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ABSTRACT

Dairy process monitoring by application of mul-
tivariate curve resolution using alternating least
squares is presented. Alternating least squares was
used for resolving Fourier transform infrared spectral
data from a dairy batch process in which lactose is
enzymatically hydrolyzed to glucose and galactose. It
was possible to extract four compounds (fat, lactose,
and two other sugar components) from the spectral
data obtained from nine process runs. Subsequently,
the pure spectra obtained in this way were used to
monitor the content of these compounds in two new
process runs. In this way, alternating least squares
made it possible to follow the hydrolysis process by
Fourier transform infrared spectroscopy without the
need for reference analyses. When the results were
correlated to reference results for lactose, the ac-
curacy was similar to that obtained when a partial
least squares regression was performed on the same
data; lactose correlation was 0.980 when alternating
least squares was used and was 0.987 when partial
least squares was used.
( Key words: lactose hydrolysis, multivariate curve
resolution, process control, reference-independent es-
timation)

Abbreviation key: ALS = alternating least squares,
FTIR = Fourier transform infrared, MIR = mid-
infrared, NIR = near-infrared reflection, NIT = near-
infrared transmission, PARAFAC = parallel factor
analysis, PLS = partial least squares, SSE = sum of
squared errors.

INTRODUCTION

Process control of industrial processes is increasing
in importance as online analytical equipment provid-

ing fast and reliable results becomes available. Near-
infrared reflection ( NIR) and near-infrared trans-
mission ( NIT) spectroscopies are the most frequently
used methods in many branches of industry, and mid-
infrared ( MIR) spectroscopy has proved very useful
for process milk analysis. Milk analysis using MIR
equipment is generally more accurate than the cor-
responding NIR or NIT method because MIR contains
more specific information (fundamental absorptions)
and has stronger signals than NIR or NIT, which
detect derived information (overtones and combina-
tion bands). In addition, full spectrum instruments
based on Fourier transform infrared ( FTIR) spec-
troscopy for dairy product analysis in the laboratory
are showing promising results with regard to the
number of components [e.g., specific sugars (17),
casein (9, 11), and urea (7) ] that can be measured.

Hydrolysis of lactose in milk is of interest because
a large number of racial groups suffer from lactose
intolerance (i.e., they are not able to cleave lactose
into glucose and galactose). Therefore, low lactose
milk products produced by the action of the enzyme b-
galactosidase are of commercial interest. The process
is sensitive to the initial conditions such as tempera-
ture and b-galactosidase concentration (3, 6). There-
fore, the concentrations of the sugars need to be moni-
tored during the course of the reaction to control the
process. The reaction is typically completed within a
few hours, thus it requires a fast analytical method
such as MIR.

The general approach when analyzing spectral
data with the intention of generating future predic-
tions of milk constituents is to use one of several
multivariate methods relating the data to wet chemis-
try results. These methods include partial least
squares ( PLS) regression, which is described else-
where (12). Ordinary multivariate methods require
an accurate and reproducible reference method to
obtain a reliable calibration, which tends to be
resource demanding—especially when the typical
number of calibration samples (15 to hundreds) is
taken into account. In addition, during a process,
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some intermediate species might only exist for a
limited period of time (i.e., they are both produced
and consumed during the reaction). In such a case, it
might be difficult to isolate the intermediates and to
measure them using the reference methods.

Such problems can be solved using a regression
method of higher order, such as parallel factor analy-
sis ( PARAFAC) (1) . A PLS regression handles se-
cond order data, and data can be arranged in a
matrix. The PARAFAC method requires data to be of
an order higher than two, which occurs when a spec-
tral landscape is obtained for each sample, and the
whole data set can be arranged in a cube. The land-
scape could be obtained by measuring a reacting sam-
ple at fixed time intervals during the process. The
individual spectra constituting the landscape will be
related, and these relationships implicitly contain in-
formation on the concentrations of all compounds in
the sample absorbing infrared light.

The PARAFAC method is able to resolve these
variations and to produce concentration profiles and
pure spectra corresponding to the absorbing species
present in the sample. The concentrations will be
arbitrary but proportional to the true concentrations.
If correlated species are present, the concentration
profiles will be the sums of such correlated com-
pounds. Usually, PARAFAC is the most useful
method for multivariate curve resolution; because it
can handle more than one sample at a time, the
solutions to the mathematical problem are unique
(i.e., only one solution to each problem exists), and
they might resemble real spectra and concentrations.
Qualitative results have been obtained on resolving
absorption and emission profiles from fluorescence
spectra of sugar samples with PARAFAC (1) .

