SIS B A BeR e il () — R E M AL — OGDEV. NET—"#5 it 1

OGDEV.NET
SEEW

= N GOHEEAL] : MEEHE

To3 A 206 SR iR 2k vt (5)
ST A O G 1) VAR 3 45 e e vl (4)
Tor A 206 G iR 2k vt (3)
v T AT R B R T g i v it (2)
v T A AR G) AR S A et (1)
v AR VT T KB E -2
b AR BT KA 1
v Open Inventor—Coin3DJT A i

_
l =

v UERE RIS B ek 2L AR R

v JEHEZEON] ine JEH|

v PR AR IE R G2 CRLIEROR)

v R ARG 2 CERALD

v GRS Sl m

v MIDP2. LRSS (K08 s

v 3D ARG AEAN 14 4 (6)

K Introduction to 3d game engine design using
directx 9 and c#(10)

I

¥

gl

-

¥

B

i

T =g HE s HES S HEE HED HE ¢
.
IR JTRER B
-
S AR I 53 B RE P B ()
kel [e st] L [674]

Finite state machines, or FSMs as they are usually referred to, have for many years been the AI coder’ s
instrument of choice to imbue a game agent with the illusion of intelligence. You will find FSMs of one kind
or another in just about every game to hit the shelves since the early days of video games, and despite the
increasing popularity of more esoteric agent architectures, they are going to be around for a long time to
come. Here are just some of the reasons why:

MBEFEWTRIN, A RVRESHL (RS AFSM Rt ATRE P 2 R SEIEAR A et DUA T A el . ks RIRAEPSMIL -2 P i
VAR W AR S8, AN IEAE R IURARAT (R B R B (Y R B AR 48K, FSMPE R A AKAI R A I . X B2 — L4t
2 FSMAUTIH SR 2D (1 S R

They are quick and simple to code. There are many ways of programming a finite state machine and almost all
of them are reasonably simple to implement. You’ 11 see several alternatives described in this article
together with the pros and cons of using them.

A DA R et A . SEIE BRARSHUE 2R, 1 LA AT AR St . FEA SCR L RE G B 2 Rl R s B Son
ST P

They are easy to debug.Because a game agent’ s behavior is broken down into easily manageable chunks, if an
agent starts acting strangely, it can be debugged by adding tracer code to each state. In this way, the Al
programmer can easily follow the sequence of events that precedes the buggy behavior and take action
accordingly.

Sy TR B — AN REARINAT) B — A5 TE B A BRI, WU — /M e HIL AT R mAT R, wLhdEd hg—4
RS I Tracer KIFIR . IXFEREWS A 2 MERERZEAT P H,] DU X 2 T R AT B RIS T .

They have little computational overhead.Finite state machines use hardly any precious processor time because
they essentially follow hard- coded rules. There is no real “thinking” involved beyond the if-this—then—
that sort of thought process

e AT — s A . A RURESHUL T A 5 ST A0 3as i 0], R AATT A BT b B A g i 2 —RE A o ZEFRR S A
ARKE” (B A B AN E R IER “ %

They are intuitive.It’ s human nature to think about things as being in one state or another and we often
refer to ourselves as being in such and such a state. How many times have you “got yourself into a state”
or found yourself in “the right state of mind” ? Humans don’ t really work like finite state machines of
course, but sometimes we find it useful to think of our behavior in this way. Similarly, it is fairly easy
to break down a game agent’ s behavior into a number of states and to create the rules required for
manipulating them. For the same reason, finite state machines also make it easy for you to discuss the
design of your Al with non—programmers (with game producers and level designers for example), providing
improved communication and exchange of ideas

TFEHEN . AR LU ETA LUX A E AR R EE F1E, Pl AT S 8184 A DT 2REWBE. 20K
PR AR A CHERE” BE RIR A O T “IEMIR MR 2 RE ARSI GE BRARSHUIRFE TAE, (R0l AT
RIVEFEAFIFBRAVEERAIAT R FFEHL, X5 00— R 5 PR AR IE B RN R S — AR e AT o S
gﬁg@%ﬁ,ﬁ@%&ﬂ%t%ﬂ#ﬁ?ﬁ(W%ﬁ%ﬂﬁ%fﬁﬁﬁ%)Eﬁﬂﬁﬁ%?%%M&ﬁ%H%,ﬂﬁiﬁ
HAZ 4 W Ao

