36 L 9 M
2007 £ 9 H

kT
ACTA PHOTONICA SINICA

i Vol. 36 No. 9

September 2007

MRI Intensity Inhomogeneity Correction by Minimizing Joint
Information of Intensity and Space”

LIU Chang-chun', HU Shun-bo'**

, GU Jian-jun'?®, YANG Jin-bao'

(1 School of Control Science and Engineering , Shandong University , Ji'nan 250061, China)
(2 Department of Physics, Linyi Normal University, Linyi 276005, China)
(3 Department of Electrical and Computer Engineering , Dalhousie University s Hall fax, NS B3]2X4, Canada)

Abstract:In the intensity inhomogeneity correction of magnetic resonance imaging, since entropy

minimization method did not consider space information, a better correction method based on joint

information minimization was proposed, which integrated image intensity features with additional spatial

image features. The space features referred to intensity derivatives. The joint entropy between image

intensities and corresponding derivatives in a corrupted image is greater than that in an uncorrupted one,

and it is calculated by using the joint probability distribution of image intensities and corresponding

derivatives, The results on simulated brain images and clinical brain MR images show that joint

information minimization method between intensities and their second derivatives is good. It can largely

decrease the overlap between white matter and gray matter.
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0 Introduction

resonance

( MRI),

intensity inhomogeneity reveals intensity variations

In magnetic imaging
of the same tissue over the image domain and
intensity overlaps in different tissues. Intensity
inhomogeneity is also called bias field, intensity
nonuniformity, or shading. There are a number of
factors that will cause intensity inhomogeneity
such as poor radio frequency coil uniformity, static
field inhomogeneity, and patient anatomy . If
quantitative analysis is the final goal, the
correction of intensity inhomogeneity is a common
preprocessing step in image analysis, for example
in segmentation, registration, and quantification.
Researchers have implemented many intensity
inhomogeneity correction methods™®. Of those
homomorphic

which

assumes that intensity inhomogeneity is a low

proposed, image smoothing or

filtering is the most intuitive method,

frequency signal which can be removed by applying

[3.15:. However, this approach

high pass filters
often results in blurred edges, and the loss of
useful low frequency signals within the same

tissues. Li Yin et al. combined the homomorphic
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filtering and B spline smoothing, improved the
correction results'’®. Ref[ 16 ] used the distortion
model of 3" polynomial to correct CCD image. The
nonuniformity correction of infrared focal plane
arrays is discussed in referencet'”*”). In ref [18] a
new adaptive segmentation method was proposed
which estimated the bias field and corrected the
intensity inhomogeneities. A retrospective method
based on entropy minimization was implemented in
[7-9], which assumed that an image corrupted by
intensity inhomogeneity contained more
information than the corresponding uncorrupted
image. They used the parametric polynomial to
model the bias field and minimize the information
of the acquired images. But they did not consider
spatial image features, which were very valuable to
intensity inhomogeneity correction.

In this paper a retrospective inhomogeneity
correction method is proposed that integrates
image intensity features and spatial image features
to improve intensity inhomogeneity correction. It
is assumed that an image corrupted by intensity
inhomogeneity contains more joint information
than that of an uncorrupted one. By employing
minimization  between

joint  entropy image

intensities and corresponding derivatives, a
corrected image can be obtained. The new methods
using first, second, and third order derivatives
were quantitatively evaluated and compared with

one recently proposed method™**"",
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1 Method

1.1 Problem formulation

Corruption of intensity homogeneity in MR
images can be described by the {following
degradation model.

u(x)=v(x)s(x)talx) D)
Where x is a coordinate vector, u(x) is a corrupted
image, v(x) is an uncorrupted true image, s(x) is
a multiplicative bias field, and a(x) is an additive
bias field.

Using the degradation model (1), the estimation

2(x) of the true image v(x) is obtained as

o(x)=u(x)m " (x)+a '(x) (2)
where
= =1 3, B0 (3)
m x) = d;
K . _
a—l(x):_a(x) — e, q,(x? f "
m(x) = 2

The detailed descriptions of the derivation of
the expression (3) and (4) are given in[9]. m™'
(x) and a '(x) are the multiplicative and additive
correction components, respectively; b; and e; are
optimal parameters; c¢;» f; are the neutralization
parameters which ensure that the mean intensity
values of v(x) and u(x) will be the same in the
domain (., which avoids the constant image
intensity problem by (joint) entropy minimization.
The correction domain () contains the tissue data
and does not contain the unaffected background
(air et al.). d; and g; are the normalization
parameters which insure that equal change of any
optimal parameter will produce the same intensity
transformation. ¢, (x) is the polynomial term
which varies with data dimensions and polynomial
orders. For example, when m ' (x) and a ' (x)
are modeled by second-order polynomials in a two-
dimensional image, ¢;(x) can be expressed as five
polynomial terms: x, y, xy, 2, ¥*. ¢;s dis fis g