In the present case, PARAFAC would not work
because the actual shape of the concentration profiles
were strongly dependent on the initial conditions of
the process. The PARAFAC would be able to analyze
only one landscape (sample) at a time or the un-
folded data set. When a landscape is unfolded (e.g.,
when the spectra from the individual runs are ap-
pended to each other), one of the directions in the
three-dimensional structure is lost.

Alternating least squares ( ALS) , sometimes
referred to as alternating regression (10), is a two-
way method that handles one landscape or unfolded
data set at a time. Tauler et al. (19) reported how
such curve resolution methods work. The use of ALS
produces pure spectra and concentration profiles in a
way similar to that of PARAFAC performed on the
unfolded data set. The ALS method has been used for
resolution of infrared process data with excellent
results (4, 18).

The aim of the present work was to investigate
whether ALS is capable of resolving the changes oc-

curring in the FTIR spectra during the course of the
lactose hydrolysis process and thus to obtain concen-
tration profiles and pure spectra for the involved com-
pounds. This procedure was done without the use of
reference analyses to show the resolving power of the
ALS method. It should be possible to monitor the
concentrations of the components in new process runs
because pure spectra were obtained. The results were
compared with results from an ordinary PLS regres-
sion performed on the same data set.

MATERIALS AND METHODS

ALS

The ALS method relies on the assumption that the
Beer-Lambert law is obeyed perfectly [i.e., that a
spectrum (the row vector x) of a given sample can be
seen as a linear combination of the pure constituent
spectra (contained in the matrix A)], thus

x = cA [1]

where c = row vector containing the concentrations of
the constituents corresponding to the pure spectra in
A. When more than one spectrum is measured, the
general expression becomes

X = CA [2]

where X = landscape containing the spectra in its
rows, and C = matrix containing the concentrations
corresponding to each spectrum. In this context, one
sample is X (i.e., a collection of spectra from one
process run).

A typical landscape from one lactose hydrolysis run
with seven FTIR spectral recordings is presented in
Figure 1. Most of the variation of the spectra was
between 1000 and 1200 cm–1. This result was ex-
pected because the only compounds affected by the
reaction are sugars, which show strong absorptions
because of stretching of the sugar C-O bonds in this
range. The ALS method calculates the pure spectra A
from the input spectra in X (the landscape) and an
estimate of C (e.g., random numbers) using a rear-
ranged form of [2]:

A = C+X [3]

where C+ = some pseudoinverse of C, followed by a
calculation of a better estimation of C from this A:

C = XA+ [4]
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Figure 1. Infrared landscape obtained during 60 min (with
sampling every 10 min) of a lactose hydrolysis process. Major
changes are in the range from 1000 to 1200 cm–1 where sugars
generally show strong absorptions.

where A+ = pseudoinverse of A. Equations [3] and [4]
are repeated until convergence (or a maximal num-
ber of iterations) has been reached.

Various constraints can be applied to the spectra
and concentration profiles in A and C to avoid physi-
cally meaningless solutions (1) . For example, the
concentrations of C cannot possibly become negative,
so a non-negativity constraint would be reasonable.
In addition, when we examined compounds produced
and consumed during a chemical process, the concen-
tration profiles were expected to have only one maxi-
mum during the course of the reaction. This observa-
tion led us to apply the unimodality constraint, which
limits solutions to smooth concentration curves with
only one maximum each. It could be argued that a
non-negativity constraint would be appropriate for
the pure spectra in A as well, but in this specific
application it is not. The FTIR absorbance spectra
were calculated using a water background, which
causes slightly negative absorbances. Thus, con-
straint of A to non-negativity would restrict the al-
gorithm too much.

Non-negativity can be applied in various ways. The
most straightforward approach is to force negative
values to zero (e.g., in C) after each iteration. This
method is very simple and does not necessarily lead to
the optimal description of X (i.e., the least squares
solution). The approach employed here [adopted from
reference (2) ] forces only one concentration profile
(or spectrum) at a time to zero and is followed by a
correction of the pure spectrum matrix, A (or concen-
tration matrix, C) . This modification leads to the
optimal result.