They are flexible.A game agent’ s finite state machine can easily be adjusted and tweaked by the programmer

http://school. ogdev. net/ArticleShow. asp?id=6386&categoryid=2

g, 1/8

2008-3-19

RIS IR Reth vt (—) — E BT A Ly — OGDEV. NET—57 4 [t

v [HF R R — SR sk
v LT R 3R] SRR T R

v R BT Al R

v LT R R AR

v [P Ik S

v CSURRE A PSR I 2R

v CC N I S A A

e G IMAX R 2 Sk e

to provide the behavior required by the game designer. It’ s also a simple matter to expand the scope of an
agent’ s behavior by adding new states and rules. In addition, as your AI skills grow you’ 11 find that
finite state machines provide a solid backbone with which you can combine other techniques such as fuzzy
logic or neural networks.

ATSETE . FERE BRI PR AL T IR3E, REOSIR A S LR 0 SEIRGE R B v AT S,) T 0d i 38 o (R s
FUHLUAY ™ J R e IAT Ao MeAh, BHAEIRATEERMIGRE, RF AT BOR SR AL R S 360, LE /R BEMEFE AR & S A
L2 2 FIEAR LA B

What Exactly Is a Finite State Machine?

ARSI LE X

Historically, a finite state machine is a rigidly formalized device used by mathematicians to solve
problems. The most famous finite state machine is probably Alan Turing’ s hypothetical device: the Turing
machine, which he wrote about in his 1936 paper, “On Computable Numbers.” This was a machine presaging
modern—day programmable computers that could perform any logical operation by reading, writing, and erasing
symbols on an infinitely long strip of tape. Fortunately, as Al programmers, we can forgo the formal
mathematical definition of a finite state machine; a descriptive one will suffice:

DT S R B SR, A BRARZS AU —Fh ™ 1 2 A Pl H5027 5 P DA WX BT — P e o 55 44 T BRARAS ML AT g 2 B =2
« BIRAE19364F K M8 {On Computable Numbers) |5 R ARG AE BIR ML 2B EVLIAETE, Refdd e
TR pRE Ay FIEAT 5 BAEERAT S R ST AR A . SIS0, TENALRRI P I, BATTRE T A A Bl e SUA
L, WM ERCE L.

A finite state machine is a device, or a model of a device, which has a finite number of states it can be in
at any given time and can operate on input to either make transitions from one state to another or to cause
an output or action to take place. A finite state machine can only be in one state at any moment in time.

A FLRSHUZ —Ph s S — PR 58, e A IR —RIREM AL, AT —% M 2, v DOl i AR B A—Fietk
BB —FOR SR E T AR B R A B BARSHUEAT— I 288 LR b T — Rk S .

The idea behind a finite state machine, therefore, is to decompose an object’ s behavior into easily
manageable “chunks” or states. The light switch on your wall, for example, is a very simple finite state
machine. It has two states: on and off. Transitions between states are made by the input of your finger. By
flicking the switch up it makes the transition from off to on, and by flicking the switch down it makes the
transition from on to off. There is no output or action associated with the off state (unless you consider
the bulb being off as an action), but when it is in the on state electricity is allowed to flow through the
switch and light up your room via the filament in a lightbulb. See Figure 2. 1.

Bk, A RCRESHLE & 0 SRR IE— N ST a0 2 T E “ B B RAS . s AT IROG, g —Fh ek
R BRRASHL. EHEMARE: 5K, RSB IRYEL AR AR . TR L, RN IPR A
FITFHPRAS, TFART, BRI HPRASH A BIOCHPRAS . TERIPRASE G EM HEE I (BRAEREEXT TR N
—PhEE) , ESTETFIPIRAS T I A T OC3E Hd e AT v AT 2 IR s i) 2. 1

http://school. ogdev. net/ArticleShow. asp?id=6386&categoryid=2

s, 2/8

2008-3-19

RIS B A Be A el ()

= HE M AL — OGDEV. NET—27 3 it b

enp switch dOWn

Zip switch ug .

