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ABSTRACT 

A new method was developed for obtaining pure 0- 
CN. Calcium caseinate (3  % ) was reconstituted, ren- 
neted to form a gel, cooled (4°C)  to allow 0-CN 
dissociation from the caseinate gel, and centrifuged. 
The supernatant was warmed to 30”C, precipitating 
pure P-CN from solution. Large quantities of P-CN 
were recovered by scaling-up this procedure, but 
these P-CN preparations were less pure than the P- 
CN that was prepared on a smaller scale. Chromatog- 
raphy (FI’LC@) and urea-PAGE showed P-CN to be 
the main component in the precipitate. Chymosin, 
used to form the caseinate gel, did not extensively 
hydrolyze 0-CN under the conditions of these experi- 
ments. Calcium concentration, cooling time, and 
caseinate concentration influenced the recovery of P- 
CN. Maximum recovery of 0-CN, under the ex- 
perimental conditions used, occurred at 10 mM cal- 
cium, 48 h of cooling, and 3% caseinate concentration. 
( Key words: P-casein, casein, isolation) 

Abbreviation key: 61 = 0-CN fragment 1 to 192 and 
1 to 189, 1311 = P-CN fragment 1 to  163, PIII = 0-CN 
fragment 1 t o  139, RU = rennin units. 

INTRODUCTION 

@-Casein is a milk protein that constitutes approxi- 
mately 25% of the total milk protein ( 3 0 )  and com- 
bines with a s ~ - ,  a s ~ - ,  and K-CN to form casein 
micelles. Isolating large quantities of P-CN may be 
useful in developing new products, such as surface- 
active agents in emulsified or aerated products, or in 
adjusting rennet curd strength ( 1 1). 0-Casein also 
could be used in infant formula ( 2  3 1 or as the start- 
ing ingredient for obtaining bioactive peptides (2  1) .  

The method presented in this paper for isolating 6- 
CN is based upon conditions under which P-CN is 
soluble and the other caseins are insoluble, which 
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allowed the P-CN to be collected as part of the super- 
natant and subsequently precipitated. By changing 
pH, salt concentration, or temperature, proteins can 
be isolated (3 3 1. For example, caseins precipitate 
when the pH of milk is lowered to 4.6 and can be 
separated from the other milk components. In 1955, 
Sullivan et al. ( 2 9 )  noted that the solubility of 6-CN 
in a buffer solution increased as the temperature 
decreased. They suggested that the solubility of 0-CN 
in milk also increased as it was cooled, which par- 
tially accounted for the increase in serum casein. In 
1968, Rose ( 2 6 confirmed this theory and quantified 
the amount of 0-CN ( u p  to 30%) that dissociated 
from the casein micelle a t  4°C. Since 1968, others ( 8 ,  
12)  have studied the solubility of P-CN at  low temper- 
atures. Some (1,  3, 7 )  have examined parameters, 
such as pH, calcium, and phosphate, that  influence 
the cold solubility of 0-CN. 

The use of rennet to produce a n  insoluble casein 
complex, followed by cooling to release j3-CN, has 
been attempted before. McGann and Pyne ( 2 2 )  ren- 
neted colloidal phosphate-free milk and skim milk at  
36°C and then cooled them t o  0 to 2°C. After 12 h, 
they filtered the solutions and found 0 and 0.34% P- 
CN, respectively. Another approach was cold rennet- 
ing of calcium caseinate in 50 mM calcium chloride to 
produce a coagulum depleted of 0-CN ( 2 ) .  However, 
other researchers ( 2 3 )  found that the product was 
not 6-CN but 61 (P-CN fragments 1 to 192 and 1 to 
189). Chymosin is the main enzyme in rennet ( 2 8 )  
and can hydrolyze 6-CN ( 5 ,  6, 17).  Although 0-CN is 
not extensively hydrolyzed by chymosin in most 
cheeses, @-CN in aqueous solution is rapidly hydro- 
lyzed by chymosin to fragments that  have been desig- 
nated PI’ ( P-CN fragment 1 to 1921, PI” ( P-CN frag- 
ment 1 to  1891, 011 (P-CN fragment 1 to 163), and 
PI11 ( P-CN fragment 1 to 139) (16) .  Because the two 
fragments designated as PI’ and PI” are indistin- 
guishable by urea-PAGE (4, 171, we use the term PI 
(0-CN fragments 1 to 192 and 1 to 189) to include 
both PI’ and PI”. For this reason, there is an  added 
emphasis in this paper on comparing the isolated 
product to known 0-CN standards and to a prepara- 
tion of PI. 

