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Abstract: In this paper I will defend a new account of scientific representation. I will begin by looking at the benefits and drawbacks of two recent accounts on scientific representation: Hughes’ DDI account and Suárez’ inferential account. Next I use some of Galileo’s models in the Discorsi as a heuristic tool for a better account of scientific representation. Next I will present my model. The main idea of my account, which I refer to as the pragmatic model of shared characteristics (PMSC), is that a model represents, if and only if, (1) a person accepts that there is a set of shared characteristics between the model and its target; (2) this set has the inferential power to generate results which can be tested empirically; (3) and the corresponding test(s) of these results is/are in agreement with our data and the specific cognitive goals we have in mind.

1. Introduction

That models represent their targets is a communis opinio in the recent debate on models in science (e.g. Bailer-Jones, 2003; Giere, 1988, 1999; Morgan & Morrison, 1999; van Fraassen, 1980). What constitutes scientific representation remains far from clear. In this paper I try to pave to way to a more elaborate account of scientific representation.
   I begin with exploring two recent approaches on representation in science (part 2). I will present R.I.G. Hughes’ denotation-demonstration-interpretation (henceforth: DDI) account (1997) and Maurizio Suárez’ inferential account (2002, 2003, 2004). I will show that both accounts remain unsatisfactory. Hughes’ and Suárez’ account are very sketchy and need to be fleshed. Let me for the moment briefly point to their main shortcomings. First of all Hughes admits that his account does not provide the necessary and sufficient conditions for scientific representation. Hughes further claims that it is inappropriate to say that models are similar to or resemble their targets in certain respects and degrees. Rather models are symbols for their targets; they denote their targets (1997: 329-30). This statement is very troublesome, as I will argue: it presupposes that the relation between models and their targets is purely stipulative and arbitrary. According to Suárez representation is not an object-object relation (like similarity or isomorphism). Scientific representation is not dyadic. It is rather by reasoning with similarity and isomorphism by competent users that the model represents. Correspondingly, his account is intentional and inferential. This is surely a highly attractive feature of his account. In his analysis, he partially reduces “representation” to “representational force” (together with the notion of “inferential power”), which he does not characterize further. It seems that we are left with the initial question: “In virtue of what does A’s representational force point to B?”. As it stands, his account is viciously circular. A further problem for Suárez’ account is that he is unable to delineate scientific representation from other forms of representation (e.g. representation in art). As I will argue, the solution to this problem is not to drop similarity and replace it by the notion of denotation and inferential power, as Hughes and Suárez do, but rather to incorporate similarity and inferential power in a broader frame-work (as will happen in the fourth part of this paper).
   In the third part I scrutinize some of Galileo’s models in the third day of the Dialogues Concerning Two New Sciences (1638). Case-studies like these can learn us what a model of scientific representation needs to be capable of incorporating and can serve as a heuristic tool to construct such a model of representation in science. I will discuss three examples in detail.
   In the fourth part I begin summarizing what we have learnt from Galileo. This paves the way for a new model (which I will label the pragmatic model of shared characteristics (PMSC)) of representation in science. The main idea of my account is that a model represents, if and only if, a person accepts that there is a set of shared characteristics between the model and its target; this set has the inferential power to generate results which can be tested empirically; and the corresponding test of these results is in agreement with our data and the specific cognitive goals we have in mind. I will include some other examples and point to the further benefits of this model.
2. Two Approaches on Models and Representation