-~

—

e

Figure 2.1. A light switch is a finite state machine. (Note that the switches are reversed in Europe and
many other parts of the world.)

E2.1 FFoE—FRra RSN, GER: XFIFRIERNAIL IR 2 E XA 4770)

0f course, the behavior of a game agent is usually much more complex than a lightbulb (thank goodness!).
Here are some examples of how finite state machines have been used in games

MR, WER BB AT AR LU B A3 2 o I SO —287ElEk A AT BRAR S VLRI 48+

A HARIE M] & % T-http://blog. csdn. net/lanphaday, ¥4, (HORFS 5w, WM E-S AR,

PEH IR P SRR GBI IR AL, B ARSI TR A2 2 B e AT NGRS 28 (R AR 0 T B 9 S R SRR
FRMAT R, AR AR VARG A T e i F R, 51EE TR

* The ghosts’ behavior in Pac-Man is implemented as a finite state machine. There is one Evade state
which is the same for all ghosts, and then each ghost has its own Chase state, the actions of which are
implemented differently for each ghost. The input of the player eating one of the power pills is the
condition for the transition from Chase to Evade. The input of a timer running down is the condition for the
transition from Evade to Chase

+ Pac-Mac B IRE R AT A A BRSPS Pra ks RAH —FhEvade (GREEE) RZES, EAMIRISSINAE 2 —HER): (HA—
MR RE—AChase GEED R, ERSEIEAHIAE,

Quake—style bots are implemented as finite state machines. They have states such as FindArmor, FindHealth
SeekCover, and RunAway. Even the weapons in Quake implement their own mini finite state machines. For
example, a rocket may implement states such asMove, TouchObject, and Die.

« Quake RYIMNLEF AN UG PRARENSEIL . EfMFindArmor (Fk%&#) . FindHealth (FAMD . SeekCover ($£#EH*) Fi
RunAway (BEHf1) 252 FRRA. 2 Quake B ST AR #R A A /N A VRSN, Bl — A K E SRS A Move (B
3D . TouchObject (fl#I¥)fk) FDie (FETD) ZHJLFRE.

* Players in sports simulations such as the soccer game FIFA2002 are implemented as state machines. They
have states such as Strike, Dribble, ChaseBall, and MarkPlayer. In addition, the teams themselves are often
implemented as FSMs and can have states such as KickOff, Defend, or WalkOutOnField

+ FIFA20022 2 (I3 SR Ak B (32 50 B2 TPIRAHLSE LN, EATH Strike (B3H) . Dribble (ABkK) . ChaseBall

http://school. ogdev. net/ArticleShow. asp?id=6386&categoryid=2

g, 3/8

2008-3-19

RIS B A Be A el ()

= HE M AL — OGDEV. NET—27 3 it b

(BER) FiMarkPlayer (HJAD iR, Sbak, FEAEKBAE H W& FIFSMSEEL, HKickOff (KEEK) . Defend (Fi<y) Fl
WalkOutOnField CAKNEEARIE, 1ELIRENEF—T) o

» The NPCs (non-player characters) in RTSs (real-time strategy games) such as Warcraft make use of finite
state machines. They have states such as MoveToPosition, Patrol, andFollowPath.