If more process runs were contained in the same
data matrix X, the unimodality constraint of C would
not work. In such a case, only the parts of C originat-
ing from the same process should be constrained. This
approach was used in the present work.

After the concentration profiles and pure spectra
have been obtained, the same principle can be used
for prediction of the constituents of an unknown sam-
ple by applying the vector form of Equation [4] to the
spectrum, x, of the sample:

c = xA+ [5]

The concentration row vector c will be in arbitrary
units but will be linearly related to the actual concen-
trations.

Calculations

The data analysis and calibration were performed
on a computer using Matlab software (13). The

pseudoinverse in Equations [3] and [4] were calcu-
lated using the built-in functions of Matlab. The
calibration routines were either programmed by the
authors or taken from the PLS_Toolbox (14).

Repeatability is expressed as a mean standard
deviation (sr) of multiple determinations performed
under identical conditions and is calculated as

sr = √ ( – )1
q(n – 1) ∑

j = 1

q

∑
i = 1

n

xj,i xj
2

where q = number of samples, n = number of repli-
cates, xj,i = result of replicate i of sample j, and xj =
average result of the sample j.

Accuracy is expressed as the root mean square
error of prediction (RMSEP) and is calculated as

RMSEP = √ ( – )1
N ∑

i = 1

N

xi,reference xi,predicted
2

where N = number of determinations [number of sam-
ples ( q ) × number of replicates ( n ) from above], and
xi,reference and xi,predicted = reference and predicted
values corresponding to determination i, respectively.

When a bias (mean difference between reference
results and predictions) is observed, the standard
error of prediction (SEP) is used. It is calculated as

SEP = √ ( – – bias)
1

N – 1 ∑
i = 1

N

xi,reference xi,predicted
2
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If two variables are related by performing a univar-
iate linear regression (slope a, intercept b) between
instrumental responses (xi,instrumental) and reference
results (x i,reference) , the accuracy of future predictions
can be estimated by the use of the standard error of
calibration (SEC), calculated as

SEC = √ ( – ( + b ) )
1

N – 2 ∑
i = 1

N

xi,reference axi,instrumental
2

Correlation is calculated as

R2 =




( – ) ( – )

1
N ∑

i = 1

N

xi,reference xreference xi,predicted xpredicted

sreferencespredicted




2

where N, xi,reference, and xi,predicted are defined above,
and xreference, sreference, xpredicted, and spredicted =
mean and standard deviations of the reference or
predicted results, respectively.

Finally, the fit of the model to X (Equation [2]) is
expressed as the sum of squared errors ( SSE) :

SSE = ( – )∑
i = 1

N

∑
j = 1

M

xi,j ciaj
2

where xi,j = element in X, ci = row vector containing
the concentrations of sample i, aj = column vector
containing the absorbencies of the wavelength j, and
M = number of wavelengths in the spectra. Note that
the reference results have not been used in the calcu-
lation of the SSE.

Experiments

Sample sets. The samples obtained for this work
were from New Zealand and were divided into
calibration samples or test samples.

Calibration samples. This set contained 124
samples. They were collected from nine process runs
(five based on skim milk, four based on whole milk)
carried out in May 1997 using an experimental set-up
in the laboratory. Lactozym 3000 (Novo-Nordisk,
Bagsværd, Denmark) was the enzyme used. Samples
were taken from the reaction mixture at various time
points over a 3-h period, and they were immediately
heated to 80°C in a 750-W microwave oven to deacti-
vate the enzyme. Duplicate samples were taken, and
the subsequent reference analyses and spectral meas-
urements were carried out independently. Thus, the
set of 124 samples composed two very similar sets of
62 samples.

Test samples. This set contained 23 samples ob-
tained from two process runs carried out in the

laboratory in November and December 1997 using the
same experimental set-up. Samples were taken at
various intervals, and only in the subsample used for
reference analysis was the enzyme deactivated. The
spectral measurement was carried out on the non-
deactivated sample immediately (i.e., less than 1
min) after sampling to make the FTIR measurements
as close to an online application as possible.

Reference measurements. Lactose was deter-
mined on 90 of the calibration samples and on 23 test
samples using the following HPLC set-up.