2.1. Hughes’ DDI Account

According to Hughes’ DDI account, scientific representation contains three components: (1) denotation (when a model denotates a target), (2) demonstration (which happens “entirely within the model”), and (3) interpretation (when the demonstrated result is interpreted physically again) (Hughes, 1997: 327-38). Elements of the world are denoted by elements of a model. The model has an internal dynamic that allows one to draw theoretical conclusions from it. These results need to be interpreted physically again in order to be able to make predictions. Hughes warns his readers that his account does not provide the necessary and sufficient conditions for scientific representation. However, “if we examine a theoretical model with these three activities in mind, we shall achieve some insight into the kind of representation it provides” (Ibid.: 329). He bases his account explicitly on Proposition I on accelerated motion and the odd-number rule in the Discorsi. Hughes follows Nelson Goodman’s view that denotation is the core of representation and that it is independent of resemblance or similarity (see, e.g., Goodman, 1969, p. 5). A model is a symbol of a physical system. It denotes the physical system: “Just as a vertical line in one of Galileo’s diagrams denotes a time interval, elements of a scientific model denote elements of its subject” (Ibid.: 330). It is inaccurate to say that an ideal pendulum is similar to a material pendulum; the ideal pendulum denotes its target. The ideal pendulum is an abstract object. In what sense it is similar to a material pendulum is far from clear (Ibid.). Demonstration has to do with the fact that the model has a life of its own, an internal dynamic. From the behaviour of the model we can draw hypothetical conclusions about the world (Ibid.: 331). It is here that mathematics often plays an essential role in physics: it is one of the deductive resources in physical models. Interpretation is the reverse of denotation: the demonstrated results need to be interpreted physically again (Ibid.: 333). Interpretation takes us back to the world of things. This procedure may require considerable ingenuity (e.g. approximation techniques and perturbation methods). The DDI account is clearly a diachronic account of scientific representation. 
   Obviously, this account is very modest and sketchy. As has been said before, the author himself does not claim to provide necessary and sufficient conditions of scientific representation. Hughes’ proposal is not a general theory of scientific representation. However, the author grants it that:

Designed skeletal, this account would need to be supplemented on a case-by-case basis to reveal, within individual examples, the strategies of the theory entry, the techniques of demonstration, and the practices, theoretical and experimental, that link theoretical prediction with experimental test. (Ibid.: 335)

Making use of case-studies is precisely what I am eager to do in section 3. In Hughes’ account, the ultimate philosophical questions concerning representation remain unanswered. How is a model a symbol for a physical system? How does it denote? How is this done without any resemblance? No answers are provided. Hughes account does not solve the riddle of representation. He claims that models simply denote their targets. This claim is highly problematic: it does not clarify how this denotation, which is central to the problem of representation, takes place. Furthermore, the notion of denotation seems to imply that the relation between model and target is purely arbitrary. Scientific models are typically tested against nature. That models do their job is not a matter of stipulation, it is a matter of agreement between the theoretical consequences of a model and the relevant empirical data. This clearly surmounts a purely stipulative relation between both.
2.2. Suárez’ Inferential Account

Maurizio Suárez has recently argued that similarity (often associated with Ronald Giere (1988, 1999) and isomorphism (often associated with Bas C. van Fraassen (1980)
) are not necessary and sufficient to cover the broad myriad of scientific representation (2003). A model and its target are similar when they share a subset of their properties; they are isomorphic when they exhibit the same structure. Isomorphism is a form of similarity (similarity qua structure). Similarity and isomorphism are facts about the source and target objects (and their properties), not about the essentially intentional judgements of representation-users. Representation is a not an object-object relation but rather a relation between objects and the internal states of their users. Suárez declares that we should take a deflationary attitude towards scientific representation. This entails two things: (1) we should abandon the aim of a substantial theory to seek necessary and sufficient conditions for representation (scientific representation is not the kind of thing that requires a theory to elucidate it), and (2) we should not seek for deeper features to representation other than its surface features (Suárez, 2002). According to Suárez inferential account, the two surface features are: (1) the representational force of a source, and (2) the capacity of surrogate reasoning (drawing inferences about the target from the model):
[inf]: A represents B if only (i) the representational force of A points toward B, and (ii) A allows competent and informed agents to draw specific inferences regarding B. (Suárez, 2002: 27)
Suárez stresses that reference to the presence of agents and the purposes of inquiry is crucial. His account is essentially intentional and inferential. Stressing representational force requires some agent’s intended uses to be in place, which will be driven by pragmatic considerations (this is also stressed by Giere, 2002). The type and level of competence and information required in the surrogate reasoning process (which may be deductive, inductive, analogical,…) is a pragmatic skill that depends on the aim and the context of the inquiry. That Suárez incorporates pragmatic and contextual considerations surely makes his model attractive. In a sense all has been said about representation in science (in this way Suárez is less humble than Hughes). We can at best aim to describe the general features (like the two described above). Scientific representation is not a matter of arbitrary stipulation by an agent, but requires the correct application of functional cognitive powers by means appropriate to the task at hand.     