« RTS CSERSRBEFRR) (BldnWarcraft) HHHINPC (AEBLR M) WRHAA BRRENL. ENTHFREAMoveToPosition (#
ZhFHH) . Patrol (IKiZ) FlFollowPath (ERFE) 4%,

Implementing a Finite State Machine

A RAREPLSZI

There are a number of ways of implementing finite state machines. A naive approach is to use a series of if-
then statements or the slightly tidier mechanism of a switch statement. Using a switch with an enumerated
type to represent the states looks something like this:
i%ﬁ@ﬁﬁﬂﬁﬁ%ﬁﬁo‘4@%%@%%%@%”%W%ﬁﬂmﬁ@ﬁ%ﬁi%%%wﬁw%@oﬁ%wﬁw%i
WG At A0 TR AR«

enum StateType {state RunAway, state Patrol, state Attack};
void Agent::UpdateState (StateType CurrentState)

{

switch(CurrentState)

{

case state RunAway:

EvadeEnemy () ;

if (Safe())

{

ChangeState (state Patrol);

}

break;

case state Patrol:

FollowPatrolPath() ;

if (Threatened())

{

if (StrongerThanEnemy ())

{

ChangeState (state Attack) ;

1

else

{

ChangeState (state RunAway) ;

}

1

break;

case state Attack:

if (WeakerThanEnemy ())

{

ChangeState (state RunAway) ;

}

else

{

BashEnemyOverHead () ;

1

break;

}//end switch

1

Although at first glance this approach seems reasonable, when applied practically to anything more
complicated than the simplest of game objects, the switch/if-then solution becomes a monster lurking in the
shadows waiting to pounce. As more states and conditions are added, this sort of structure ends up looking
like spaghetti very quickly, making the program flow difficult to understand and creating a debugging
nightmare. In addition, it’ s inflexible and difficult to extend beyond the scope of its original design,
should that be desirable:-- and as we all know, it most often is. Unless you are designing a state machine to
implement very simple behavior (or you are a genius), you will almost certainly find yourself first tweaking
the agent to cope with unplanned—for circumstances before honing the behavior to get the results you thought
you were going to get when you first planned out the state machine!

JUEWE—F XA T SR TT R, AH UEL R 21 b g 17 5 R R0 Ry ST S bRl L R, XA switceh/if-then 7 ZA
JT BARTEIA 2 T IR ——BEI ER AT BE SRR — T o BEAE R NPIRASFIG A 0, TRAh 25 M AR Pk & B A5 2 ORIl 4%

http://school. ogdev. net/ArticleShow. asp?id=6386&categoryid=2

uihY, 4/8

2008-3-19

RIS IR Reth vt (—) — E BT A Ly — OGDEV. NET—57 4 [t Jihd, 5/8

—FE, AR LIRME, FERCN RS . MhAh, EATAE I HAE DA) s 2 ANEAT YR, AR EATI#R N
T, W BRAMRAPRESPUSEI AR R R AT (BEEIRE—NRAD , BIPAIRE—UORRPRES U I %, 7EAR
CREET AT IS RAVRA BT A R AT, RILTE E S R IR A BE AR TCTE N R 2% IR B RS

Additionally, as an AI coder, you will often require that a state perform a specific action (or actions)
when it’ s initially entered or when the state is exited. For example, when an agent enters the state
RunAway you may want it to wave its arms in the air and scream “Arghhhhhhh!” When it finally escapes and
changes state to Patrol, you may want it to emit a sigh, wipe its forehead, and say “Phew!” These are
actions that only occur when the RunAway state is entered or exited and not during the usual update step.
Consequently, this additional functionality must ideally be built into your state machine architecture. To
do this within the framework of a switch or if-then architecture would be accompanied by lots of teeth
grinding and waves of nausea, and produce very ugly code indeed.

HeAk, BN —RBALRRIT 01, R T RS — P RAT N (BE — R YT, e NS B TT RS
B . 02— AN BEARBE T RunAway (GBI IRASIHRA B B HE a8 4 7] 25 R 99— 75 “Arghhhhhh () 1 7 4T
W I Patrol GRIZ) RAS, MRATREALLETIWG /R BEEEBULAR G U —75 “Phew (WR) | 7 IXEEAT 4 #8 HAEHE NI 1
FRunAway CUEBE) RSN A S KA, WA ZBEAEE Kupdate CGEF) FrEcfBos B, PRI S 40 (1) T RS 04 20 1 55 55 b
G FUPRIIRA LRI o 7Eswi tehsl 3 i £ then b L SEBLBCHRE ik ARELLZZSE, 7 AP RO T TR, A2 A .

