第26卷第9期	中	玉	电	机	Т	程	学	报	Vol.26 No.9 May 2006
2006年5月	Proceedings of the CSEE							©2006 Chin.Soc.for Elec.Eng.	

文章编号: 0258-8013 (2006) 09-0131-06 中图分类号: TM464 文献标识码: A 学科分类号: 470-40

SPWM 数字化自然采样法的理论及脉冲误差分析

毛惠丰¹,陈增禄¹,任记达²,施杰²,姚伟鹏²

(1. 西安交通大学,陕西省 西安市 710049; 2. 西安工程科技学院,陕西省 西安市 710048)

Theory and Pulse Error Study of Digital Natural Sampling based SPWM

MAO Hui-feng¹, CHEN Zeng-lu¹, REN Ji-da², SHI Jie², YAO Wei-peng²

(1. Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China;

2. Xi'an University of Engineering Science and Technology, Xi'an 710048, Shaanxi Province, China)

ABSTRACT: According to the basic principle of natural sampling and diagrammatic analysis, the effect of SPWM pulse error induced by digitization is analyzed in detail, furthermore, analytic expression of pulse error is obtained. Pulse error formed by sampling period T_1 and analog-digital bit n_1 and count period T_0 for counter of carrier wave come into being the equivalent of pulse error. T_1 is main error fountain for pulse error. The effect of pulse error for n_1 and T_0 is neglected. The results show the main approach of minishing pulse error is to shorten T_1 and augment B. The principle of the proposed method is simple, easy to realize, and its characteristic is rapid in response and high in precision as SPWM digital natural sampling based on FPGA. Digital natural sampling based SPWM overcomes the disadvantage which is hard to apply to multilevel-inverter of high modulation frequency and high precision synchronously for microprocessor realizing SPWM waveform.

KEY WORDS: sinusoidal pulse width modulation; natural sampling; pulse error analysis; field programmable gate anay; multilevel-inverter

摘要:根据 SPWM 数字化自然采样法的基本原理,借助图 解分析方法,研究了三种误差源对 SPWM 输出脉冲误差的 影响,得出脉冲误差宽度的解析表达式。等效的脉冲误差由 采样周期 T₁、模数转换器位数 n₁和三角载波计数器计数周 期 T₀三者共同作用而产生的。T₁是产生脉冲误差的主要误 差源。n₁和 T₀对 SPWM 输出脉冲误差的影响可以忽略。分 析结果表明,减小脉冲误差的主要途径是缩短 T₁和增大载 波比 B。基于 FPGA 的 SPWM 数字化自然采样法具有原理 简单,实现容易,响应快精度高等优点。SPWM 数字化自 然采样法克服了微处理器实现的 SPWM 波形很难同时应用 于高调制频率和高精度的多电平逆变器中的缺点。

关键词: 正弦脉宽调制; 自然采样法; 脉冲误差分析; 现场可编程门阵列; 多电平逆变器

0 引言

SPWM 控制技术是逆变器研究和应用领域的 核心技术之一^[1]。自然采样法是目前最好的一种 SPWM 实现方法^[1-2]。但是,自然采样法适合于用 模拟电路来实现。随着微电子技术的快速发展,基 于微处理器串行程序流的 SPWM 实现方法已成为 主流^[3-5],但由于其受状态周期和内部定时器时钟 频率的限制很难应用于高调制频率和高精度的多电 平逆变器中^[6-11]。文献[12]提出了基于 DSP 和 FPGA 的多路 SPWM 实现方法,弥补了常规芯片不能实现 多逻辑 PWM 的缺陷。

数字化自然采样法是用数字电路实现自然采样 法的方法^[13-14]。文献[13]对 SPWM 数字化自然采样 法波形生成方法进行了研究。文献[14]对采样周期 *T*₁引起的 SPWM 输出脉冲误差进行了定性分析,并 研究了脉冲竞争产生的机理及其消除方法。本文将 进一步分析采样周期 *T*₁,模数转换器位数 *n*₁,三角 载波的计数器计数周期 *T*₀三者对产生 SPWM 输出 脉冲误差的影响。分析结果表明,数字化自然采样 法的调制效果可以和自然采样法的调制效果相逼 近。