   However, serious questions remain. Suàrez’ inferential conception is clearly circular. Suárez has merely substituted “representation” by the equally vague notions of “representational force” and “inferential power”. Is it really such that we can say no more about representational force? In virtue of which properties do models carry inferential power? No answers are provided. The crucial question is left unanswered. His account is also very unattractive since he is not able to allow for a distinction between representing and scientifically representing. A painting might also have an internal dynamic that allows one to make conclusions about it. And the requirement of being a “competent and informed user” is very often the case here (e.g. knowledge of mythology, symbols,… etc.). If we accept that there should be a difference between scientific representation and representation in general, Suárez’ account is unable to make it. In Suárez’ account, all forms of representation are thrown on one pile. The only requirements for representation are representational force and inferential force. We should take the effort to delineate scientific representation from other forms of representation.
3. Representation in Galileo’s Models


In this part I will look at how Galileo models some phenomena of movement in the Third Day of the Discorsi. This will happen in detail. I will first present some theorems and then directly analyse them. I have selected those propositions that have an informative character with respect to representation.
3.1. First Example

In the third day (Giornata Terza, De Motu locali) Galileo discusses uniformly accelerated motion. Uniformly accelerated motion is motion that acquires, when starting from rest, during equal time-intervals equal increments of speed, or more precisely, its momentum (celeritatis momenta
) receives equal increments in equal times (Galileo, 1954: 162, 169). Galileo begins the Third Day with a proof of the following theorem: the speeds acquired by one and the same body moving down planes of different inclinations are equal when the heights of these planes are equal (in a situation where there is no resistance, the planes are hard and smooth, and the moving body is perfectly round) (Ibid., 169-70). Salviati notes that he wishes “by experiment to increase the probability [of this theorem] to an extent which shall be little short of a rigid demonstration” (Ibid. 170). The experiment (which is repeated many times) is based on an ideal pendulum and proceeds as follows. The purpose is to show that the momenta gained by fall through the arcs DB, GB and IB are equal. A nail, to which a lead bullet is suspended by a fine thread AB, is driven in a vertical wall. The bullet is set to swing from point C. It describes the arc CBD and almost – i.e. if we neglect the resistance of the air – reaches the point D, which is equidistant from A as C is from A. From this we may infer that the impetus
 on reaching B from C was sufficient to carry it to D at the same height. Then the experiment is performed with an extra nail inserted at a lesser height (E or F). In this case the bullet will also be carried to the line CD. (If the nail is placed so low that the remainder of the thread below it will not reach CD the thread leaps over the nail and twists itself around it.) This shows that the momenta, needed to carry a body of the same weight to equal height along different arcs, are equal. So conversely, it can be shown that the momenta acquired by fall through the arcs DB, GB and IB are equal.


[image: image1]
The argument can be summarized as follows:

(1) Ia(CB) = In(BD) (“Ia” stands for impetus acquired along an arc; “In” for impetus needed to be raised along an arc) (this follows from the observation that a pendulum set to swing at C ascends (more or less) to D)

(2) In(BD) = In(BG) = In(BI) (this follows from the observation that the bobs set to swing from C raise to G or to I, which are at the same height as D)

(3) Ia(DB) = Ia(GB) = Ia(IB) (this follows from (1) and (2))

In step (3) Galileo gathers information about the momentum needed to traverse paths BG and BI from information about the momentum acquired along BD. Galileo then extends this principle demonstrated for pendulums to inclined planes “by analogy”. Sagredo admits that this experiment is well “adapted to establish the hypothesis” (Ibid., 172). The reason that Galileo uses this pendulum experiment is that we are not able to produce the result on inclined planes, since at the lowest point the planes would form angles and hence be an obstacle for the lead ball. It turns out that Galileo used the pendulum-model as an idealization of motion along inclined planes: the characteristic “trajectory” was deliberately distorted in order to obtain the inferential steps that he was interested in.
   Let me sum up how this model represents. The ideal pendulum-model is a model of motion along inclined planes in virtue of sharing similar momentum-behaviour. The behaviour of ideal pendulum is not distorted by air resistance. The resistance of the air is negligible (this follows from the isochrony of the chord, which I will not discuss here). It is by this theoretical background assumption that the similarity of momentum behaviour is allowed. It is further implicitly assumed that the distortion of the trajectory does not make any significant difference: what holds for motion along chords holds for motion along inclined planes. The inferences made from this model are then tested. Salviati takes “this as a postulate, the absolute truth of which will be established when we find that the inferences from it correspond to and agree perfectly with experiment” (Ibid.). If the model endures this test then we will accept the similarity under consideration. 
3.2. Second Example