State Transition Tables

RS R

A better mechanism for organizing states and affecting state transitions is a state transition table. This
is just what it says it is: a table of conditions and the states those conditions lead to. Table 2.1 shows
an example of the mapping for the states and conditions shown in the previous example.

—ANAEE T AF A SV TGS B U R VGS R . i OO — M S SR S EUIRS R . K2, 12
T SCARTE AR S RIS A 5 2«

Table 2.1. A simple state transition table

2.1 fi kA

Funaway safe Fatrol
At tack WeakerThanFnemy Foritwrasy
Fatrol Threatened AND StrongerThanEnemy Attack
Fatrol Threatened AND WeakerThanFEnemy Furdwray

This table can be queried by an agent at regular intervals, enabling it to make any necessary state
transitions based on the stimulus it receives from the game environment. Each state can be modeled as a
separate object or function existing external to the agent, providing a clean and flexible architecture. One
that is much less prone to spaghettification than the if-then/switch approach discussed in the previous
section

B R AATR— T I A A AN A, DUIAR B e85 T IR IS B2 B 1 BRI T S KRS e e . b — AR HR RE 18 51
IR 053 2) S5 Be AR AR A T SR 2L, DR IS WA AT 48 30 o X — B A IR A B S G SO it
then/switchUHANFE R 5 R 2R THI 4%

Someone once told me a vivid and silly visualization can help people to understand an abstract concept

Let’ s see if it works---

WA NS VRER AN WO T G TR RE S Bh AT B S BRI, LA TRE B e TR .-

Imagine a robot kitten. It’ s shiny yet cute, has wire for whiskers and a slot in its stomach where
cartridges — analogous to its states — can be plugged in. Each of these cartridges is programmed with
logic, enabling the kitten to perform a specific set of actions. Each set of actions encodes a different
behavior; for example, play with string, eat fish, or poo on carpet. Without a cartridge stuffed inside its
belly the kitten is an inanimate metallic sculpture, only able to sit there and look cute-:- in a Metal
Mickey kind of way.

RGN, TNNRREEIEETZ, 48R LHERAIUF AR G — M ——a] DR RS T 6
NI . R — DA A AR S — BOBRTR T, (/MBI St — RIR B WahE . &— RIBIMERIIS N A F AT A,
Uiplay with string. eat fishfllpoo_on carpet. WIHH AL/ B MBIE LA, et — Uy ——R7EH
B, Bk,

The kitten is very dexterous and has the ability to autonomously exchange its cartridge for another if
instructed to do so. By providing the rules that dictate when a cartridge should be switched, it’ s possible
to string together sequences of cartridge insertions permitting the creation of all sorts of interesting and
complicated behavior. These rules are programmed onto a tiny chip situated inside the kitten’ s head, which
is analogous to the state transition table we discussed earlier. The chip communicates with the kitten’ s

http://school. ogdev. net/ArticleShow. asp?id=6386&categoryid=2 2008-3-19

RIS B A Be A el ()

= HE M AL — OGDEV. NET—27 3 it b

internal functions to retrieve the information necessary to process the rules (such as how hungry Kitty is
or how playful it’ s feeling). As a result, the state transition chip can be programmed with rules like:

IF Kitty Hungry AND NOT Kitty Playful SWITCH CARTRIDGE eat fish

All the rules in the table are tested each time step and instructions are sent to Kitty to switch cartridges
accordingly.

AN AR RYG, It H AR E 2 B sh b TE el 4 NS . T 45 5 A4 i) 1% 50 e m) 4 AL RN, e e R O DY
Huel N —Z2 5 (1) AT 4l AL G T A R T S AR AT o XSS S HT SO R RS R R AR AL I N G R P BN B —AS
BN s JRCETE AN SR . 8 BN N S Th RRIA, DASRAS AR BN N R B A R (WIK t ey 2 R & Bt 2
MBS R) o REFHS B AT U W 1977 204 S J)

IF Kitty Hungry AND NOT Kitty Playful SWITCH CARTRIDGE eat fish

TEAF— AN Ta) - ERAS U v R B A (R ROU) - TR K tty A g2 DAY 4l A4

This type of architecture is very flexible, making it easy to expand the kitten’ s repertoire by adding new
cartridges. Each time a new cartridge is added, the owner is only required to take a screwdriver to the
kitten” s head in order to remove and reprogram the state transition rule chip. It is not necessary to
interfere with any other internal circuitry.