Equipment. Lactose was analyzed by HPLC using
a Waters Maxima 820 Workstation (Millipore Corp.,
Milford, MA). One hundred microliters of sample ex-
tract were injected with a Waters WISP automatic
injector (Millipore Corp.) into an Alltima NH2
column (250 × 4.6 mm, 5-mm particles; Alltech Associ-
ates, Auckland, New Zealand) protected by a
10-mm adsorbosphere NH2 guard column cartridge
(Alltech Associates). The column and guard column
were kept at 28°C in an electrical column heater
(Jones Chromatography Ltd., Hengoed, United King-
dom). To protect the column against deterioration, a
silica saturation column (New Zealand Dairy
Research Institute, Palmerston North, New Zealand)
was placed between the pump (Waters model 510;
Millipore Corp.) and the injector. Lactose was eluted
by 80% acetonitrile (2 ml/min) and detected by a
Shimadzu RID 6A reflective index detector
(Shimadzu Corp., Kyoto, Japan).

Sample preparation. Liquid milk containing less
than 1.0 g of total solids was diluted to 20 ml with
water. The proteins were precipitated with barium
hydroxide and zinc sulfate. The volume was increased
to 40 ml before centrifugation for the unhydrolyzed
lactose samples and to 30 ml for the hydrolyzed lac-
tose samples. After centrifugation at 2000 rpm for 10
min, 2 ml of the clear supernatant were diluted to 10
ml with acetonitrile and filtered through a 0.45-mm
syringe filter (Whatman, Singapore, Singapore).

Spectral measurements. The FTIR spectral
measurements were carried out using a MilkoScan
FT 120 (Foss Electric A/S, Hillerød, Denmark). The
infrared spectrum from 925 to 5000 cm–1 was
recorded. The calibration samples were measured in
duplicate, and the test samples were measured in
triplicate.

In the data analysis, only the ranges 964 to 1542,
1724 to 1847, and 2699 to 2965 cm–1 were used,
because these areas contain useful chemical informa-
tion.

All measurements were determined against a
water background and were log-transformed to give
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TABLE 1. Partial least squares results from the cross-validated calibrations for the determination of
lactose in the calibration samples.1

1Forty-four samples ranging from 0 to 45% dry base lactose were used.
2Cross-validation segments.
3Optimal number of partial least squares factors.
4Root mean square error of prediction.
5Repeatability.

2 CVS2 4 CVS 6 CVS 8 CVS 10 CVS

Number of factors3 5 5 5 5 4
R2 0.997 0.996 0.996 0.996 0.996
RMSEP4 0.82 0.90 0.88 0.93 0.88
sr

5 0.22 0.23 0.23 0.23 0.24

Figure 2. Reference versus predicted plot for lactose showing 44
calibration samples (two replicates for each sample) predicted
using cross-validation (with six cross-validation segments) against
the reference results. The model uses five partial least squares
factors with R2 = 0.996, root mean square error of prediction = 0.88,
and repeatability = 0.23. The reference results range from 0 to 45%
dry base lactose. FT-IR = Fourier transform infrared.

absorbance spectra. A typical time resolved landscape
for the first hour of an experiment is shown in Figure
1. No spectral preprocessing was performed prior to
data analysis because only minor improvements are
obtained when using full spectrum data of the present
type (7) .

RESULTS AND DISCUSSION

PLS Results

For comparative purposes, a PLS calibration
against the lactose reference results was performed.

Because the calibration set comprised two depen-
dent sample sets, only the first set (62 samples of
which 44 had been reference analyzed) was used for
finding the optimal model (regarding the number of
PLS factors). To this end, a PLS calibration was
cross-validated using the calibration samples. The
procedure was repeated using 2, 4, 6, 8, and 10 cross-
validation segments to check the stability of the
result. The results are shown in Table 1, and a refer-
ence versus a measured plot for lactose is shown in
Figure 2. A model using five PLS factors was the most
accurate.