Theorem I, Proposition I is the mean-speed theorem or Merton rule which states that the “time in which any space is traversed by a body starting from rest and uniformily accelerated is equal to the time in which that same space would be traversed by the same body moving at a uniform speed whose value is the mean of the highest speed and the speed just before acceleration began” (Ibid., 173). AB represents the time in which the space CD is traversed (hence, the distance is the independent variable
) by a body which starts to fall at rest at C (Repraesentetur per existensionem AB tempus in quo a mobile latione uniformiter accelerata ex quiete in C conficiatur spatium CD” (Galilei, 1968, 208)). Consequently EB represents the greatest interval of time. The parallel lines represent what we would today call the instantaneous velocity (or more precisely, “crescentes velocitatis gradus post instans A”
). The triangle and the square represent to “total” velocity acquired respectively during uniformly accelerated motion and during uniform motion. 
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The text proceeds as follows:

Since each and every instant of time in the time-interval AB, from which points parallels drawn in and limited by the triangle AEB represent the increasing values of growing velocity, and since parallels contained within the rectangle represent the values of a speed which is not increasing, but constant, it appears, in like manner, that the momenta [momenta] assumed by the moving body may also be represented, in the case of the accelerated motion, by the increasing parallels of the triangle AEB, and, in the case of the uniform motion, by the parallels of the rectangle GB. For, what the momenta may lack in the first part of the accelerated motion (the deficiency of the momenta being represented by the parallels of the triangle AGI) is made up by the momenta represented by the parallels of the triangle IEF. (Ibid., 173-74).

The parallels of “instantaneous” speed are contained (“comprehensae” or “contentae”) in the triangle. The “aggregate” (hence, a kind of terminal speed) of all parallels contained in AEB equals the “aggregate” of the parallels contained in AGFB (Blay, 1998, 74). The speeds that the uniform accelerated motion lack are made up during the second half (Dijksterhuis, 1924, 257). The relation between uniform motion and uniformly accelerated motion is established by the equality between the surfaces which represent them. Galileo presupposes that the equality of the two infinite sets of moments of velocity establishes the equality of the corresponding overall velocities (Damerow, Freudenthal, McLaughlin and Renn, 1992, 230). Galileo lacked adequate tools to deal with this (Clavelin, 1968, 316). Since the “overall” speeds are equal in equal times, it follows that the distances traversed are also equal. An important implicit premise is the mathematical assumption that an area is made up of an infinity of lines (Ibid.). Let me sum up how Galileo models accelerate motion:

(1) AB, a line consisting of an infinite set of points, represents the time needed to traverse a distance CD; every point corresponds to an instant of time; A represents the starting point (t0); B represents the end point (tn)

(2) CD represents an arbitrary distance (hence it is an independent variable)

(3) infinitesimal horizontal lines represent the gradus velocitatis
(4) EB represents the greatest gradus velocitatis
(5) AEB represents the totality (totidem velocitatis momenta) of the increasing values of growing velocity (hence the aggregate of the gradus velocitatis)

(6) AGFB represents the totality of the constant values of speed (hence the aggregate of the constant speeds)

This geometrical model represents the increase of momentum in time. It does so since momentum and time are considered to be continua, like abstract geometrical entities (points, lines and surfaces). Just as a line consists of an infinitude of points, time consists of an infinitude of instants of time. Just as the surface contains an infinitude of lines, the total velocity consists of an infinitude of degrees of velocity. They share their continuum-behaviour. This proposition is interesting in the sense that it is not directly connected to observation. As such the aim is to show that, in equal times, a uniform motion with ½ momentum of an accelerated motion will traverse the same distance (making abstraction at that point if such motions really exist). This proposition will be used as an inference-ticket or proxy in the following proposition. The correctness of this theorem will be assessed by its implementation in the following theorem (see 3.3). 
3.3. Third Example