SPWM 数字化自然采样法易于用 FPGA 来实现。将数字化自然采样法与载波移相 SPWM 技术相结合,用 FPGA 实现用于单相电压型五电平逆变器的 8 路 SPWM 波形。最后,进行实验研究。

1 SPWM 数字化自然采样法

1.1 基本原理

图 1 为 SPWM 数字化自然采样法^[9-10]的原理 示意图。

利用一个 n₀ 位无符号加减计数器的循环加减 计数来产生阶梯状的数字化三角载波。设 P 为数字 化三角载波的峰值; T₀为计数器的时钟周期, T_c为 三角载波周期, 三者之间的关系为

$$P = T_c / 2T_0 \tag{1}$$

C₀(t)为数字化三角载波发生器的输出,它是一 个无量纲二进制数。u_c(t)为与 C₀(t)相对应的模拟三 角载波(其峰值为 b)。相关各量有如下关系式

$$q_0 = b/P$$
 (2)
 $u_{cq}(t) = C_0(t) * q_0$ (3)

以上各式中, q_0 为数字化三角载波的量化单位,也 为数字化三角载波的量化误差; $u_{cq}(t)$ 为与 $C_0(t)$ 相对 应的量化特性曲线。 $u_{cq}(t)$ 和 $u_c(t)$ 之间的关系见图 2 所示。图中,当 T_0 趋于无穷小时, P趋于无穷大, $u_{cq}(t)$ 即趋于 $u_c(t)$ 。

图 2 $u_{cq}(t)$ 和 $u_c(t)$ 的关系图 Fig. 2 Relation of $u_{cq}(t)$ and $u_c(t)$ 1.3 数字化正弦调制波生成

采用双极性 n₁ 位模数转换器对模拟正弦调制 波 u_s(t)进行采样,模数转换器的输出为数字化正弦 调制 S₀(t),它是一个 n 位有符号数。相关各量关系 如下

$$u_s(t) = a \sin\left(2\pi f_s t + j\right), \quad U_{\text{ref}-} \le a \le U_{\text{ref}+} \quad (4)$$

$$q_1 = (U_{\text{ref}+} - U_{\text{ref}-}) / 2^{n_1}$$
(5)

$$u_{sq}(t_x) = iq_1, \quad (i - 1/2)q_1 \le u_s(t_x) < (i + 1/2)q_1$$
 (6)

$$S_0(t_x) = u_{sq}(t_x) / q_1$$
 (7)

$$S_0(t) = S_0(t_x), \ t_x \le t < t_x + T_1$$
 (8)

$$u_{sq}(t) = S_0(t) * q_1 \tag{9}$$

以上各式中, f_s 为正弦调制波频率; a为正弦调制信 号的峰值; q_1 为量化单位 ($q_1/2$ 为数字化正弦调制 波的量化误差); U_{ref+} 和 U_{ref-} 分别为模数转换器的正 负(对称)参考电压; $u_s(t_x)$ 为模拟正弦调制波在 t_x 处 的采样值; $u_{sq}(t_x)$ 为 $u_s(t_x)$ 的量化特性曲线在 t_x 处的 幅值; $S_0(t_x)$ 为对 $u_{sq}(t_x)$ 量化以后的无量纲数字量(用 整数 i 表示); T_1 为采样周期(f_1 为采样频率); $S_0(t)$ 和 $u_{sq}(t)$ 分别表示与 $S_0(t_x)$ 和 $u_{sq}(t_x)$ 相对应的经阶梯 化处理后的连续时间函数。

对数字化三角载波与数字化正弦调制波进行比较,首先必须对 S₀(t)进行规格化处理和坐标平移。规格化处理使数字化正弦调制波的取值范围和数字化三角载波的取值范围相同,其方程为

$$S_1(t) = kS_0(t), \quad k = P/2^{n_1}$$
 (10)

式中 *k* 称为规格化系数; *n*₁ 为模数转换器的位数; *P* 为数字化三角载波的峰值。

*S*₁(*t_x*)是一个有符号数,*C*₀(*t*)是一个无符号数, 坐标平移使二者的值域正好重合,其方程为

$$S_2(t) = S_1(t) + P/2 \tag{11}$$

由式(10)和(11)可得, $S_0(t)$ 的量化单位为 q_1 、 $S_1(t)$ 和 $S_2(t)$ 的量化单位为 q_0 。显然, $u_s(t)$ 是与 $S_0(t)$ 相对 应的模拟调制信号;为下文分析方便,用 $u'_s(t)$ 表示 (由 $u_s(t)$ 经如上相应的规格化和坐标平移)与 $S_2(t)$ 相对应的模拟调制信号;用 $u'_{sq}(t)$ 表示与 $S_2(t)$ 相对 应的量化特性曲线。