Calcium changes the solubility of P-CN. In solu- 
tion, isolated 0-CN is sensitive to calcium and precipi- 
tates in the presence of 10 mM calcium chloride at 
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37°C (10, 20). The amount of (3-CN that precipitates 
depends on pH, temperature, calcium concentration, 
and genetic variant of P-CN (19, 20, 25). As tempera- 
ture is lowered from room temperature to near freez- 
ing, P-CN becomes more soluble and will not precipi- 
tate at 4°C in the presence of up to 400 mM calcium 
( 3 1 ) .  K-Casein also has a stabilizing influence on 
isolated &CN. If K-CN is added to a solution of iso- 
lated P-CN, the amount of P-CN that precipitates 
decreases (20, 34). 

Methodls that  have been developed for isolating 0- 
CN on a large scale include microfiltration ( 15) and 
ultrafiltration ( 2 3 )  of sodium caseinate a t  4°C t o  
obtain a fraction rich in P-CN. Other methods for 
isolating L3-CN are ion-exchange chromatography (2  1, 
24) and continuous electrophoresis (2  11, although 
these methods are less practical for large-scale 
production of P-CN. 

The main purpose of this research was to develop 
an alternative method for isolating large quantities of 
P-CN. We optimized the recovery conditions by chang- 
ing the calcium concentration, cooling time, and 
caseinate concentration. We compared the isolated 0- 
CN to P-CN standards and to hydrolyzed 0-CN using 
FPLC@, a;mino acid analysis, and PAGE. These com- 
parisons were made to identify the isolated protein as 
P-CN and to determine its purity. 

MATERIALS AND METHODS 

Materials 

Calcium caseinate was purchased from New 
Zealand Milk Products Inc. (Santa Rosa, CA). Cal- 
cium chloride, urea, NaCl, acetate, and Whatman 
number 4 filter paper were obtained from Fisher 
Scientific (Fair Lawn, NJ) .  Spectra/Por@6 dialysis 
tubing (1000 molecular weight cutoff) also was ob- 
tained from Fisher Scientific and used for dialysis of 
samples before amino acid analysis. Chymosin 
( C h y m a x T  was donated by Pfizer Inc. (Milwaukee, 
WI). BisJTris-propane, Tris.HC1, K-CN, and P-CN 
were obtained from Sigma Chemical Company (St .  
Louis, MO); this P-CN was used as a standard for 
comparison and is referred to as standard P-CN. 

Filters (0 .8  and 0.2 pm) used to filter buffer solu- 
tions were obtained from Millipore (Bedford, MA). 
Filters (0.:2 pm) from Chrom Tech, Inc. (Apple Val- 
ley, MN) were used to filter samples before injection 
into the FPLC@. A mono Q HR 5/5 column and 8 to 
25% gradient gels were purchased from Pharmacia 
Biotechnology (Uppsala, Sweden). The FPLC@ sys- 
tem and €'hastsystem@ (Pharmacia Biotechnology) 

were used for fast protein liquid chromatography and 
PAGE. Becton Dickinson number 6901 sedimentation 
tubes were purchased from Curtin Matheson Scien- 
tific Inc. (Eden Prairie, MN). Sodium acetate trihy- 
drate and Bacto@ agar 0140 were from VWR Scien- 
tific (Chicago, IL).  

