Vol. 34 No. 1 Feb. 2006

文章编号:0253-2409(2006)01-0117-03

载铜 5A 分子筛在汽油模拟体系中脱硫性能的研究

冯辉,曾勇平,居沈贵

(南京工业大学 化学化工学院, 江苏 南京 210009)

关键词:汽油;硫醇;脱硫;吸附剂

中图分类号:TE624.5⁺5 文献标识码:A

Desulfurization of model gasoline by 5A molecular sieves loaded with Cu²⁺

FENG Hui, ZENG Yong-ping, JU Shen-gui

(College of Chemistry and Chemical Engineering , Nanjing University of Technology , Nanjing 210009 , China)

Abstract: The desulfurization of model gasoline by 5A molecular sieves loaded with Cu^{2+} was studied. Several factors which influence the desulfurization capability , including temperature , Cu^{2+} loading , baking temperature , as well as the ethanethiol concentration were investigated. In the range of adsorption temperature of 20 °C ~ 45 °C , it was found that the sorption capacity of ethanethiol on 5A molecular sieves loaded with Cu^{2+} increases with the temperature increasing. The desulfurization is enhanced by increasing the Cu^{2+} loading and the best result is obtained at the Cu^{2+} loading of 0.16 mol/L. Baking of the sorbent can also improve the desulfurization capability , and the optimum baking temperature is 300 °C. Two methods of the sorbent regeneration were compared in the experiment ,the regeneration by baking is better than that by alcohol washing.

Key words: gasoline; ethanethiol; desulfurization; sorption; 5A molecular sieves

近年 美国环保局计划将汽油中硫的质量分数 从当前的 300×10^{-6} 降到 2006 年的 30×10^{-6} 欧盟 也已经通过了新的汽油硫质量分数标准为 $30 \times 10^{-6} \sim 50 \times 10^{-6}$,德国甚至提出计划使用无硫汽油^[1]。中国汽油硫的质量分数高达 800×10^{-6} 以上 与世界汽油品质距离甚远。因此汽油中硫化物的脱除成为当务之急。

目前 脱硫技术主要有催化裂化脱硫、催化加氢脱硫、水蒸气脱硫、生物催化脱硫、吸附精制脱硫、氧化脱硫等[2~5]。吸附精制法具有净化度高、能耗低、易于操作等优点,高效的脱硫吸附剂制备是过程开发的关键。负载金属离子的活性纤维是脱除汽油中硫醇的一种有效吸附剂[67],以分子筛作为载体,通过其与金属盐溶液进行离子交换后,制得的吸附剂,可用于硫醇的脱除[67]。作者在已有的工作基础上[289],采用负载铜离子的5A分子筛为吸附剂,对汽油模拟体系进行吸附脱硫实验研究。

1 实验部分

1.1 药品与试剂

1.1.1 实验药品 硝酸铜、盐酸、硝酸银、异丙

- 醇、正辛烷、无水乙酸钠、碘化钾、硫化钠为分析 纯。乙硫醇为色谱纯。5A分子筛产自姜堰市化工 助剂厂。
- 1.1.2 实验仪器 电位滴定计(ZD-2型)、恒温水浴振荡仪、马弗炉、干燥器等。
- 1.2 脱硫剂的制备 取一定量的 5A 分子筛 ,置于一定浓度的含铜离子溶液中 ,常温下交换 48 h ,如此反复交换几次 ,取出分子筛以大量的去离子水冲洗。负载一定量铜离子的 5A 干燥 ,再放到马弗炉中活化 4 h ,作为脱硫吸附剂备用。
- 1.3 脱硫性能实验 将乙硫醇和正辛烷配制成不同浓度的模拟汽油备用。称取 1 g 脱硫剂 ,投入到 100 mL 的锥形瓶中 加入 15 mL 含一定硫醇的模拟汽油 ,恒温水浴振荡 8 h。 硫醇的质量浓度采用 GB 1792-88 电位滴定法测定。

2 结果与讨论

2.1 溶液离子浓度对脱硫效果的影响 在不同浓度的铜离子溶液中交换的 5A 分子筛与未负载的 5A 分子筛的脱硫性能比较见图 1。未负载铜的 5A 分子筛脱硫性能小于负载铜离子的。随着铜离子溶液浓

收稿日期:2005-03-31;修回日期:2005-08-21。

基金项目:国家自然科学基金(20436030);江苏省重点实验室开放课题(KJS03017)。

联系作者:居沈贵, Tel: 025-83587182, E-mail: jushengui@163.com。

作者简介:冯 辉 1982-),男,硕士研究生,主要从事汽油吸附脱硫研究。

度从 0.04 mol/L 增加到 0.24 mol/L 制备分子筛吸附剂的硫醇吸附容量也增大 在 0.16 mol/L 时达到最大 负载浓度再增高时 吸附硫醇的容量略有下降。