All samples analyzed using the reference method
in the calibration set (a total of 90 samples) were
used to build the final model using five PLS factors.
This model was used for predicting lactose in the 23
test samples. The result is shown in Figure 3. The
result was not as accurate as that indicated by cross-
validation, but most of the error was due to a sub-
stantial bias. Thus, the calibration set was not
representative of the test set. The reason could be

1. The time difference (more than 6 mo) between
the measurement of calibration samples and test
samples.

2. A difference in chemical composition of the test
samples caused by seasonal variations in the
milk. Seasonal variations are of great impor-

tance in New Zealand, where most dairy cattle
calve simultaneously, as farming is pasture
based.

3. From the spectral data (not shown), it is evi-
dent that the protein content of the calibration
samples is virtually the same for all. Therefore,
the calibration cannot account for protein varia-
tions in the test samples.

Despite this lack of reproducibility, the reference
results and lactose predictions correlate well, which is
the main issue in this context.
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Figure 3. Reference versus predicted plot for lactose showing the
23 test samples (three replicates for each sample) predicted using
a partial least squares model with five factors. R2 = 0.987, root
mean square error of prediction = 2.49, standard error of prediction
= 1.55, bias = –1.96, and repeatability = 0.23. The reference results
range from 0 to 40% dry base lactose. FT-IR = Fourier transform
infrared.

ALS Results

The PLS results suggest that five independent fac-
tors are necessary for predicting the lactose content of
the samples. Thus, a similar number of components
in the ALS is expected.

To obtain reasonable solutions, two constraints
were applied during the regression: 1) non-negativity
of the concentration profiles, and 2) unimodality of
the concentration profiles (except for fat) in each
process run.

Although the lactose concentrations of most of the
samples were already known, they were not used as
start guesses, because the purpose of this study was
to see whether it was possible to obtain good results
having only a limited knowledge of the process.
Therefore, the following—very simple—start guesses
were used: 1) the skim and whole milk samples had a
start guess for fat of 0 or 1, respectively; 2) because
lactose is known to be the only sugar present at the
beginning of the process, the lactose concentration of
the first sample of each run was set to 1, and all
others were set to 0; and 3) the remaining compo-
nents were given random numbers as start guesses
(uniformly distributed numbers between 0 and 1).

Because random numbers were used, many differ-
ent solutions were possible. For this reason, the ALS

run was carried out 100 times with new start guesses
for each number of components. From three to six
components (corresponding to the number of pure
spectra in A, Equation [2]) were tried on both
(almost identical) calibration sets of 62 samples.
When six components were used, the concentration
profiles and pure spectra became noisy and highly
correlated, so they will not be discussed in the follow-
ing text.

The best models, in terms of how well the X matrix
is described (measured as SSE) and how well the
lactose profile correlates with the reference results,
are shown in Table 2 (A and B parts). The results for
three to five components were as follows.

With three components, the same pure spectra and
concentration profiles were reached every time for
both calibration sets—at the least, the differences
were insignificant. The solutions with the lowest SSE
are shown in Figures 4 and 5. Note that both pure
spectra and concentration profiles have been normal-
ized to make a presentation on the same scale possi-
ble. The pure spectra describing fat (having strong
absorptions near 2900 cm–1 due to C-H stretching
vibrations) generally have very negative contribu-
tions in the areas where the sugars absorb because
high-fat samples normally contain less lactose as a
result of the displacement of the water phase by fat.
This phenomenon is unfortunate, as the ALS model
will predict samples with a high fat content to contain
less sugars, but it cannot be avoided with the present
data set.

With four components, many different solutions
were reached. They belonged to a limited number of
groups of solutions inside which the variations were
small. Some results are shown in Figures 6 and 7. Of
the four components, at least two were sugars (hav-
ing strong absorptions in the 1000 to 1200 cm–1

range), one was fat (strong absorptions between 2800
and 3000 cm–1) , and one was difficult to assign. Of
the sugars, the component decreasing rapidly through
each batch is lactose.

With five components, the problem of finding the
optimal solution becomes more difficult. But, as is
evident from Table 2, good lactose correlations were
still obtained. No major improvement was observed
when using five components instead of four. The
three- and four-component solutions were thus chosen
for further examination.