Optimization of Isolation Procedure 

To determine the amount of calcium chloride, cal- 
cium caseinate, and the cooling time needed for op- 
timal recovery of 0-CN, we designed an  experiment 
using three different values for each variable. 
Caseinate concentrations used were 1, 2, and 3%. 
Calcium chloride concentrations were 10, 15, and 20 
mM. Cooling times were 24, 48, and 72 h.  All 27 
possible combinations were made in duplicate for a 
total of 54 samples. Samples of 45 ml were prepared 
according to the method described in this paper for 
small-scale isolation. Least squares means and stan- 
dard errors were calculated using SAS ( 2 7 ) software. 

Small-Scale Isolation of 8-CN 

Calcium caseinate (3%) was dissolved in a 
10-mM solution of calcium chloride and stirred for 1 h 
as the temperature was increased to 31°C. The pH of 
the solution was adjusted to 6.8, and 23.8 rennin 
units (RU) of chymosi f i  of caseinate solution was 
added to form a gel. Chymosin activity was deter- 
mined according to the description by Ernstrom ( 14) ,  
except that  coagulation times were detected using a 
Formagraph (Foss Electric, Hillerod, Denmark). 
Thirty minutes after rennet addition, the gel that  
formed was disrupted by stirring for 2 to 3 min. The 
aggregated caseinate particles settled to the bottom of 
the beaker. The resulting solution was cooled to  4°C 
and left undisturbed for 48 h. After 48 h, samples 
were stirred again to resuspend the caseinate parti- 
cles and the dissociated 0-CN. Samples were cen- 
trifuged (5520 x g a t  4°C for 15 min); then the 
supernatant was collected and filtered at 4°C through 
Whatman number 4 filter paper. Warming the super- 
natant in a 45°C water bath caused the b-CN to 
precipitate. The precipitate was removed with a spat- 
ula, dried in a desiccator, and weighed. 

The percentage of 0-CN recovered was calculated 
by dividing the grams of 0-CN recovered by the 
amount of 6-CN in the original calcium caseinate 
powder. The amount of 0-CN in the calcium caseinate 
was determined by FPLC@ according to the procedure 
of Davies and Law (9). The j3-CN peak was collected, 
and the concentration was calculated by reading the 
absorbance a t  280 nm and using an extinction coeffi- 
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cient of 4-.6. The calcium caseinate contained 91.8% 
protein. 

Scale-up of the Isolation Procedure 

The procedure used for laboratory-scale isolation of 
P-CN was modified for scale-up. A 160-L solution of 
3% calcium caseinate and 10 mM calcium chloride 
solution was prepared in a 190-L jacketed tank. The 
temperature was maintained at  31°C during the 1 h 
of stirring. The pH of the large-scale isolation was not 
adjusted. This solution had an  unadjusted pH range 
of 6.6 to 6.7. The renneting procedure was the same 
as that used for small-scale isolation. The gel was 
disrupted by stirring for 2 to 3 min. The caseinate 
solution was cooled by circulating 9°C water through 
the jacket and then storing the tank a t  4°C. Cooling 
time was, 48 h. Supernatant was collected by two 
methods: the liquid fraction was siphoned after the 
caseinate particles resettled t o  the bottom of the tank, 
or  the supernatant was obtained by clarification using 
a separator (model MP 1254 Westfalia separator; 
Centric0 Corporation, Englewood, NJ ) .  The fractions 
collected using these two techniques were warmed to 
precipitate 0-CN. The precipitate was resuspended in 
water and spray-dried (Niro Atomizer P-6.3 spray- 
dryer; Niro Atomizer, Columbia, MD).  The inlet tem- 
perature was 200"C, and the exit temperature was 
100°C. The percentage of yield was calculated using 
the same formula as previously described for small- 
scale isolation. 