Theorem II, Proposition II is the squared-time law which states that the “spaces described by a body falling from rest with a uniformly accelerated motion are to each other as the squares of the time-intervals employed in traversing these distances” (Ibid., 175-76). Time (“fluxus temporis”) is represented by the line AB, HI the distance through which the body starting from rest falls with uniform acceleration. Time AD corresponds to length HL, AE to HM, AF to HN and AG to HI. AC is constructed at an arbitrary angle on AB (“quemcunque angulum”). OD and PE represent the maximum speed at D and E.
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The proof proceeds as follows (see also Wisan, 1974, 286-8). From the mean-speed theorem it follows that the distances HM and HL are the same as would be traversed during AE and AD by a uniform motion with half the speeds of those by which DO and EP are represented. Since ratio AE is to AD as ½ EP is to ½ DO or as EP to DO, the velocities are to each other as the time-intervals (v ~ t). Galileo replaces the accelerated motions by uniform motions. From Theorem IV, Proposition IV in the section on uniform motion, which states that “if two particles are carried with uniform motion, but each with a different speed, the distances covered by them during unequal intervals of time bear to each other the compound ratio of the speeds and time intervals”, Galileo concludes: x ~ v × t (Ibid., 157). Hence, the ratio of the spaces traversed is the same as the squared ratio of the time-intervals (so: x ~ t²). Again, Galileo uses information about a simple situation (uniform motion) to a less simple situation (accelerated motion). Galileo then argues from his famous inclined plane experiments that the natural phenomena agree to this proposition. That the data correspond to the model is essential. Galileo seems, at least in the presentational or expositional part of his theory, not to spend much attention to the details of the experiments. Let me sum up the elements of this model:

(1) AB, a line consisting of an infinite set of points, represents the time needed to traverse a distance HI; every point corresponds to an instant of time; A represents the starting point (t0); B represents the end point (tn); time-intervals AD, AE, AF and AG correspond to distances HL, HM, HN and HI

(2) OD and PE represent the gradus velocitatis at instants of time D and E

(3) HL, HM, HN, HI represent the distances traversed  in time-intervals AD, AE, AF, AG

Proposition I and II are very similar. In both models a line consisting of an infinitude of point represents the instant of time. Time is considered to be a continuum of infinitesimal instants. Similarly for the speed in uniformly accelerated motion.
 Hence time and velocity are assumed to be similar with respectively a line (consisting infinite points) or a area (consisting of infinite lines). They are considered to be continuum-similar. In the first proposition, the conclusion is mainly established by properties of this continuum behaviour. In the second, the conclusion is established by means of information gathered from uniform motion (Proposition I is used as a transformation mechanism to transform a situation of uniform accelerated motion into one of uniform motion). The initial information is reinterpreted in terms of uniform motion. The result deduced from uniform motion is then re-reinterpreted as uniform accelerated motion. 
4. A General Model of Scientific Representation
In the first subsection, I will summarize the lessons we should take from the examples discussed in the previous section and set the stage for my model. In the second subsection, I will present my model. 
4.1. What a Model of Scientific Representation Should Incorporate

Learning from Galileo

Let me sum up what I take to be the lessons we should draw from Galileo with respect to scientific representation (I do not assume, nor need to, that these lessons correspond to what Galileo had in mind). When a model represents, it only represents certain aspects of a physical system, not the physical system as a whole. For instance, Galileo’s ideal pendulum is similar to a real pendulum qua momentum-behaviour (the speed acquired by a body by rolling down from a certain height is equal to the speed needed to carry that same body to that same height) except in the last part towards D because of the air resistance (which prevents the body to rise exactly to the line CD). In this case, we almost automatically indicate the characteristics a model does or does not incorporate. This model incorporates a real pendulum’s momentum-behaviour, but it does not incorporate the air resistance. This includes indicating the similarities as well as the dissimilarities. Hence, a model needs only to share a limited set of relevant properties (at least one) with its target to perform its representational function. Not all of its properties are shared. (I will come back on this notion of shared characteristics. It will be more natural if I first discuss the pragmatic nature of models.) In the second and third example the geometrical model succeeds if we accept that time and velocity are continua. It is precisely this shared characteristic (and only this one) that generates the representative power of the geometrical figure. Note that isomorphism is not required here: the figure does not in any sense share the same structure as the phenomenon of free fall. Thirdly, whether a model represents is also dependent on whether the consequences inferred from it are compatible with experiment (as Galileo testifies). It depends on its inferential power and its empirical adequacy. A model of scientific representation also needs, as I will now show, to incorporate our cognitive goals (this feature is not present in Galileo’s way of modelling nature, but needs to be included in a successful model of scientific representation). This model will need to be pragmatic (Bailer-Jones, 2003; Giere, 2002; Suárez, 2002).
The Pragmatic Dimension of Representation

Let me clarify this pragmatic component of models by means of an example. One of the favourite models in the literature on models is the pendulum. Suppose we want to know the gravitational force on a bob along a pendulum. If we only want a rough sketch of the pendulum’s gravitational force (e.g. for educational means) we will use a very simple model. What we do here is make the assumption that the ideal pendulum and the real pendulum have similar dynamical properties. The model and the physical system share a set of relevant characteristics: they both have similar dynamical properties. That there can be no full identity is evident, since this model does not take into account air resistance nor the mass of the wire for instance. We will assume that the cord of length l is mass-less and that there is no air resistance. The period (T) of such a pendulum can be found by the equation: 

