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Behavior of NO N,O and SO, emissions during coal combustion
in a circulating fluidized bed combustor
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Abstract Emissions of NO N,O and SO, during coal combustion in a 30 kW scale circulating fluidized bed
CFB combustor were experimentally investigated. Three kinds of coals from western China were tested. The
CFB combustor consists of a riser and a downer. The riser was designed as the coal combustor and the downer
was used for the solid material circulation. The influence of combustion temperature excess air number air
staging and coal rank on the emissions of NO N,O and SO, were studied and discussed. The experimental re-
sults show that increasing the combustion temperature can result in an increase of NO and a decrease of N,O in
the flue gas. Air staging can decrease the NO emission significantly but no obvious changing of N,O emission is
found during the combustion of coal with high volatile content. Increasing the excess air number can lead to an
increase of NO and N,O emission. A large decrease of NO emission and a slight increase of N,O emission can
be observed when increasing the char concentration in the riser. About 85% percent of fuel-N is converted to N,
for the combustion tests performed at 1 120 K and with the excess air number of 1.25. However no obvious var-
iation is observed for SO, and CO emission with changing the CFB operation parameters such as excess air and
air staging.
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Figure 1  Schematic illustration of CFB combustor
l—combustor riser 2—downer 3—cyclone 4—particles
CFB storage hopper S5—butterfly valve 6—solid-solid mixer 7—
gas-solid separator 8—U-type valve 9—screw feeder 10—
pneumatic feeder 11—filter 12—water trap 13—gas ana-
1 lyzer 14—gas concentration acquisition station 15—temper-
1.1 ature acquisition station
CFB 5
1 0.154 mm ~0. 600 mm Table 2 CFB operating conditions during coal
383 K 4 h 0.224 mm ~ combustion and flue gas analysis
0.280 mm CFB 5 kg Item Case 1 Case 2 Case 3 Case 4
Coal A B C C
Coal feeding rate ¢, /kg h™' 2.85 3.15 2.55 2.55
1 Butterfly valve opening - 17 17 17 12
Table 1 ~ Properties of coal samples Q, /Nm* h™"' 23.6 21.7 19.2 21.4
3 -1
Coal Proximate analysis"w /% Ultimate analysis*w /% Q, /Nm* h 0.0 54 53 5.3
oa
Vv n FC C H N s o Tl /K 1118 1121 1088 1116
A 36.2 55 583 72.4 4.6 1.3 0.5 15.7 27K P13 1144 1120 7 132
’ ’ ’ ’ ’ ’ ' ’ T6 /K 1112 1070 1036 928
B 30.7 18.4 50.9 65.8 4.2 1.2 1.6 8.8 77 /K 1145 1117 1080 1029
C 264 13.1 60.5 73.0 3.7 1.2 0.6 8.4 T8 /K 1152 1133 1106 178
note a based on dry basis b by difference 9 /K 1153 1144 1109 1125
®q, /P 3.5 6.6 4.8 6.3
1.2 CFB Peo, /% 15.3 12.4 14.2 12.7
1 12 m ¢ 86 mm ©eo /107° 470.6 349.2 327.4 298.0
/107° . . : :
X6 630 mm ©39 mm x 3 000 mm #xo 226.2 116.7-81.3 1577

10 kg/h

Pry0 /107° 25.1 145.4 132.2 129.4
@s0, /107° 5.8 600.5 522.3 508.8
Gas superficial velocity v /m s 5.8 6.5 5.7 6.1

note (), is composed of primary air carrier gas and fluid-

ized gas at U valve
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Figure 9  Relationship between combustion temperature excess air number first stage stoichiometry butterfly
valve opening and nitrogen conversion during CFB combustion of 3 coals
legends see Figure 3
3 N
Table 3 Nitrogen balance for CFB combustion tests performed at 1 120 K and excess air number as 1.25*
Coal Rank w /% Conversion of fuel-nitrogen ¢ /% Ref
oa an e
V FC N N,O NO, N,
New mexico HVA bit. 33.7 53.6 1.4 11.3 2.9 85.8 6
Black thunder Sub C. 45.9 47.8 0.8 4.9 10.7 84.3
Center Lignite 45.9 45.9 0.8 2.3 9.8 87.9
N/A Anthracite 7.0 76.3 1.0 no data 7.5 no data 25
N/A Lignite 38.8 37.6 1.3 no data 13.0 no data 25
A Lignite 36.2 58.3 1.3 1.1 9.6 88.3 this study
B Bituminous 30.7 50.9 1.2 4.9 3.7 86.5 this study
C Bituminous 26.4 60.5 1.2 6.4 2.7 84.5 this study
note a combustion test conditions in Ref 25 are not available.
V Zhao % Zhao % 1 B
NO N VN VN N A NO
N VN A CFB
N NO VN N

NO Pels 7 N N,
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