2 脉冲误差分析

2.1 T₁的影响^[10]

 $u'_{s}(t) 与 u_{c}(t)$ 相比较产生理想 SPWM 波形,即 为自然采样法。 $u_{cq}(t)$ 与 $u'_{sq}(t)$ 相比较产生实际 SPWM 波形,其为数字化自然采样法。脉冲误差分 析就是对上述两个 SPWM 波形的跳变沿进行对比 分析。假设 $T_{0} \rightarrow 0$,即 $u_{cq}(t)=u_{c}(t)$; $n_{1} \rightarrow \infty$,即只 考虑 T_{1} 对 SPWM 输出脉冲宽度误差的影响。图 3 示出了 $u'_{s}(t)$ 斜率为正时的脉冲误差分析图。图中, $t_{0}, t_{1}, t_{2},...$ 表示各采样时刻点。 e_{1} 表示实际 SPWM 波 形与理想 SPWM 波形的下降沿之间的偏差。当实际 波形的下降沿超前于理想波形的下降沿时,设 e_{1} 为 正值,反之为负。 e_{2} 表示二者上升沿之间的偏差。 当实际波形的上升沿滞后于理想波形的上升沿时, 设 e_{2} 为正值,反之为负。 T_{p0} 和 T_{p1} 分别表示理想 SPWM 负脉冲宽度和实际 SPWM 负脉冲宽度。有 如下关系式

$$T_{p1} = T_{p0} + (e_1 + e_2) \tag{12}$$

由文献[10]可知, 当 $u'_{s}(t)$ 斜率为正时, e_1 和 e_2 的 最大可能取值范围分别为

$$0 \le e_1 \le pAT_1/2B \tag{13}$$

当 $u'_s(t)$ 的斜率为负时, $e_1 和 e_2$ 的最大可能取 值范围分别为

$$-\pi A T_1 / (\pi A + 2B) \le e_1 \le 0 \tag{15}$$

$$-\pi A T_1 / 2B \le e_2 \le 0 \tag{16}$$

以上各式中, A=2a/b 为调制深度; B=f_d/f_s 为载 波比。

图 3 SPWM 脉冲误差分析图 Fig. 3 Analysis of pulse width error

分析式(13)~(16)可知:①由于对 u_s(t)采样的阶梯误差,当 u_s(t)的斜率为正时,使得由数字化自然 采样法得到的 SPWM 输出波形的负脉冲变宽;当正 弦调制信号 u_s(t)的斜率为负时,使得其输出波形的 负脉冲变窄。②最大误差脉冲宽度与模数转换的采 样周期 T₁成正比,与调制深度 A 成正比,与载波比 B 近似成反比。③减小脉冲误差的主要途径是减小 T₁和增大 B。④考虑到式(13)与式(16)及式(14)与式 (15)的对称性,由 T₁引入的调制误差为奇畸变。

2.2 T_1 和 n_1 共同作用的影响

假设 $u_{cq}(t)=u_{c}(t)$,模数转换器的位数 n_{1} 较小。 此时,模拟正弦调制波 $u'_{s}(t)$ 与其对应的量化特性曲 线 $u''_{sq}(t)$ 存在阶梯误差(见图 4)。显然,当 T_{1} 和 n_{1} 共同作用时,等效的脉冲宽度误差是由 T_{1} 有限而产 生的脉冲宽度误差与 n_{1} 较小而产生的脉冲宽度误 差之叠加而成的。

实际 SPWM 负脉冲宽度为

$$T_{p1} = (e_1 + e_3) + T_{p0} + (e_2 + e_4)$$
(17)

