for the Production of ¹¹¹In for Use in Nuclear Medicine[J]. Appl Radiat Isot, 1994, 45:239 ~ 249.
- [5] Skakun EA, Kljucharev AP, Rakivnenko YN, et al. Excitation Functions of (p,n) and (p, 2n) Reactions on Cadmium Isotopes[J]. Izv Akad Nauk SSSR, Ser Fiz, 1975, 39:24~33.
- [6] Marten M, Schuring A, Scobel W, et al. Preequilibrium Neutron Emission in ¹⁰⁹Ag(³He, xn) and ¹¹¹Cd(p, n) Reactions[J]. Z Phys, 1985, A322:93~103.
- [7] Otozai K, Kume S, Mito A, et al. Excitation Functions for the Reactions Induced by Protons on Cd up to 37 MeV [J]. Nucl Phys, 1966, 80: 355 ~ 348.
- [8] Kopecky P. Proton Beam Monitoring via the $Cu(p, x)^{58}Co$, ${}^{63}Cu(p, 2n)^{62}Zn$ and ${}^{65}Cu(p, n)^{65}Zn$ Reactions in Copper[J]. Int J Appl Radiat Isot, 1985, 36:657~661.

- [9] Ghoshal SN. An Experimental Verification of the Theory of Compound Nucleus [J]. Phys Rev, 1950, 80: 939 ~ 942.
- [10] Meadows J W. Excitation Functions for Protorrinduced Reactions With Copper[J]. Phys Rev, 1953, 91:885 ~ 889.
- [11] Greene MW, Lebowttz E. Proton Reactions With Copper for Auxiliary Cyclotron Beam Monitoring[J]. Int J Appl Radiat Isot, 1972, 23:342~344.
- [12] Grutter A. Excitation Functions for Radioactive Isotopes Produced by Proton Bombardment of Cu and Al in the Energy Range of 16 to 70 MeV[J]. Nucl Phys, 1982, A383:98~108.
- [13] Williams IR, Fulmer CB. Excitation Functions for Radioactive Isotopes Produced by Protons Below 60 MeV on Al, Fe, and Cu[J]. Phys Rev, 1967, 162: 1 055~1 061.
- [14] Firestone RB, Shirley VS. Table of Isotopes[M]. New York, Chichester, Brisbane, Toronto, Singapore: A Wiley-Interscience Publication, John Wiley & Sons, Inc, 1996. 291, 876.

Cross Section Measurements

for Production of Perturbed Angular Correlation Probe Nuclei at HF13 Tandem Accelerator

XU Yong-jun, WANG Rong, YU Wei-xiang, HAN Xiao-gang, CUI Bao-qun, QIN Jiu-chang, XU Guo-ji, ZHU Sheng-yun

(Department of Nuclear Physics, China Institute of Atomic Energy, P. O. Box 275-50, Beijing 102413, China)

Abstract : The probe nuclei 62 Zn/ 62 Cu , 187 W/ 187 Re and 111 In/ 111 Cd for perturbed angular correlation studies are produced at the CIAE HF13 tandem accelerator through the nuclear reactions 63 Cu (p ,2n) 62 Zn ,Cd (p , xn) 111 In and 186 W (d ,p) 187 W. The production cross sections of these nuclei are measured.

Key words probe nuclei; production cross section; perturbed angular correlation