can be written as follows

o= 2u(x)q(x)/ 2ulx) (5
xen xen
A= 3 uo) (g (0 —c) | 6)
xen
_1
fi Nx%:(ij(x> 7
_1 _r
g,—NE}\q,(x) fil (8)

where ¢, (X)) =x,¢;(x)=y,q (x) =xy.q; (x)=2",
g (x)=3y,x=(x,y),i=2,3,4,5,6. The
coordinate origin lies in the center of theimage. N =
>71, is the total pixel's number in domain . The
xX€n

three dimensional version of ¢;» d;. f;s g; can be

easily derived according to the above two
dimensional version.
1.2 Correction strategy

Intensity inhomogeneity causes the dispersion
of the intensity distribution in the uncorrupted
image, so the joint information contents of the
resulting image u (x) will be higher than those of
the uncorrupted one v(x). The optimal parameters
b, and e, are found by the Powell' s method
according to the following

{b,,e,) =arg rlbiien{]l[v(x)]} 9
Where b= 1[0, , b, ,‘-"‘, be lse=1essessyex . JI
denotes joint information of ©(x) and its derivatives.
Calculating b, and e, , then substituting them into (3)
and (4) results in m, ' (x) and a, ' (x), respectively,
which transforms the acquired image u (x) into the
optimally corrected image v, (x) according to (2).
1.3 Implementation details

Likar et al. used the parametric polynomial
model to minimize the entropy information of the

image'”’, but the

acquired intensity entropy
information did not include the spatial image
information. Two pixels in different tissues may
have the same intensity values, but corresponding

different.  So

derivatives can reduce cluster overlap and improve

second derivatives are using

inhomogeneity correction. The joint probability
distribution between image intensities and its
derivatives is calculated firstly using this method,

In the

uncorrupted true image, the intensity distribution

and then its joint entropy is solved.

has less overlap, and the intensity values in the
same tissue are approximately equal. So the true
image derivatives center around 0O, and its joint
probability distribution centers around a small number
of points. Joint entropy of this true image is less than
that of the corresponding corrupted one.

The flow chart of the proposed method is
shown in Fig. 1.

Corrupted Corrected
image image

‘ u(x) —I-‘ m(x) ’—I- —»  v(x)
+

F

. Joint
a'x) probability

Minimization

'

V()7 ()., (x)

Fig. 1 The flow chart of joint information minimization

method
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1) Set b and e to a real value vector and
calculate ©(x) according to function (2).

2) Calculate the joint probability distribution
pC) of v(x).

3)Calculate the joint entropy JI[2(x) ].

4)Obtain the optimal v, (x),m, ' (x),a, ' (x)
using Powell’s optimization algorithm.

The joint information JI of image ©(x) can be
quantitatively expressed by joint entropy H[ 9(x) ]
as

JI[o(x) J=H[3(x) ]=—2>p(m.n)

(10)
Where p (m,n) is the joint probability, m is the

log p(m,n)

intensity, and n is the derivative of the same pixel
in image v(x).

The joint entropy is nonnegative and reaches
its maximum value when all gray levels are equally
likely. Since the estimation image v(x) is obtained
by an intensity transformation applied to the
corresponding corrupted image u (x), an integer
gray value in a pixel is transformed to a new real
value i, which in general lies between two integer
values, say £ and £+1, and the derivative value in
that pixel is also transformed to a new real value
d, which lies between two integer values, say [
and /+1. So an intensity interpolation is needed to
update the corresponding histogram entries.
Partial intensity interpolation is used by which the
histogram entries h(k,l), h(k+1,01), h(k,[+1),
h(k+1,l+1) are fractionally updated by (k+1—
DOXUFT—d), G—R)XU+T1—d), (kt+1—i)X
(d—10), (i—k)X(d—1), respectively. After the

intensity interpolation, the information measure

S0 L8
200 -
' \i .G
150 m’
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Sy 20 300 Joo w0
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Fig. 2

curves become irregular, which will yield less

optimal parameterst®!

. Prior to the calculation of
the set of probabilities p (m, n), the histogram
h(m,n) is slightly blurred to reduce the effect of
imperfect intensity interpolation.
A (man) :«.;’:[ 2[:[h(m+i,n+j) .
min [20+1—2]i| ,20+1—2]j]]
this paper.

normalizing the histogram &’ (m, n) the joint

an

t is set to 2 in Finally, after
probability distribution p (m.n) is obtained. Our

experiments use approximately 5 000 image
samples, which have been proved to be sufficient
to form the 8-bit 1-D histogram that is statistically
enough powerful and enables efficient calculation

of (joint) entropy"'.