式中 $e_3 \approx e_4$ 是由 n_1 较小而产生的偏差。 e_3 表示考虑 $T_1 \approx n_1$ 共同作用而产生的实际 SPWM 波形的下降沿时刻 t_a 与只考虑 T_1 有限而产生的实际 SPWM 波形的下降沿时刻 t_b 之间的偏差。当 t_a 超前于 t_b 时, e_3 取正值;反之取负值。 e_4 表示考虑 $T_1 \approx n_1$ 共同作用而产生的实际 SPWM 波形的上升沿时刻 t_c 与 只考虑 T_1 有限而产生的实际 SPWM 波形的上升沿 时刻 t_a 之间的偏差。当 t_c 超前于 t_a 时, e_4 取负值; 反之取正值。

图 4 SPWM 脉冲误差分析图 Fig. 4 Analysis of pulse width error

图 4(a)中,, 当采样值 $u'_s(t_k)$ 从 $(i-1)q_1$ 逐渐增 大到 $(i-1/2)q_1$ 时, e_3 从0增大到 $T_c/2^{n_i+2}$; 当采样 值 $u'_s(t_k)$ 从 $(i-1/2)q_1$ 逐渐增大到 iq_1 时, e_3 从 $-T_c/2^{n_i+2}$ 增大到0。因此, e_3 的取值范围为

$$-T_C / 2^{n_1 + 2} \le e_3 \le T_C / 2^{n_1 + 2}$$
(18)

同理,可知 e_4 与 e_3 的取值范围相同。可以证明, 当正弦调制波为减函数时,偏差 e_3 和 e_4 的取值范围 仍为 $[-T_C/2^{n_1+2}, T_C/2^{n_1+2}]$ 。

分析以上各式可知, ①考虑到 e_3 和 e_4 极性的随机性, 无论 du_s(t)/dt 大于或小于零, $e_3 + e_4$ 的极性仍为随机的。② n_1 产生的最大脉冲误差宽度与"- n_1 "成指数关系,与载波周期 T_c 成正比。③当 n_1 较大时(例如 $n_1 \ge 10$), n_1 对 SPWM 脉冲误差的影响可以忽略。

2.3 T_0 和 T_1 共同作用的影响

假设 n₁较大,其对脉冲宽度误差的影响可忽略 不计,则 u'_{sq}(t)与u'_s(t)相比较只存在与采样周期 T₁ 相对应的阶梯误差。当考虑数字化三角载波的计数 时钟周期 T_0 较大时, $u_c(t) 与 u_{cq}(t)$ 存在与 T_0 相对应 的阶梯误差,见图 5 所示。显然,当 T_0 和 T_1 共同 作用时,等效的脉冲宽度误差是由 T_1 有限而产生的 脉冲宽度误差与 T_0 较大而产生的脉冲宽度误差之 叠加而成的。

图 5 SPWM 脉冲误差分析图

Fig. 5 Analysis of pulse width error

由图 5 可知,实际 SPWM 负脉冲宽度为

$$T_{P1} = (e_1 + e_5) + T_{P0} + (e_2 + e_6)$$
(19)

式中 $e_5 \approx e_6$ 是由 T_0 产生的偏差。 e_5 表示考虑 T_0 和 T_1 共同作用而产生的实际 SPWM 波形的下降沿时 刻 t_a '与只考虑 T_1 有限而产生的实际 SPWM 波形的 下降沿时刻 t_b '之间的偏差。当 t_a '超前于 t_b '时, e_5 取正值;反之取负值。 e_6 表示 T_0 和 T_1 共同作用而 产生的实际 SPWM 波形的上升沿时刻 t_c '与只考虑 T_1 有限而产生的实际 SPWM 波形的上升沿时刻 t_d ' 之间的偏差。当 t_c '超前于 t_d '时, e_6 取负值;反之 取正值。

图 5(a)中,当采样值 $u'_{s}(t_{k})$ 满足 $(i-1)q_{0} < u'_{s}(t_{k}) \leq iq_{0}$ 时, e_{5} 的取值范围为 $-T_{0} \leq e_{5} \leq 0$ (20) 图 5(b)中,当采样值 $u'_{s}(t_{k})$ 满足 $jq_{0} < u'_{s}(t_{k}) \leq (j+1)q_{0}$ 时, e_{6} 的取值范围为

$$0 \le e_6 \le T_0 \tag{21}$$

同理,当正弦调制波为减函数时, e_5 的取值范围为 $0 \le e_5 \le T_0$ (22)

e₆的取值范围为

$$-T_0 \le e_6 \le 0 \tag{23}$$

分析上式可知, ①分析式(20)与式(21)及式(22)与式 (23), $e_5 \approx 10^6$ 对脉冲宽度误差的影响是相互抵消 的。② T_0 产生的最大脉冲误差宽度为 T_0 。③在一般 情况下, T_0 均在纳秒的数量级上, T_0 对 SPWM 脉 冲误差的影响可以忽略。