FPLC@ 

Isolated /3-CN was compared with standard /3-CN 
(from Sigma Chemical Co.) and hydrolyzed samples 
of 0-CN using FPLC@ ( 9  1. Buffer 1, consisted of 0.005 
M bis-Triis-propane and 3.3 M urea, adjusted to pH 
7.0 with HC1. Buffer 2 was identical to buffer 1, 

TABLE 1. The ANOVA of the effect of caseinate concentration, 
calcium concentration and cooling time on the recovery of 4-CN.1 

Source df MS P 

Replication (Rep)  1 23.09 0.26 
Time 2 48.77 0.08 
Rep x time 2 2.55 0.87 
Calcium 2 208.01 0.00 
Rep x calci.um 2 8.40 0.62 
Time x calcium 4 44.12 0.07 
Caseinate 2 77'7.11 0.00 
Rep x caseinate 2 4.47 0.78 
Time x caminate 4 23.19 0.29 
Calcium x caseinate 4 12.82 0.58 
Model 25 94.26 0.00 
Error 27 17.55 

lR2 = 0.838. 

except that 1 M NaCl was added. Both buffers were 
filtered through 0.8- and 0.2-pm filters before use. 
Samples of isolated P-CN and P-CN standards were 
dissolved in buffer 1 and filtered through a 0.2-pm 
filter; 500 pl were injected onto a mono Q HR 5/5  
column (Pharmacia Biotechnology). The flow rate 
used was 1 ml/min. The absorbances were measured 
a t  280 nm. 

PAGE 

Samples were dissolved in 5 ml of urea-Tris-acetate 
buffer a t  pH 6.4. The buffer contained 6.6 M urea, 
0.112 M Tris, and 0.112 M acetate. Two drops of P- 
mercaptoethanol and 1 drop of bromophenol blue 
(4.5%) were added, and the samples were boiled for 5 
min. Samples were applied to  an  8 to 25% gradient 
gel that  had been modified according to Van Hekken 
and Thompson ( 3 2 )  for urea-PAGE on a Phast- 
System@. Running conditions, staining, and destain- 
ing also were as described by Van Hekken and 
Thompson ( 3 2 1. 

Hydrolyzed Samples of 8-CN 

Chymosin hydrolyzes B-CN to form PI, BII, and 
PIII, listed here in the order of increasing elec- 
trophoretic mobility (5 ,  6, 17).  Samples of 1% (wt/ 
vol) standard 0-CN were hydrolyzed at  30°C for 12 h 
with chymosin. Chymosin concentration was 0.0238 
RU/ml. Three samples were prepared, and the pH of 
the samples was adjusted (2.2, 5.5, and 7.0) to give 
different concentrations of /3I and 611. 

In a separate experiment, 0-CN ( 1%) was hydro- 
lyzed by chymosin under conditions that were similar 

TABLE 2. Least squares means for time, caseinate concentration, 
and calcium concentration on the recovery of O-CN. 

LSM' 

( % I  
Time, h 

24 55.38a 
48 58.46b 
72 58. lEiab 

1 49.84a 

3 62.64C 

10 60.81s 
15 53.84b 
20 51.37c 

Caseinate, % 

2 59.53b 

Calcium, mM 

ahCMeans within categories with no common superscripts differ 

'SE = 100  Recovery is expressed as the percentage recovered 
( P  < 0.05) 
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to the isolation conditions (pH 6.8; 4°C). Hydrolysis 
was monitored using PAGE. Samples were taken ev- 
ery 2 h and monitored for formation of PI using 
PAGE. The sample a t  12 h was analyzed using 
FPLC@, and the major peaks were collected and ana- 
lyzed for amino acid composition. 