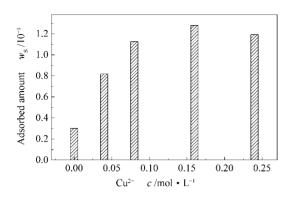


图 1 铜离子浓度对载铜 5A 分子筛吸附量的影响 Figure 1 Effect of Cu²⁺ concentrations of exchange

solution on ethanethiol adsorption capacity of 5A loaded with Cu²⁺

ethanethiol concentration 106.13 mg/L , adsorption temperature 25 $^{\circ}\!\mathrm{C}$

2.2 吸附剂焙烧温度对脱硫性能的影响 相同铜离子浓度(0.16 mol/L)交换的5A分子筛,在不同焙烧温度下的硫醇吸附量见图2。未焙烧(100 %烘箱烘干)分子筛的吸附性能与不同温度下焙烧的硫醇吸附量相差不大,300 %焙烧的吸附容量最大。这可能是5A孔道很小,对乙硫醇分子的吸附有很大的位阻。

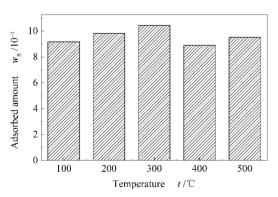


图 2 载铜 5A 分子筛焙烧温度对乙硫醇吸附量的影响

Figure 2 Effect of temperature calcining on ethanethiol adsorption capacity of 5A loaded with Cu^{2+} ethanethiol concentration 721.36 mg/L , adsorption temperature 25 $^{\circ}\text{C}$

2.3 吸附时间和温度的影响 不同温度分子筛对 硫的去除率随时间的变化见表 1。由表 1 可知 ,不 同温度下随时间延长 ,硫的去除率都在增加 ,并有稳定的趋势 ,这是由于铜离子具有强的亲核性。根据

Garcia 等^[10]的研究 ,乙硫醇在 H-ZSM 上与 SiOHAl 有三种吸附形式 (1) 环状氢键形式 ;(2) 被质子化的 SH 与分子筛表面形成键合的形式 ;(3) 硫醇的氢键直接与 SiOHAl 基团的直线键合。因此作者推测吸附机理为 $Cu^{2+} + 2RSH \rightarrow Cu(RS)_2 + 2H^+$,温度升高 ,化学活性增强 ,吸附和扩散加快 ,所以在相同的时间内温度从 25 $^{\circ}$ 增加到 35 $^{\circ}$,硫的去除率也增加。

表 1 不同温度载铜 5A 分子筛硫醇的去除率
Table 1 Ethanethiol removal at different adsorption temperatures

Time t /h	Ethanethiol removal		w /%
	25 ℃	35 ℃	45 ℃
1	35.62	54.98	51.44
2	45.00	68.74	71.81
3	61.87	82.91	85.60
4	68.25	90.96	88.84
5	92.62	94.35	93.57
6	97.50	97.89	95.25
7	97.87	97.98	97.33

ethanethiol concentration 771.11 mg/L

2.4 硫醇质量浓度对吸附脱硫的影响 25 ℃不同硫醇质量浓度对载铜 5A 分子筛吸附脱硫的影响见图 3。对于不同的硫醇质量浓度 ,随着时间的延长 ,对硫醇的吸附量都增大 ,并最终趋于稳定 ,但稳定的时间比较长。随着硫醇质量浓度的增高 ,对硫醇的吸附量稳定的时间也在增长。

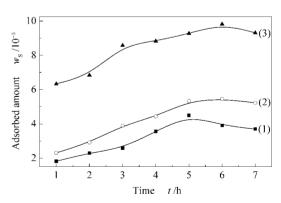


图 3 不同硫醇质量浓度下载铜 5A 分子筛对硫醇 吸附量的影响

Figure 3 Effect of ethanethiol concentration on the adsorption of 5A loaded with Cu $^{2\,+}$ at 25 $^{\circ}\!\text{C}$

(1) 373.12 mg/L; (2) 663.32 mg/L; (3) 1625.14 mg/L

2.5 吸附剂的再生 两种再生方法将吸附剂再生 后静态吸附量比较见图 4(硫醇质量浓度为 663.32 mg/L)。图 4 中(a)是新鲜吸附剂的吸附量 ,(b)是