T = 2 . π . (l/g)1/2 = 2 . π/ω (ω is the angular frequency ω = g/l)

If we have determined the l and T, we can also determine the acceleration of gravitation. This is done by the following equation:

g = (4 . π² . l)/T²

This is how we determine g from the simple pendulum model: by means of our model we are able to infer the value of g. The determination of g is obviously facilitated by the fact that we only focus on certain characteristics (we only have to know two things: l and T). These are the kind of things that are easily put in a mathematical formula. Suppose that we asked the student what would happen if l was halved. The answer is that g would halved. We could then illustrate this relation in a very rough way. Suppose now that our cognitive goals are very stringent (e.g. we want to produce a detailed picture of the pendulum as a physical system). One way to start would be to incorporate the mass distributions. The period would now be determined as follows:

T = 2 . π . (I/m . g . h)1/2
where I is the inertia around the axis of rotation, m the total mass, and h the distance from the axis and the centre of mass. Accordingly, the acceleration of gravitation equals:

            g = 4 . π² . I/(T² . m . h)

The set of shared characteristics is now extended. This system is not only similar with respect to its basic dynamical properties, but also with respect to the mass distribution. Suppose the model is still not detailed enough in order to satisfy our cognitive goals. Another factor we might include is air resistance. And so on. Whether a model represents is dependent of our cognitive goals. The simple pendulum would not be a good representation given very stringent ambitions. It is a good model for educational means. There is no end to this process: one cannot include all correction factors in one model. Adam Morton discusses this idea applied to atmospheric models (Morton, 1993: 660-662). Consider another example. Suppose we want to explain (1) the flow of water or wave propagation and (2) diffusion of ink in water (I borrow the example from Teller, 2001: 401). In the first case, we will use a model where water is a continuous incompressible medium. In the second case, we will treat it as a collection of discrete particles in thermal motion. Which model is adequate depends on our goals. The position I would defend is one where difference-similarity between a model and a real system is dependent on the stringency of our intellectual aims. If differences are irrelevant for our pragmatic purposes, they should not be treated. With rather loose criteria, we may in a certain contexts ascertain a similarity, while in another more stringent context we may say that there are relevant differences. This depends on the criteria that are relevant in view of the type of questions we pose. If we want a detailed account of the pendulum as a physical system, we would not accept the simple pendulum as an adequate model.
Sharing of Relevant Characteristics
One obvious objection would be to pose the question which characteristics will qualify as “relevant characteristics”. Part of the answer precisely lies in referring to the goals we have, which may vary from case to case. As Paul Teller puts it:

More specifically, similarity involves both agreement and difference of properties, and only the needs of the case at hand will determine whether the agreement is sufficient and the differences tolerable in view of those needs. There can be no general account of similarity, but there is also no need for a general account because the details of any case will provide the information which will establish just what should count as relevant similarity in that case. (Teller, 2001: 402)

Teller argues that our goals determine the characteristics we are interested in. But there is more. Relevant characteristics will be those characteristics that will have inferential consequences which can be (in)directly tested. The model and its target do not need to share many characteristics. As we saw in the second and third example, the only relevant characteristic shared by the model and the target is the continuum-assumption. This refutes Giere’s view that similarity holds for many (or perhaps most) aspects of the model and its target (Giere, 1999: 180). A limited set is sufficient.
The Selectivity of Models

This selectivity of models (in the sense of Bailer-Jones, 2003) entails abstraction and idealisation. Taking characteristics in isolation facilitates our reasoning power with them. Abstracting from these accidents and idealizing is the clue. As Galileo put it:

Of these properties [accidenti] of weight, of velocity, and also of form [figura], infinite in number, it is not possible to give any exact description; hence in order to handle this matter in a scientific way, it is necessary to cut loose from these difficulties [“per poter scientificamente trattar cotal material, bisogna astrar da essi”]; and having discovered and demonstrated the theorems, in such cases of no resistance, to use them and apply them with such limitations as experience will teach. (Galilei, 1954: 252-53; my emphasis)