Residual Chymosin Activity 

Residual chymosin activity in p-CN preparations 
was determined by using a K-CN agar diffusion assay 
( 18 1. Becton-Dickinson sedimentation tubes were 
filled with hot (70°C) K-CN agar, leaving enough 
space for :sample addition. The tubes were sealed with 
parafilm (Fisher Scientific, Fair Lawn, N J )  and 
stored a t  4°C. After the tubes were warmed to room 
temperature and the parafilm was removed, a 
10-pL sample was applied. The diffusion of chymosin 
was followed by monitoring the opacity of the agar. As 

1 2 3 4 5 
Figure 1. Urea-PAGE of standard p-CN ( lane l), isolated 8-CN 

( lane 2), and 0-CN hydrolyzed by chymosin (lanes 3 to 5).  (3- 
Casein was hydrolyzed a t  pH 2.2 (lane 4 ) ,  pH 5.5 (lane 5),  and pH 
7 ( lane 3 )  a t  37°C for 12 h. Chymosin concentration in all of the 
samples was 0.0238 RU/ml. Hydrolysis under these conditions 
produced varying amounts of PI and pI1. a = 0-CN, b = PI, and c = 
011. FPLC@ a.nalyses of the different lanes are shown in Figure 5. 

K-CN was hydrolyzed, the agar turned from transpar- 
ent to white. Tubes were held at 37"C, and the dis- 
tance of diffusion was measured after 48 h. A stan- 
dard curve was prepared simultaneously with 
unknown samples. Sample preparation for the 
unknowns consisted of preparing a solution of isolated 
/3-CN such that the residual activity was within the 
range of the standard curve. Residual chymosin ac- 
tivity was reported as rennin units per gram of iso- 
lated 8-CN. 

RESULTS AND DISCUSSION 

Optimizing the Isolation Procedure 

Analysis of variance and the results for calcium 
concentration, caseinate concentration, and cooling 

0.09 

2 0.05 

a 

,-.- 

0.09 

f 0.05 

0.01 

10 20 30 40 

Elution Volume (ml) 

0.9 

Y si- 
v 0.5 - 
z 

0.1 

0.9 

s 
v 
W 

0.5 - 
z 

0.1 

0 10 20 30 40 

Elution Volume (ml) 

Figure 2. The FPLC@ chromatograms of standard P-CN ( a )  and 
isolated 0-CN ( b ) .  Absorbance a t  280 nm ( - )  and salt gradient 
( -  - - )  are shown. 
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0.01, 

time are shown in Tables 1 and 2. A cooling time of 24 
h was necessary to recover 55% of the P-CN. Increas- 
ing the cooling time to 48 h increased the amount of 
0-CN that was recovered to 58.5%. Additional cooling 
after 48 h did not increase the amount of @-CN reco- 
vered. Caseinate concentration had the largest in- 
fluence on the amount of @-CN recovered. Increasing 
the caseinate concentration from 1 to 3% greatly in- 
creased the amount of P-CN that was recovered (50 to 
63%). The trend was opposite for calcium concentra- 
tion. As the calcium concentration was increased from 
10 to 20 mM, the amount of recovered @-CN 
decreased. Addition of 10 mM calcium resulted in 
recovery of 61% of the P-CN compared with 57% from 
solutions of 20 mM Ca. 

,--- 

This peptide might have been @II, which was the only 
other peptide detected using gel electrophoresis. The 
isolated 0-CN eluted a t  20 min (Figure 2b) as one 
major peak. A small shoulder before the main peak 
was observed. The shoulder observed after the main 
peak for standard @-CN (Figure 2a )  was not observed 
for the isolated P-CN, indicating the absence of 011. 
Gel electrophoresis also failed to  show the presence of 
any 01 or 011 in the isolated 0-CN (Figure 1). Amino 
acid analysis of the isolated 0-CN was done, and the 
calculated amino acid composition was compared with 
the predicted composition (Table 3 1. The comparisons 
were made using @-CN A2-5P ( 1 3 ) .  

. 

. 

. .. 