2.4 T_0 、 T_1 和 n_1 共同作用的影响

当 T_0 较大、 n_1 较小时, $u_c(t)$ 与 $u_{cq}(t)$ 存在与 T_0 相 对应的阶梯误差, $u'_s(t)$ 与 $u''_{sq}(t)$ 存在阶梯误差如图 6 所示。显然,当 T_0 、 T_1 和 n_1 共同作用时,等效 的脉冲宽度误差是由 T_0 较大而产生的脉冲宽度误 差、 T_1 有限而产生的脉冲宽度误差与 n_1 较小而产生 的脉冲宽度误差之叠加而成的。

由图 6 可知,实际 SPWM 负脉冲宽度为

 $T_{P_1} = (e_1 + e_3 + e_7) + T_{P_0} + (e_2 + e_4 + e_8)$ (24) 式(24)中, $e_7 \pi e_8$ 是由 T_0 产生的偏差。 e_7 表示考虑 $T_0 、 T_1 \pi n_1$ 共同作用时产生的实际 SPWM 波形的 下降沿时刻 t_a "与考虑 $T_1 \pi n_1$ 共同作用时产生的实 际 SPWM 波形的下降沿时刻 t_b "之间的偏差。当 t_a " 超前于 t_b "时, e_7 取正值;反之取负值。 e_8 表示考 虑 $T_0 ~T_1 \pi n_1$ 共同作用时产生的实际 SPWM 波形 的上升沿时刻 t_c "与考虑 $T_1 \pi n_1$ 共同作用时产生的 实际 SPWM 波形的上升沿时刻 t_d "之间的偏差。当 t_c "超前于 t_d "时, e_7 取负值;反之取正值。

对图 6 和图 5 进行比较可知, e_7 和 e_8 的分布情况分别与 e_5 和 e_6 的分布情况相似。图 6 中, e_7 和 e_8 的取值范围分别为

$$-T_0 \le e_7 \le 0 \tag{25}$$

$$0 \le e_8 \le T_0 \tag{26}$$

同理,当正弦调制波为减函数时, $e_7 和 e_8$ 的取 值范围分别为

$$0 \le e_7 \le T_0 \tag{27}$$

$$-T_0 \le e_8 \le 0 \tag{28}$$

分析上式可知, ① $e_7 \approx n e_8$ 对脉冲宽度误差的影响是相互抵消的。② T_0 产生的最大脉冲误差宽度为 T_0 。③因 T_0 在纳秒的数量级上, n_1 又较大($n_1 \ge 10$),

故 T_1 是产生脉冲误差的主要误差源,而 T_0 和 n_1 对 SPWM 脉冲误差的影响可以忽略。

Fig. 6 Analysis of pulse width error

3 仿真与实验结果

为反应数字化自然采样法的优越性,对数字化自然采样法、自然采样法和中心对称规则采样法进行 仿真比较分析。图 7 为采样频率 f₁=100kHz 和调制 度 A=0.8 时的归一化的基波幅值和h_{THD} 仿真曲线。 h_{THD} 由下式表示

$$h_{\rm THD} = \sqrt{\sum_{i=2}^{\infty} (U_i)^2 / (U_1)^2}$$
(29)

式中 U1为基波幅值; Ui为各次谐波幅值。

Fig. 8 Simulation-curve for B=10 and A=0.8

图 7(a)中,纵轴表示归一化的基波幅值,横轴 表示载波比。图 7(b)中,纵轴表示h_{THD},横轴表示 载波比。图 8(a)中,纵轴表示归一化的基波幅值, 横轴表示采样频率 f_1 。图 8(b)中,纵轴表示 h_{THD} , 横轴表示采样频率 fi。从图 7(a)看出,在固定的采 样频率和调制度情况下,载波比较低时,规则采样 法的基波幅值利用率较低,数字化自然采样法和自 然采样法的基波幅值利用率比较接近:随着载波比 的增大,三者的基波幅值利用率趋于一致。从图 7(b) 看出,载波比较低时,规则采样法的谐波畸变较大, 数字化自然采样法和自然采样法的谐波畸变程度相 近;随着载波比的增大,三者的谐波畸变程度趋于 一致。从图8看出,在固定的载波频率和调制度情 况下,规则采样法的基波幅值利用率较低,谐波畸 变较大,而数字化自然采样法和自然采样法的调制 效果比较接近。