An ALS with three components gives the most
stable result and the most reasonably pure spectra,
but the correlation to the actual lactose concentration
is relatively poor. In Figure 8, the lactose concentra-
tion profiles are plotted against the reference results,
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TABLE 2. Alternating least squares results of the two calibration sets (parts A and B) and the
independent test set (parts C and D) using three, four, or five components.1

1Reference results range from 0 to 45% dry base lactose.
2A = Results obtained from the calibration sets (62 samples each). The models were selected on the

basis of the lowest sum of squared errors. B = Results obtained from the calibration sets (62 samples
each). The models were selected on the basis of the highest correlation to the lactose reference results.
C = Results obtained from the test set (23 samples) using the models (selected by use of the sum of
squared errors) calculated from the individual calibration sets. D = Results obtained from the test set
(23 samples) using the models (selected by use of the correlation) calculated from the individual
calibration sets.

3Sum of squared errors.
4Standard error of calibration.
5Repeatability.

3 Components 4 Components 5 Components

Set2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2

A SSE3 0.56 1.01 0.38 0.44 0.26 0.47
R2 0.928 0.942 0.942 0.971 0.978 0.977
SEC4 3.47 3.15 3.12 2.23 1.92 2.00

B SSE 0.71 1.06 0.44 51.63 0.40 10.50
R2 0.928 0.942 0.971 0.986 0.991 0.992
SEC 3.47 3.15 2.22 1.54 1.26 1.16

C R2 0.894 0.891 0.959 0.980 0.959 0.940
SEC 3.46 3.50 2.16 1.51 2.14 2.61
sr

5 0.15 0.15 0.16 0.27 0.16 0.13
D R2 0.894 0.891 0.959 0.953 0.978 0.973

SEC 3.46 3.50 2.15 2.29 1.59 1.78
sr 0.15 0.15 0.16 0.14 0.19 0.19

Figure 4. The three-component alternating least squares solu-
tion with the lowest sum of squared errors (out of 100 runs) for set
1. Upper part shows the concentration profiles, lower part is the
pure spectra.

Figure 5. The three-component alternating least squares solu-
tion with the lowest sum of squared errors (out of 100 runs) for set
2. Upper part shows the concentration profiles, lower part is the
pure spectra.

and the resulting plot is highly nonlinear. The four-
component model (Figure 9) gives a more linear
relationship to the lactose reference results. It cannot
be due to overfitting (i.e., a too optimistic estimate of
the error) as the reference results were not involved
in the optimization. In addition, the concentration
profiles of the four-component model agree with previ-

ous observations (5, 15, 16) that not only the
monosaccharides (galactose and glucose) but also
various other sugars (containing two or more
monosaccharide units), generally known as the
oligosaccharides, are formed during the process. The
shapes of the concentration profiles are very similar
to these previous observations. The way in which
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Figure 6. The four-component alternating least squares solution
with the lowest sum of squared errors (out of 100 runs) for set 1.
Upper part shows the concentration profiles, lower part is the pure
spectra.

Figure 7. The four-component alternating least squares solution
with the lowest sum of squared errors (out of 100 runs) for set 2.
Upper part shows the concentration profiles, lower part is the pure
spectra.

Figure 8. Lactose profile and reference lactose results plotted
against each other. The profile originates from an alternating least
squares regression on calibration set 2 with three components. The
relationship is strongly nonlinear. R2 = 0.942, and standard error of
calibration = 3.15.

these sugars are distributed among the last two com-
ponents (Figures 6 and 7) can vary between separate
ALS runs, which is why many different solutions are
observed when four (and five) components were
tried.

Whether the SSE or the correlation should be used
as the selection criterion is not clear. When three
components were used, both criteria gave almost the
same result, whereas the SSE criterion gave a some-
what higher prediction error for four or five compo-
nents. In both cases, a significant improvement over
the three-component result was obtained.

The final test of the hypothesis used the ALS
models on the test set obtained from two new process
runs. The results are shown in Table 2 (parts C and
D). A large improvement in the standard error of
calibration when increasing the number of compo-
nents from three to four was observed. It is almost
independent of the method (correlation or SSE) used
for selecting the optimal model. These results led us
to the conclusion that nothing is gained by selecting
the optimal model by use of the lactose reference
results (i.e., by looking at the correlation). The best
result is obtained by using the SSE. This is very
promising, since reference analyses are not needed
when process data of the present type are analyzed.
The ALS alone can be used for generating a model
that can be used for future process monitoring. Note
that the ALS concentrations are in arbitrary units, so
only relative process changes can be detected.