Purity of 13-CN Isolated 
on a Laboratory Scale 

0.9 

s 
v 

0.5 

0.1 

Standard @-CN was compared with isolated 0-CN 
to identify the isolated protein as 0-CN and to deter- 
mine its purity. Gel electrophoresis (Figure 1) 

band and a slight 011 band. Gel electrophoresis of 
isolated 0.-CN showed only one band that directly 

sis of @-CN by chymosin produced peptides ( @ I  and 
011) that had increased mobility (Figure 1). We did 
not observe formation of @I11 under the hydrolysis 

showed that standard 04% had one major @-casein 

corresponded with the standard 0-CN band. Hydroly- 

0.03 

8 a 
0.05 

conditions used in these experiments. 

a 

..__--I 1 

The FPLC3 results for standard @-CN (Figure 2 a )  
showed one major peak a t  20 min that corresponded 
to 0-CN. A, shoulder before and after the main peak 
on the standard @-CN indicated that the @-CN con- 
tained a small amount of another protein or  peptide. 

La,' W .  - 
0 10 20 30 40 

Elution Volume (mi) 

1 

b 

TABLE 3. Amino acid analysis of the isolated 0-CY and S-CN 
A"-5P. 

Amino acid Predicted Calculated 
0.09 

8 
Aspartic acid 9.00 9.17 a? 
Threonine 9.00 8.23 
Serine 16.00 11.93 
Glutamic acid 39.00 38.61 
Proline 35.00 34.04 
Glycine 5.00 5.21 
Alanine 5.00 6.12 
Half-cystine 0.00 0.13 
Valine 19.00 18.23 
Methionine 6.00 6.02 0 10 20 30 40 
Isoleucine 10.00 8.98 
Leucine 22.00 22.56 
Tyrosine 4.00 4.20 
Phenylalanine 9.00 9.07 Figure 3. The FPLC" chromatograms of P-CN isolated from 
Histidine 5.00 5.56 large samples and collected by clarifier ( a ) and by siphoning ( b ) .  
Lysine 11.00 10.84 Absorbance a t  280 nm ( - 1  and salt concentration ( -  - -)  are  
Arginine 4.00 4.06 shown. 

0.05 . 

Elution Volume (ml) 
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TABLE 4. Amino acid analysis data from protein fractions separated by FPLCB.1 

Peak 1 Peak 2 Peak 3 Peak 4 
(peptide 1 to 192) (peptide 1 to 1921 (peptide 193 to 209) (peptide 1 to 189) 

Amino acid Predicted Calculated Predicted Calculated Predicted Calculated Predicted Calculated 

Aspartic acid 
Threonine 
Serine 
Glutamic acid 
Proline 
Glycine 
Alanine 
Half-cystine 
Valine 
Methionine 
Isoleucine 
Leucine 
Tyrosine 
Phenylalanine 
Histidine 
Lysine 
Arginine 

0.00 
0.00 
0.00 
2.00 
4.00 
2.00 
0.00 
0.00 
3.00 
0.00 
2.00 
1 .oo 
1.00 
1.00 
0.00 
0.00 
1.00 

0.09 
0.00 
0.08 
2.17 
3.82 
1.85 
0.09 
0.02 
2.72 
0.03 
1.26 
1.16 
0.92 
1.00 
0.00 
0.08 
0.93 