2 Experiments and results

For four different

methods have been tested. Likar' s method is

comparison purposes,

named M;, in which the information similarity
measure is entropy. In the second method, named
M, , the information measure is the joint entropy of
image intensities and its first derivatives. In the
third method, named M;, the information measure
is the joint entropy of image intensities and its
second derivatives. In the fourth method, M, ., the
information measure is the joint entropy of image
intensities and its third derivatives.

2.1 Visual demonstration

In Fig. 2, 2(a) shows an uncorrupted brain
tissue image; 2(e) displays the corrupted image by
the sine bias field; 2(b) is the joint probability

———'/1\-&—

Yo 100 200 300 100 S0 0 50 100
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‘ . |
4]

500100

{(g) (b

Influence of intensity inhomogeneity on joint probability distribution, intensity distribution and registration
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distribution between 2 (a) intensities and its first
derivatives; 2(c) is the intensity profile along the

vertical white line on 2(a); 2(d) is the curve of the
12]

normalized mutual information''”’ between 2 (a)
and its horizontal misalignments; 2(f) is the joint
probability distribution between 2 (e) intensities
and its first derivatives; 2 (g) is the intensity
profile along the vertical white line illustrated on 2
(e); 2(h) is the curve of the normalized mutual
information between 2 (e) and its horizontal
misalignments. In order to show 2 (e) clearly,
intensity enhancement is used. In 2(b) and 2(f),
the horizontal axis corresponds to first derivative
values and the vertical axis corresponds to intensity

values. The joint probability distribution in 2(f) is

Uneorected dala histogram
———
o

| %

800 Uncorrecled data hislogram
h
il
00 Ik
YVolume listogram (3
E:
2 a0t
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z
200k
= B

]
50 100 150
Iniensity value

(d)

200

Correcled data by M,

more focused than that in 2(b), which implies that
the corrupted image by intensity inhomogeneity
has than that of the
uncorrupted image. There are more maxima in 2
(h) than in 2(d), which indicates that intensity
bad

mutual information registration.

greater joint entropy

inhomogeneity has influence on maximal

Fig. 3 displays one slice of simulated T,
volume. In Fig. 3, from (a) to (¢) are uncorrected
data, corrected data by M; method and the additive
bias field; From (d) to (f) are the uncorrected
data histogram including white matter and gray

and the
multiplicative bias field. WM is the abbreviation of

matter, the corrected data histogram.,

the withe matter and GM is the abbreviation of the

Additive bias [eld  Muoltiplicative bias lield

400 F

Number

200

50 10} 130
Inensity valuc
{c)

200

Fig. 3 The bias field correction of T1 data

gray matter. The volume histogram illuminates the
high contrast between gray matter and white
matter. Intensity overlaps between gray matter
and white matter reveal intensity inhomogeneity.
It should be noted that a part of these overlaps may
be caused by intra-tissue variations and part
volume effect. The recovery of the histogram can
be observed by comparing the histograms of the
From Fig. 3, it is

uncorrected, corrected data.

known that the new method M; can largely
decrease the intensity overlaps, reduce the
spreading of the same tissue distribution, and

correct the corrupted image.

2.2 Comparison of different methods
In this section, different correction strategies

are compared to show that the proposed method

the

variations. In Fig. 4, from (a) to (d) correspond

could retrospectively  correct intensity

to the curve of uncorrupted images between

measured values and optimal parameters; from (e)
to Ch)

function between measured values and optimal

correspond to the corrupted images’

parameters. The optimal parameters b; and ¢, (i =
2,3, -
with a step of one, and the entropy (or joint

,6) were each changed from — 20 to 20,

entropy) of the transformed image was measured.
In Fig. 4, (a) corresponds to method M, , with the
optimal parameters on the horizontal axis and the
entropy on the vertical axis. (b), (¢) and (d)
correspond to methods M, ., M;, and M, , with the
optimal parameters on the horizontal axis and the
joint entropy on the vertical axis. The curves of
the uncorrupted image and the corrupted image
using different methods are similar, which implies
that it is feasible that the joint entropy replaces the
The

are smooth, have wide

entropy as information similarity measures.
curves in (a) ~ (d),

capturing ranges, and minima lying in the neutral
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parameters (b;=e,=0) at which the original image the entropy (or joint entropy) of the original
remains unchanged. It is clear that the simulated corrupted image is reduced by changing the values
image degradation process increases the (joint) of some parameters and transforming the image,
entropy and, thus the (joint) information of the which implies that the correction model is capable
uncorrupted image. The curve (e) ~ (h) show that of reducing the information of a corrupted image.
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Fig. 4 Comparison of different methods
The corrupted and uncorrupted images come Table 1 Coefficient of joint variations (cjv) for image set 1
from the BrainWeb Simulated Brain Databasem’m. CJUsart CJUMI  CJOUM2  CJUM3  CJUMs  CJ Uideal
L. . Volume
2.3 Quantitative evaluation /% % % % % %
Quantitative evaluation was performed by T, 0% 51.6 52.0 51.9 51.8 51.9 51.6
computing the coefficient of joint variations T, 0% 83.2 82.1 82.8 82.9 82.6 83.2