在一台4kVA单相高精度SPWM电压型五电平 逆变器上进行实验研究。将数字化自然采样法与载 波移相 SPWM 技术相结合,采用一片 Altera 公司的 EP2C8Q208C8 的 FPGA 器件来实现 8 路 SPWM 输 出波形,其中每两路为互补驱动信号。三角载波频 率为 66kHz,4 个载波的相位依次滞后 1/4 的载波周 期。模数转换器为 MAX1290,其位数为 12。用 FPGA 控制 MAX1290 对模拟调制信号的采样(采样频率 为 250kHz),实现调制信号的数字化。每路 SPWM 输出波形均设计有死区时间^[15]。FPGA 内部的主要 功能模块包括对模数转换器控制模块、规格化处理 模块、坐标平移模块、载波移相模块、比较模块和 死区控制模块,等^[14]。图 9 示出了某一单元

逆变电路同一桥臂两个经死区控制后的驱动信号波 形。图 10(a)为逆变器五电平四阶梯 SPWM 输出波 形,图 10(b)为逆变器滤波后的输出基波电压波形。

4 结论

(1) **SPWM** 数字化自然采样法同时具有自然 采样法和数字化实现的双重优点。

(2)数字化自然采样法与自然采样法二者输出的 SPWM 波形之间存在一个脉冲宽度误差。采样周期 *T*₁是主要误差源。*n*₁和*T*₀对 SPWM 输出脉冲误差的影响可以忽略。减小脉冲误差的主要途径是缩短 *T*₁和增大 *B*。

(3)数字化自然采样法与载波移相 SPWM 技术相结合,用 FPGA 实现多路 SPWM 波形,不仅能满足多电平变流器所需要多逻辑 SPWM 的要求,而且能应用于大功率、高精度、低失真逆变器中。

参考文献

- Hamman J, Van Der Merwe F S. Voltage harmonics generated by voltage-fed inverters using PWM natural sampling[J]. IEEE Transactions on Power Electronics, 1988, 3(3): 297-302.
- [2] 吴忠,李红,左鹏,等. 自然采样 SPWM 逆变电源的谐波分析及 抑制策略[J]. 电网技术, 2002, 25(4): 17-20.
 Wu Zhong, Li Hong, Zuo Peng, et al. Analysis and restraint of harmanics for inverting power supplies using natural sampling SPWM[J]. Power system technologe, 2002, 25(4): 17-20(in Chinese).
- [3] Bakari Mwinyiwiwa, Zbigniew Wolanski, Boon-Teck Ooi. Microprocessor implemented SPWM for multiconverters with phase-shifted triangle carriers[J]. IEEE Transactions on Industry Appilcations, 1998, 34(3): 487-494.
- [4] 彭力,林新春,康勇,等.数字控制高频变换器的新颖PWM方法
 [J].中国电机工程学报,2001,21(10):47-51.
 Peng Li, Lin Xinchun, Kang Yong, et al. A novel PWM technique in high-frequency converter controlled by digital system
 [J]. Proceedings of the CSEE, 2001, 21(10):47-51(in Chinese).
- [5] 桂红云,姚文熙,吕征宇. DSP空间矢量控制三电平逆变器的研究
 [J].电力系统自动化,2004,28(11): 62-74.
 Gui Hongyun, Yao Wenxi, Lü Zhengyu. Research on the three-level inverter with space vector pulse width modulation based on digital signal processor[J]. Automation of Electric Power System, 2004, 28(11): 62-74(in Chinese).
- [6] 陈增禄,温宗周,钱慧芳,等.基于 MSPWM 的大功率宽频带低 失真逆变器[J].电力电子技术,2002,36(5):22-24.
 Chen Zenglu, Wen Zongzhou, Qian Huifeng, et al. A single-phase power inverter with wide-band and low-distortion based on MSPWM

[J]. Power Electronics, 2002, 36(5): 22-24(in Chinese).