9.00 
9.00 

16.00 
37.00 
31.00 

3.00 
5.00 
0.00 

16.00 
6.00 
8.00 

19.00 
3.00 
7.00 
5.00 

11.00 
3.00 

9.56 
8.99 

12.60 
36.31 
27.55 
4.33 
5.55 
0.18 

14.31 
4.56 
8.13 

18.56 
3.00 
7.29 
4.57 

10.53 
3.04 

9.00 
9.00 

16.00 
37.00 
31.00 

3.00 
5.00 
0.00 

16.00 
6.00 
8.00 

21.00 
3.00 
8.00 
5.00 

11.00 
3.00 

9.04 
8.48 

12.98 
37.26 
30.19 

3.40 
5.02 
0.12 

14.66 
5.30 
7.44 

20.30 
3.06 
7.81 
5.16 

10.66 
3.14 

9.00 
9.00 

16.00 
37.00 
31.00 

3.00 
5.00 
0.00 

16.00 
6.00 
8.00 

21.00 
3.00 
8.00 
5 .OO 

11.00 
3.00 

9.33 
8.46 

12.20 
36.91 
28.52 

3.60 
4.97 
0.17 

14.32 
5 14 
7.77 

19.80 
2.96 
7.71 
4.94 

10.80 
3.11 

'See text a.nd Figure 4 for assignment of peaks. Peaks are labeled 1 t o  4 as on the chromatogram. The amino acid composition for each 
peak was calculated and then compared to peptides from p-CN. Peptides that had similar compositions are indicated in the figure with 
their corresponding data. All predictions were based on the composition of 0-CN A2-5P. 

Purity of j3-CN from Isolation 
on a Pilot Plant Scale 

The purity and yield of P-CN decreased as the 
process was scaled up, because separating the fines 
from the supernatant was more difficult, which 
resulted in some crs-CN contamination. Two methods 
were employed for recovering the supernatant from 
large samples. First, the pilot plant separator was 
used to remove precipitate depleted of P-CN from the 
mixture. Figure 3a is a chromatogram of P-CN iso- 
lated on a pilot plant scale using the pilot plant 
separator to clarify the supernatant. The major peak 
at 20 min corresponded to 0-CN. A small peak at 2 
min and shoulders on the 0-CN peak indicate that the 
product was slightly hydrolyzed. For the second 
method, caseinate particles were allowed to settle to 
the bottom of the tank, and supernatant was si- 
phoned off the top. The chromatogram of 0-CN that 
was isolated this way also showed several other peaks 
(Figure 3b). 

Characteri2:ation of P C N  Peptides 

Hydrolysis of isolated @-CN by chymosin at  pH 6.8 
and 4°C was monitored using PAGE until all of the P- 
CN was converted to PI. Twelve hours were required 
to  complete this hydrolysis (Figure 4) .  Although 
chymosin completely hydrolyzed 0-CN in 12 h under 
the conditions used for isolating 0-CN from caseinate, 
we did not observe extensive hydrolysis of 0-CN (see 
Figure 2b)  in the renneted calcium caseinate solu- 

tion. The F'PLC@ chromatograms of the hydrolyzed 
sample showed a cluster of peaks around 20 min and 
a single large peak at 2 min (Figure 4). Four major 
peaks were collected and analyzed for amino acid 
composition. Table 4 shows the amino acid composi- 
tion for these peaks compared with predicted composi- 
tions for P-CN A2-5P peptides. Peak 2 was similar to 

8 

3 
8 

0.9 

0.5 

0.1 

s 
9 z 

0 10 20 30 40 

Elution Volume (ml) 

Figure 4. The FPLC@ chromatogram of O-CN hydrolyzed by 
chymosin long enough to completely convert the protein to 01 ( 0- 
CN fragment 1 to 92 and 1 to 89; pH 6.8 a t  4°C for 12 h ) .  This 
hydrolyzed sample showed a single band on a polyacrylamide gel 
corresponding to 0-CN. Major peaks were collected and analyzed for 
amino acid composition. Amino acid results are summarized in 
Table 4. 
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Figure 5. Influence of chymosin hydrolysis on B-CN. @-Casein 
was hydrolyzed a t  pH 7 ( a ) ,  2.2 ( b ) ,  and 5.5 (c), and the products 
were monitored using FPLCa. Chromatograms can be compared 
with results in Figure 1 from PAGE. Figure 5a corresponds to lane 
3, 5b corresponds to lane 4, and 5c corresponds to lane 5.  Absor- 
bance a t  280 nm (-1 and salt gradient ( -  - -1  are shown. 