By focussing on the set of shared relevant characteristics, models exhibit their inferential power. They facilitate inferential steps by cutting loose from the complexities of the real world. This focussing on certain characteristics entails that (1) not all the properties of a system are included (= abstraction) and/or (2) that sometimes we explicitly distort some of the characteristics of the system (= idealization). The model of the pendulum which represents the momentum along inclined planes is clearly abstracted, i.e. the air resistance is removed, and idealized, i.e. the trajectory is deliberately distorted. It is in virtue of being abstracted and idealized that Galileo is able to prove that the momentum acquired by bodies along fall from inclined planes at the same height but at different inclinations is the same. Let me give another example. Consider a simple gravitational model between two bodies. In this model the formula F = (g . m1 . m2)/r² is only valid in vacuo for perfect point masses if we neglect from all other possible forces. These ceteris paribus and ceteris absentibus conditions allow for a neat mathematical solution. It is easier to sum the inverse-square forces of the individual points of a point mass, than of an irregular solid. This has to do with the functioning of mathematical techniques. Moreover, these mathematical techniques vary in different domains of science and hence cannot be part of a general theory on representation. This is part of a theory on mathematical techniques, not of a theory of scientific representation. Obviously, in the real world situation the bodies will not be point masses, there will be air resistance and there will probably be other active forces. The model is assumed to share its “gravitational properties” with the real world situation; it will differ with respect to form and distance. Inferences are generated more easily by abstraction and idealization (which is derived from the fact that models always focus on certain aspects).
Conclusion

Let me sum up what a theory of scientific representation needs to incorporate: the assumption of similarity of certain shared characteristics (which will determine which aspects we expect the model to represent of our target), our cognitive goals (which will determine the level of detail and accuracy we expect), the inferential power of the model (which will facilitate inferences by solely focussing on these shared properties) and the empirical adequacy of our model (which will determine whether we fully accept the model for the cognitive goals we have set forward). Testing the shared relations delineates scientific representation from representation in general. In scientific representation there is a feedback-loop to verify the empirical adequacy of the model. The kinds of inferences, which will be very often based on mathematical formalizations, further help to delineate scientific representation from representation in general. 

4.2. PMSC: Presentation of Its Features
When a scientific model represents a person tests the inferential consequences of an assumed set of shared characteristics in view of some cognitive goals. If the results correspond to the data and our cognitive goals, this person fully accepts this relation of shared characteristics. This suggest the following general model of scientific modelling (I refer to it as the pragmatic model of shared characteristics (PMSC)). I will begin by presenting its constituents.
(1) Provisional acceptance of shared characteristics. Very often observational data concerning the target “suggest” to a person p that there is shared characteristic (see 4) between a target and a model. For instance, interference patterns suggest that light under some circumstances behaves in a wave-like manner. An agent provisionally accepts (hypothesizes) that there is a shared characteristic between the target and the model.

(2) Full acceptance of shared characteristics. In view of a test of the model (see 5), a person p fully accepts a (set of) shared characteristic(s). This acceptance is not solely determined by the test. It is also dependent on our cognitive goals (see 3).

(3) Agreement with cognitive goals. Our cognitive goals (CG) will determine the level of detail we require. If our goals are very stringent then we will require a very high level of detail. If our goals aim only at giving a rough sketch, we will be satisfied with a lower level of detail.

(4) Sharing of relevant characteristics. When we assert that a model fits a target we express that there is a set of common characteristics shared (= Γ(SC)) by that model and its target. Models do not represent a system in its entirety, but they are selective: they represent some aspects of a system (e.g. Bailer-Jones, 2003). This set contains at least one element (one shared characteristic). 

(5) Testing of the relevant characteristics. The result derived from the model is transferred back to observation (O). If the result does not correspond with observation, we may chose to no longer accept this shared characteristic. This means that the model loses its representational power.

Visually this can be represented as follows – the constituents are numbered in the scheme: 

[image: image4]
Of course, scientific representation may be more complex, but these five relations characterize what it means for a model to represent its target. This helps to answer the question: “In virtue of what does model represent?”. This suggests the following definition of scientific representation, which incorporates these essential features (1-5):
A model M scientifically represents a physical system, i.e. a target, T, with respect to a set of relevant characteristics and certain cognitive goals for a person p, iff:

(1) Person p initially assumes that there is a shared set of relevant characteristics, Γ(SC), between M and T.