The results in Table 2 should be compared with the
PLS result shown in Figure 3. The ALS predictions of
lactose (using four components) were almost as good
as the PLS predictions—in some cases the results
were the same.

The normalized predictions of three of the four
components (using the model with lowest SSE based
on calibration set 2) for each of the two processes
included in the test set are shown in Figure 10 with
the corresponding results from the PLS model and the
reference method. Fat was omitted because it was
constant during each run. The ALS lactose predic-
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Figure 9. Lactose profile and reference lactose results plotted
against each other. The profile originates from an alternating least
squares regression on calibration set 2 with four components. The
linearity was more accurate than that of only three components
(Figure 8). R2 = 0.971, and standard error of calibration = 2.23.

Figure 10. Concentration profiles from the reference results
(lactose only), partial least squares results (lactose only), and the
four components obtained from alternating least squares for the
first ( A ) and second ( B ) experiments present in the test set. All
profiles are normalized to unity to make them comparable. Only the
three sugar components are shown. Component 1 (fat) was cons-
tant throughout the process run. Lactose predicted using alternat-
ing least squares (—X—), lactose predicted using partial least
squares ( · · ·), lactose reference results (– – –), component 3
predicted using alternating least squares (–ÿ–), and component 4
predicted using alternating least squares (–*–).

tions do not agree perfectly, neither with the refer-
ence nor the PLS results based on the same spectra,
but they follow roughly the same curve. The main
reason for the disagreement between the ALS and
PLS results was the negative PLS lactose predictions,
which were due to the earlier discussed bias of the
PLS calibration. Both PLS and ALS concentration
profiles follow a smooth curve, which should be ex-
pected when dealing with a chemical reaction. Thus,
the fluctuations in the lactose reference results are
likely to be caused by the lack of reproducibility of the
reference method rather than real variations in the
lactose content.

The two test runs (Figure 10) gave the same
shapes of the concentration profiles of the third and
fourth components as those observed during calibra-
tion. Therefore, component 3 was assigned to the sum
of galactose and glucose, and component 4 was likely
to be caused by oligosaccharides formed during the
reaction. Another data set with reliable reference
results from sugars other than lactose is required to
confirm this result.

The remaining problem of allowing implementation
of ALS for practical use in dairy process monitoring is
selection of the optimal number of components in the
ALS model, which corresponds to the problem of

selecting factors in PLS, but for ALS, no prediction
error (e.g., RMSEP) can be minimized. In the present
case, the obvious choice would have been three com-
ponents, which gave the most stable result. Only the
comparison of the profiles to actual lactose results
indicated that four components were optimal.
Methods for determining the number of indepen-
dently varying species present in the samples are,
therefore, required.

Scores obtained through principal component anal-
ysis (12) could solve the problem. After a principal
component analysis of all calibration samples, the
scores (not shown) indicated structures originating
from the batch structure of the data and revealed up
to four or five components. Thus, four or five compo-
nents would be expected to be optimum in ALS, which
supports the actual findings shown above.
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In this experiment, we were successful in extract-
ing concentrations from FTIR data from a lactose
hydrolysis process and in monitoring new process
runs with this knowledge. The present data set must
be considered to be worst case because the infrared
spectra of reactants, intermediates, and products
were very similar (i.e., they are all sugars, which
gave almost the same absorption peaks). Resolution
of spectra from processes in which the compounds are
less similar should therefore be easier; the problem of
determining the number of components especially
should be less difficult.

The method described here has been patented (8) .

CONCLUSIONS

The present study has shown that ALS is a promis-
ing method for use in dairy process optimization.
Without the need for reference analyses, it was possi-
ble to extract four components from the lactose
hydrolysis process data (fat, lactose, and two other
sugar components) and to obtain a lactose prediction
error similar to the one obtained from an ordinary
PLS regression. Such use of ALS for a reference-
independent prediction of process parameters is not
limited to dairy products only but is likely to be useful
for process monitoring and identification of intermedi-
ates in all branches of the food and beverage industry.

By use of ALS combined with FTIR, it becomes
possible to obtain quick information on compounds
present during the process including intermediates
produced and consumed in the course of the reaction.
A further advantage (in many cases the most impor-
tant) is that the pure spectra obtained by ALS makes
it possible to generate predictions of process
parameters without the need for expensive and time
consuming reference procedures.
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