TABLE 5. Residual chymosin was determined by using a K-CN agar 
diffusion assay.' 

Maximum 

Sample recovered recovered 
Activity activity 

(RU/g 1 ( % )  

8-CN Precipitate 0.448 14.33 
Spray-dried 8-CN 0.139 4.45 

'The results are expressed a s  rennin units ( R U  1 per gram of 8- 
CN recovered. The maximum possible amount of activity that could 
be recovered is expressed as a percentage. This calculation is based 
on recovering 100% of the 8-CN. 

P-CN fragments 1 to 189. Peaks 3 and 4 both showed 
similarity to P-CN fragments 1 to 192. The difference 
in elution time between peaks 3 and 4 might possibly 
have been due to different genetic variants. Peak 3 
was shifted slightly to the right compared with un- 
hydrolyzed, isolated 0-CN. These results indicate that 
the large PI peptides (fragments 1 to  189 and 1 to 
192) eluted a t  approximately the same time as P-CN. 
Peak 1, which eluted at  2 min (Figure 41, was identi- 
fied as the C-terminal peptide ( 0-CN fragment 193 to 
209) corresponding to PI (Table 4). 

The results of @-CN hydrolysis by chymosin a t  37°C 
(pH 2.0, 5.5, and 7.0) can be seen in lanes 3 to 5 of 
Figure 1 and in the FPLC@ chromatograms shown in 
Figure 5 .  Because chymosin can hydrolyze 0-CN and 
chymosin was used in the isolation procedures to form 
a gel, hydrolyzed samples were compared with the 
isolated protein to confirm that the sample was 0-CN 
and not a hydrolyzed product of P-CN. The same 
solutions of hydrolyzed 8-CN were used for PAGE and 
FPLCB; the chromatogram in Figure 5a corresponds 
to lane 3, Figure 5b corresponds to lane 4, and Figure 
5c corresponds to lane 5. Initial hydrolysis of P-CN 
resulted in the formation of 01 (lane 3) .  The chro- 
matogram of lane 3 (Figure 5 a )  showed the C- 
terminal peptide at 2 min and a peak at 19 min that 
contained a PI fragment. Further hydrolysis increased 
the amount of PI, as indicated by the larger, darker PI 
band (lane 5 )  and a n  increased peak a t  2 min 
(Figure 5c). Complete hydrolysis of 0-CN resulted in 
01 and PI1 (lane 4). The chromatogram of lane 4 
showed two major peak areas (Figure 5b),  a peak at  
2 min and a cluster of peaks at 21 min, showing that 
the 0-CN had been hydrolyzed. These results indicate 
that the purity of P-CN can be monitored to some 
extent by the C-terminal peptide that elutes a t  2 min 
and the cluster of peaks that appears at 20 min. 

Residual Chymosin Activity 

One of the obstacles in isolating P-CN using chymo- 
sin is that  some residual chymosin remains in the 
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product. Residual chymosin activity was determined 
using the method of Holmes et al. (18). Table 5 
shows residual chymosin activity in 0-CN fractions 
obtained during our experiments. &Casein that was 
precipitate’d out of solution contained 0.448 RUIg of @- 
CN. The activity decreased in the spray-dried product 
to 0.139 R-U/g of P-CN. The spray-dried product was 
monitored for hydrolysis of @-CN during storage at 
room temperature for 8 mo, and no loss of 0-CN 
occurred, suggesting that the residual activity meas- 
ured using the agar diffusion assay had little impact 
on P-CN during storage. 

CONCLUSIONS 

Pure gra.m quantities of 0-CN can be obtained us- 
ing this method. Larger quantities of 8-CN also can 
be obtained, but the purity decreases. Higher yields 
may be obtained after optimization of factors such as 
pH, rennet concentration, gel strength, and conditions 
influencing 0-CN hydrolysis. Further work is under- 
way to  optimize the recovery conditions for isolating 
P-CN on a large scale and to increase the yield and 
purity. 
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