(cju)t? between gray matter (C;) and white PD 0% 64.9 64.7 64.7 64.8 64.7 64.9
matter (C,) of the brain. Cjv is computed {rom T, 40% 69.3 51.6 51.8 51.6 51.7 51.6
standard deviations ¢ and mean values u of the T, 40%  106.4 82.3 82.8 83.1 81.3 83.2
pixel intensities belong to the two matters PD 40%  163.0 64.3 64.5 64.7 64.2 64.9

5(C)+5(Cy) T,0% MS 50.9 514 51.3 511 51.2 50.9

cju(Crs G = [1(C)—p(C) | (12 T, 0% MS 74.9 741 74.3 74.7 T4.5 T4.9
Cjv is independent of the changes in contrast and PD 0% MS 66.9 66.7 66.4 66.8 66.7 66.9
brightness, and measures the intensity T, 40% MS 68.0 50.8 50.7 50.8 50.8 50.9
inhomogeneity by calculating the degree of T, 40% MS 123.8 73.7 73.7 74.2 740 749

1 . . 0 J 5 [ 5
intensity overlap between two tissues. PD 40% MS 195.8 66.5 66.5 66.7 66.6 66.9

The image set 1, in table 1, were also Database: twelve volumes (four T, four T,, and

acquired from the BrainWeb Simulated Brain four PD-weighted) with 3% noise, 181X217 X181
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resolution, 8-bit quantization, and 1 mm slice
thickness. Six volumes with 40% and six volumes
with 0% inhomogeneity were used, three of each

The

results of inhomogeneity corrections using the four

were normal and three with MS lesions.

methods are very close to ideal, but among these
four methods, M; (second derivative) is the best.
CjUgars CjUmis and cjuge symbolize starting cjov
values, final ¢jv values using method Mi, and ideal
cjov values, which are calculated from 0% intensity
inhomogeneity, 0% noise nominal images.

Table 2
volumes of the image set 2, which consists of three
volumes (T, T, and PD; GE Signa Exite 3.0 T),
having 512 X 512 X 40 and 8-bit

quantization. The white and gray matters are

shows the results on clinical MR

voxels

segmented by an interactive intensity based region
All

methods can decrease the intensity variations of the

growing algorithm in the corrected image.

white and gray matter and can reduce the overlap
On T, and PD

images, M; performs better than other methods.

of their intensity distributions.

On T, images, M; performs better than M, and
M, . but less than M,.

Table 2 Cjv of gray matter and white matter for real volumes
Volume ¢jvau /% cjom /% cjome /% cjows/ % cjom/ %

T, 138.6 127.1 127.0 126. 8 125.4
T, 91.2 88. 2 87.5 86.7 87.1
PD 76.3 70. 4 69. 8 68. 6 70. 2

3 Discussions and conclusions

The retrospective method, based on modeling
the intensity inhomogeneity and minimizing the
joint entropy between the acquired images and
their by the
was proposed. The method

derivative images parametric
polynomial model,

made no assumption on the shape of either the

intensity inhomogeneity distribution or the
distributions of individual tissues. Section 2. 2
shows that the methods do not corrupt the
simulated uncorrupted images and can
retrospectively correct the simulated corrupted
images. In section 2. 3, four methods are compared
on simulated and clinical MR images. Three
variations of the joint information-theoretic

methods are implemented, i. e. , the M,, M, and
M, methods,

intensities

using the joint entropy of image
third

derivatives, respectively. The three methods are

and its first, second, and

quantitatively calculated and compared to the M,
method, the
published in".

results of which were recently

The performances of all methods

were expressed by c¢jv of the gray and white
matters. The c¢jv is invariant to linear intensity

inhomogeneity transformations and does not

require a complete segmentation. The correction of
the which  100%

segmentations were available from the web!',

simulated images, for
indicated comparable and promising performances
of the three joint information-theoretic methods.
Of the four methods,

which more largely reduces the cjv,

the M; performed best,
and the
spreading of gray and white matter distribution.
The M, method performed less well as it does not
M,

method outperformed the other methods, except

consider space information. On real scans,
when applied to T1-weighted scans. In such case,
the M, method was superior.

In general, M, performed the best among the
the other
similar all

Consequently, the method M, is generic method,

methods tested, and methods’

performances were in modalities.

requires no preprocessing, no parameter setting,
and proved to be feasible and efficient.
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