PP R AP AR PE, I B BT R TR AL A T DU 2 RN FR R . UM DB TR AL, RS
Tk Fe, EORFRIRASE U S B a], A5 E WS BT A0 .

Embedded Rules

FIU] Py i

An alternative approach is to embed the rules for the state transitions within the states themselves.
Applying this concept to Robo—Kitty, the state transition chip can be dispensed with and the rules moved
directly into the cartridges. For instance, the cartridge for play with string can monitor the kitty’ s
level of hunger and instruct it to switch cartridges for the eat fish cartridge when it senses hunger
rising. In turn the eat fish cartridge can monitor the kitten’ s bowel and instruct it to switch to the

poo _on carpet cartridge when it senses poo levels are running dangerously high

3 AR I T R R AR FE S I R PR AS AR G . EXTPLES AN XA 5, T DAL BRIRAFe s, AR)
WEBI TR R . #iliiplay with stringP] R AEAL AR WA/ N O ILRBE HIE I Ho iy & B DI Bleat £1shm]Hf AR
ﬁoﬁﬁﬂ,m@ﬁﬁﬂﬁAﬁﬁ%%%ﬂ¢ﬁ%?E%%@,#E@ﬁﬁﬁﬂ%%M@Nﬁé?ﬂ%QWQM}MmﬁT
ECAN KA

Although each cartridge may be aware of the existence of any of the other cartridges, each is a self-
contained unit and not reliant on any external logic to decide whether or not it should allow itself to be
swapped for an alternative. As a consequence, it’ s a straightforward matter to add states or even to swap
the whole set of cartridges for a completely new set (maybe ones that make little Kitty behave like a
raptor). There’ s no need to take a screwdriver to the kitten’ s head, only to a few of the cartridges
themselves

SR AT HE ARG W B AN S B AT, (REA R BAEN, TR B ek S A, AT ETM
AT Bk . AT AT DAHER IR IR OO R, R DSBS B CA LS (TREX S8 /N Y
TTABEGE—FE o RN BT THIFA K8, N B SR nl i AL R AT

Let’ s take a look at how this approach is implemented within the context of a video game. Just like Kitty’
s cartridges, states are encapsulated as objects and contain the logic required to facilitate state
transitions. In addition, all state objects share a common interface: a pure virtual class named State

Here’ s a version that provides a simple interface:

ILAE SR B TEARAUFE R] SEIRIE — 7 %o BRRIA R /N AT SR A, aT DU e] — A 4L, o S i RS
NI 5ok, ARSI E-NEAED . — A hState A X BA AN N S

Class State

{

public:

virtual void Execute (Troll* troll) = 0:

¥

Now imagine a Troll class that has member variables for attributes such as health, anger, stamina, etc., and
an interface allowing a client to query and adjust those values. A Troll can be given the functionality of a
finite state machine by adding a pointer to an instance of a derived object of the Stateclass, and a method
permitting a client to change the instance the pointer is pointing to

IMAEA G Trol 125G — RANEMER R L 5. health, anger. stamina®, 48RtAGHHMNF4E 1 DAA AN B X AR e .
Trol LB IN—A i n Fe A (g IIStateSIRZEZRIISER]D SKIG A BURANLNTIRE, B34 — A BB FaEr 18 R 1) sE 41
W7

class Troll

{

/% ATTRIBUTES OMITTED #*/

State* m pCurrentState;

http://school. ogdev. net/ArticleShow. asp?id=6386&categoryid=2

i, 6/8

2008-3-19

RIS IR Reth vt (—) — E BT A Ly — OGDEV. NET—57 4 [t Jihd, 7/8

public:
/* INTERFACE TO ATTRIBUTES OMITTED */

void Update ()
{

m_pCurrentState—>Execute(this) ;