- [7] Brendan Peter McGrath, Donald Grahame Holmes. Multicarrier PWM strategies for multilevel inverters[J]. IEEE Transactions On Industrial Electronics, 2002, 49(4): 858~867.
- [8] Donald Grahame Holmes, Brendan P McGrath. Opportunities for harmonic cancellation with carrier-based pwm for two-level and multilevel cascaded inverters[J]. IEEE Transactions on Industry Appilcations, 2001, 37(2): 574-582.
- [9] 吴洪洋,何湘宁. 多电平载波 PWM 法与 SVPWM 法之间的本质联系及其应用[J]. 中国电机工程学报, 2002, 22(5): 10-15.
 Wu Hongyang, He Xiangning. Relationship between multilevel carrier-based PWM and SVPWM and its applications[J]. Proceedings of the CSEE, 2002, 22(5): 10-15(in Chinese).
- [10] 于飞,张晓锋,李槐树,等. 五相逆变器的空间矢量 PWM 控制[J].中国电机工程学报,2005,25(9):40-46.
 Yu Fei, Zhang Xiaofeng, Li Huaishu, et al. Space vector PWM control of five-phase inverter[J]. Proceedings of the CSEE, 2005, 25(9):40-46(in Chinese).
- [11] 林平,王立乔,李建林,等.基于级联型错时采样空间矢量调制多 电平变流器的APF研究[J].中国电机工程学报,2005,25(8):70-74. Lin Ping, Wang Liqiao, Li Jianlin, et al. Research on cascade multi-level converters with sample time staggered SVM and its application to APF[J]. Proceedings of the CSEE, 2005, 25(8): 70-74(in Chinese).
- [12] 李建林,王立乔,李彩霞,等.基于现场可编程门阵列的多路PWM 波形发生器[J].中国电机工程学报 2005 25(10): 55-59.
 Li Jianlin, Wang Liqiao, Li Caixia, et al. Multi-PWM pulse generator based FPGA[J]. Proceedings of the CSEE, 2005, 25(10): 55-59(in Chinese).
 [13] 陈增禄,毛惠丰,周炳根,等 SPWM数字化自然采样法的理论及
- [13] 际增禄, 七志平, 两州根, 寺 SPWM数子化自然禾件法的理论及应用研究[J]. 中国电机工程学报, 2005, 25(13): 32-37. Chen Zenglu, Mao Huifeng, Zhou Binggen, et al. A study on theory and application of digital natural sampling based SPWM [J]. Proceedings of the CSEE, 2005, 25(13): 32-37(in Chinese).
- [14] 毛惠丰,陈增禄,施杰.基于数字自然采样法的SPWM波形生成的研究[J].电力电子技术,2003,37(6):76-85.
 Mao Huifeng, Chen Zenglu, Shi Jie. Research on SPWM waveform based on digital nature sampling[J]. Power Electronics, 2003, 37(6):76-85(in Chinese).
- [15] 毛惠丰,陈增禄. SPWM 多重化并联逆变器的死区效应补偿方法的研究[J]. 电工技术杂志,2004,(3):49-55.
 Mao Huifeng, Chen Zenglu. Analysis for compensation of dead-time effect for multiple-SPWM inverters in parallel[J]. Electrotechnical Journal, 2004, (3): 49-55(in Chinese).

收稿日期: 2005-12-08。 作者简介:

毛惠丰(1978—),男,博士研究生,助教,研究方向为基于 FPGA 的新颖 SPWM 控制技术及其在大功率宽频带低失真逆变电源中的应用, maokk4550@126.com;

陈增禄(1957一),男,教授,研究方向为 SPWM 多重化技术及其在 大功率宽频带低失真逆变电源中的应用,SPWM 变换器的跟踪控制,电 压跌落补偿等;

任记达(1978—), 男, 硕士研究生, 研究方向为电力电子技术的工 业应用, SPWM 变换器的跟踪控制;

施 杰(1980—),男,硕士研究生,研究方向为电力电子技术的工 业应用,新颖 SPWM 控制技术;

姚伟鹏(1975—), 男, 硕士研究生, 研究方向为电力电子技术的微 机控制, 电压跌落补偿。

(编辑 王彦骏)