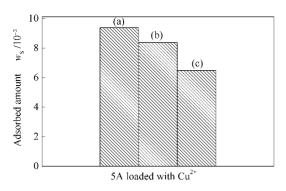


图 4 再生方式的吸附性能的影响

Figure 4 Effect of different ways of regeneration methods on adsorption

(a) fresh adsorbent; (b) regeneration by calcination;(c) regeneration by alcohol

将吸附硫醇的吸附剂直接放入马弗炉中300 ℃ 焙烧4h吸附剂的吸附量,(c)是用无水乙醇搅拌清洗,静置24h取出,晾干,再在烘箱中120 ℃烘干的吸附剂的吸附量。由图4可知,只需简单焙烧即可恢复吸附剂的吸附功能,乙醇清洗虽然有效,但是再生效果还是不如直接加热好,且操作周期较长。

3 结 语

- (1) Cu^{2+} 离子的引入 ,增大了 5A 分子筛对乙 硫醇的吸附量 ,适合的 Cu^{2+} 离子浓度在 0.16 mol/L 左右 ;
- (2) 焙烧温度对载 Cu^{2+} 离子 5A 分子筛乙硫醇 吸附量影响不大 300 $^{\circ}$ 焙烧时脱硫效果最好;
- (3)吸附剂进行焙烧再生效果比采用乙醇清洗效果要好。

参考文献:

- [1] SONG C. In Proceedings of Fifth International Conference on Refinery Processing [C]. Held in Conjunction with AICHE Spring National Meeting (2000), New Orleans: 11-14 March, 2002. 3-12.
- [2] 居沈贵,曾勇平,祝宁东,王重庆,姚虎卿. 脱除汽油中硫化物的吸附剂制备及其性能表征[J]. 化工科技,2003,11(2):7-11. (JU Shen-gui, ZENG Yong-ping, ZHU Ning-dong, WANG Chong-qing, YAO Hu-qing. Preparation and characteristic token of adsorbent removing sulfide in gasoline[J]. Science and Technology in Chemical Industry, 2003, 11(2):7-11.)
- [3] 居沈贵,曾勇平,姚虎卿. 非常规汽油脱硫技术[J]. 现代化工,2004,24(1):56-59.

 (JU Shen-gui, ZENG Yong-ping, YAO Hu-qing. Unconventional desulfurization technology[J]. Morden Chemical Industry, 2004,24(1):56-59.)
- [4] 姚秀清,王少军,凌凤香,李菲菲,张杰,马波. 模拟轻质油品的氧化脱硫 J]. 燃料化学学报,2004,32(3):318-322. (YAO Xiu-qing, WANG Shao-jun, LING Feng-xiang, LI Fei-fei, ZHANG Jie, MA Bo. Oxidative desulfurization of simulated light oil[J]. Journal of Fuel Chemistry and Technology, 2004, 32(3):318-322.)
- [5] 王少军,凌凤香,王安杰. 柴油非加氢脱硫技术研究中样品的选择 J]. 燃料化学学报,2005,33(2):171-174. (WANG Shao-jun, LING Feng-xiang, WANG An-jie. Testing sample choice for non-hydrodesulfurization of diesels[J]. Journal of Fuel Chemistry and Technology, 2005, 33(2):171-174.)
- [6] XUE M, CHITRAKAR R, SAKANE K, HIROTSU T, OOI K, YOSHIMURA Y, FENG Q, SUMIDA N. Selective adsorption of thiophene and 1-benzothiophene on metal-ion-exchanged zeolites in organic medium[J]. J Colloid Interface Sci, 2005, 285(2):487-492.
- [7] HERNANDEZ-MALDONADO A J , YANG F H , QI G , YANG R T. Desulfurization of transportation fuels by π -complexation sorbents : Cu (I)- , Ni(\parallel)- , and Zn(\parallel)-zeolites[J]. Appl Catal B ,2005 ,56(1-2):111-126.
- [8] 居沈贵,管国锋,姚虎卿. 载金属离子的氧化铝吸附净化汽油中硫醇 J]. 现代化工,2002,22(7):27-33. (JU Shen-gui, GUAN Guo-feng, YAO Hu-qing. Gasoline sweetening by adsorption on alumina loading with metallic ions[J]. Morden Chemical Industry, 2002, 22(7):27-33.)
- [9] 居沈贵,管国锋,祝宁东,姚虎卿. 负载金属离子合成分子筛脱除汽油中硫醇的性能 J]. 化学工程,2003,31(6):51-54. (JU Shen-gui, GUAN Guo-feng, ZHU Ning-dong, YAO Hu-qing. Characteristic in gasoline sweetened by adsorption on synthetic molecular sieves loaded with metallic ion[J]. Chemical Engineering(China),2003,31(6):51-54.)
- [10] GARCIA C L, LERCHER J A. Adsorption and surface chemistry of light thiols on Na-ZSM5 and H-ZSM5[J]. J Phys Chem, 1991, 95 (26):10729-10736.