(2) In virtue of Γ(SC) M allows inferences to be drawn about T (M → I).
(3) These inferences lead to a result, (I → R), which can be tested on its empirical adequacy.
(4) In view the empirical adequacy of R a person p now fully accepts that M and T share a set of relevant characteristics.
(5) Γ(SC) exhibited by M agrees with the cognitive goals (CG’s) of p. 

(1) and (4) reflect that representational performance of a model is always provisional. (2) incorporates Suárez’ notion of inferential power. (4) warrants a feed-back loop to test the shared characteristis with respect to Г(SC). This helps us to delineate the difference between representation in general and scientific representation – it also helps to explain cases of misrepresentation. (5) shows the pragmatic aspect of representation.
 I admit that the notion “inference” needs to be rendered more explicit. Inferences in science (especially in physics) are very often but not necessarily (e.g. analogy) related to mathematical operations on physically interpreted symbols. Scientific models focus on certain characteristics which easily allow for a mathematical formalization. This focus (which entails abstraction and idealization) facilitates formalization. Focussing on something always entails neglecting or even transforming other things. Models are indeed simulacra (Cartwright, 1983). 
   The virtues of my model in comparison with Hughes’ and Suárez’ account ought to be clear by now. Both accounts do not explain how models actually represent a target. My account does. Models share a relevant (relevant from the perspective of our cognitive goals) set of shared characteristics with their target. By focussing on this set of characteristics they facilitate inferential steps and procedures (this will inevitably entail abstraction and idealisation).  This set is tested on its empirical adequacy. If the model fits reality and our cognitive needs, the representational ability of a model is now fully established and justified. My account incorporates inferential power, but it is more explicit on these matters. The inferential power is derived from the fact that isolating relevant characteristics facilitates inferential strategies (e.g. mathematization, formalization).

5. Conclusion

I have presented and defended a new account of scientific representation: PMSC. It is more explicit than the DDI account and the inferential account, and does not suffer from their drawbacks. According to PMSC, models represent a target in view of a set of relevant characteristics. Inferences are facilitated since models only have to take into account the relevant characteristics and thereby allow one to cut loose from the complex real world situation (this involves abstraction and idealization). The level of detail we expect from a model is dependent on our cognitive goals. Scientific representation can further be delineated from other forms of representation by the fact that the consequences of scientific models are typically tested and by reference to the kind of inferences that are made within the model. 
Acknowledgements: The author wishes to thank Maarten Van Dyck for some remarks on an earlier version. 
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� This essay is accepted for publication in Philosophia naturalis (it will appear somewhere in mid-2006); see � HYPERLINK "http://www.klostermann.de/zeitsch/phna_422.htm" ��http://www.klostermann.de/zeitsch/phna_422.htm� for more information.


� In later work van Fraassen stresses the pragmatic dimension of representation and claims there are four characteristics involved in representation: (1) intentionality (which entails “reading conventions”) (2) selectivity of aspects, (3) accuracy (which admits several degrees of fitting) and (4) context-relativity (which is established by the preceding elements) (van Fraassen, 1994: 171). 


� For important terms I have added the original Latin or Italian equivalent from Galileo’s Opere (Galilei, 1968, vol. VIII, 41-313.


� Galileo uses the words impetus (impeto), ability (talento), energy (energia), speed (velocità) weight (pondere) and momentum (momento) interchangeably (Ibid., 181n).


� E.J. Dijksterhuis remarks that Oresme used the traversed time as the independent variable (Dijksterhuis, 1924, 257). 


� This notion was never explicitly defined by Galileo. Michel Blay writes on Galileo’s notion of degree of velocity: ‘While to a certain extent it prefigured the concept of instantaneous velocity, it nonetheless remained subject to the Galilean way of conceiving motion, which regarded velocity as an “intensive magnitude” increasing by successive additions of degrees.’ (Blay, 1998, 72) 


� In the Dialogue Concerning the Two Chief World Systems (1632) Galileo writes: “This ought to be an easy task when I tell you that the movable body does pass through he said gradations, but without pausing in any of them. So that even if the passage requires but a single instant of time, still, since every small time contains infinite instants, we shall not lack a sufficiency of them to assign to each its own part of the infinite degrees of slowness, though the time be as short as you please.” (Galilei, 2001: 24)


� Bailer-Jones correctly stresses that the users of models: (1) agree upon the function for which a model is intended, (2) decide which allowances are made for the model not to fit the data or the laws of nature, and (3) select the aspects of a phenomenon which a model represents (Bailer-Jones, 2003: 72).
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