}

void ChangeState (const State* pNewState)

{

delete m pCurrentState;

m pCurrentState = pNewState;

!

b

When the Update method of a Troll is called, it in turn calls the Executemethod of the current state type
with the this pointer. The current state may then use the Troll interface to query its owner, to adjust its
owner’ s attributes, or to effect a state transition. In other words, how a Troll behaves when updated can
be made completely dependent on the logic in its current state. This is best illustrated with an example, so
let’ s create a couple of states to enable a troll to run away from enemies when it feels threatened and to
sleep when it feels safe.

i A Trol 1ffUpdate 5%, & LAthisHaE A S E0H A MRS A MExcecute 51k, MEPIRA AT REAE F Trol L)H: A iy
A S, WEINEENEEEE A AR, HAiGil, Trol 1 BEAKEUS ADIRS 1S RAE 58 HAT N . X B A&
U IR X — W, AR TRATRTE S MRS LI LME A Tro L 1 REUE 7R R IRk 0, BRAE 75 204 I

// State Runaway

class State RunAway : public State

{

public:

void Execute (Troll* troll)
{

if (troll->isSafe())

{

troll->ChangeState (new State Sleep());
}

else

{
troll->MoveAwayFromEnemy () ;
}

}

b

// State Sleep
class State Sleep : public State
{

public:

void Execute (Troll* troll)

{

if (troll->isThreatened())

{

troll->ChangeState (new State RunAway())
}

else

{
troll->Snore() ;
}

}

b

As you can see, when updated, a troll will behave differently depending on which of the states
m pCurrentState points to. Both states are encapsulated as objects and both provide the rules effecting

http://school. ogdev. net/ArticleShow. asp?id=6386&categoryid=2 2008-3-19

SIS R AR BeR beil () — FREMIFIT AL — OGDEV. NET—#% it 1 i, 8/8

state transition. All very neat and tidy

WRAT L, M HUpdatel, Trol 14T AMKHim_pCurrentStateds [l FPRASAFRTA TR PEIRSAEZERIXSE, I
HARERAL T P ARSI RN T I — D)4 R T T 43 -

This architecture is known as the state design patternand provides an elegant way of implementing state-—
driven behavior. Although this is a departure from the mathematical formalization of an FSM, it is
intuitive, simple to code, and easily extensible. It also makes it extremely easy to add enter and exit
actions to each state; all you have to do is create Enter and Exit methods and adjust the agent’ s
ChangeState method accordingly. You’ 11 see the code that does exactly this very shortly

X B R AT A BRSO, AR AL TR SIS AT A S R IRATIEFSMIN B A B, HERGHE. ST
LIt HR S . FIAE RN AL A 5 M I B AN B AR IN I3 4 s AR SO SEBL Enter AIEX i t 7 ik AH NIt
A2 ChangeState)5k, RAF AT AT 258 X L8 L AR O AR H A/ o

AR H BB T ARG S H R, AT AT 1 1) i S I A SRATTIRC R !

FATAT PP ! |
S BRI
@ om0 LEE, S (A A KB AL T
PR 2 A o) Ko N IR i s g e e
RESCS T Bt ZEMATL:
() %5 bl [, S o e ARSI () 8 0 s
(ED b7 DR 45 7 T 124 0 5 4 1 s
P AT

G o 5 P RIF A o) B R BN A AR B
TR IR B 5 AR R A A

G e b [E P A b B S BOR R AR, P E
WA A BULE I 3t A e 2 |

@ 2 H5AREWRPECKMEIHEZ FiR&R

RYBAT - R3FY] - BB - IR — sliclE -)

Copyright © 2004-2007 BilfE BIA (L) fHPAT All rights reserved
OGDEV. NET — &G4 M e f: 43958 1024 X 768

http://school. ogdev. net/ArticleShow. asp?id=6386&categoryid=2 2008-3-19

