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Abstract

Bayesian models can be related to cognitive processes in a variety of

ways that can be usefully understood in terms of Marr’s distinction among

three levels of explanation: computational, algorithmic and implementa-

tion. In this note, we discuss how an integrated probabilistic account of

the different levels of explanation in cognitive science is resulting, at least

for the current research practice, in a sort of unpredicted epistemological

shift with respect to Marr’s original proposal.

1 Introduction

Sophisticated probabilistic models are finding increasingly wide application across
the cognitive and brain sciences.

It has been argued [Knill et al., 1996, Chater et al., 2006] that probabilistic
models can be related to cognitive processes in a variety of ways. This variety
can be usefully understood in terms of Marr’s [1982] widely known distinction
between three levels at which any agent carrying out a task must be under-
stood, the what/why level (computational theory), the how level (algorithm),
the physical realization (implementation):

• Computational theory. What is the goal of the computation, why is it
appropriate, and what is the logic of the strategy by which it can be
carried out?
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• Representation and algorithm. How can the computational theory be im-
plemented? What is the representation for the input and output, and
what is the algorithm for the transformation?

• Implementation. How can the representation and algorithm be realized
physically?

Figure 1: The three levels of explanation suggested by Marr.

Indeed, in research work on theoretical foundations of cognitive science
Marr’s account has become a sort of paradigm.

In this note, we discuss how an integrated probabilistic account of the differ-
ent levels of explanation in cognitive science is resulting, at least for the current
research practice, in a sort of unpredicted epistemological shift with respect to
Marr’s original proposal.

From a broader viewpoint such account can be seen as a tenet of philosophy
of science that complex systems are to be seen as typically having multiple levels
of organization. The behavior of a complex system, e.g., a particular organism,
might be explained at various levels of organization, including (but not restricted
to) ones which are biochemical, cellular, neurological, psychological.

Although Marr referred to the highest level of analysis as a theory, the
term model [Giere, 2004] is more appropriate: the cognitive scientist uses model
M to represent an aspect of the world W for purposes P (for details on the
development of the concept of model from cybernetics to cognitive science, see
Cordeschi [2002]). So, in the following we will refer to this level as the level of the
computational model. In general, M could be many things, but Marr is easily
recognized as addressing a kind of theoretical model [Giere, 2004, Hartmann and
Frigg, 2005].
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The intermediate level of analysis can be considered as a computer simula-
tion, in the sense of Hartmann [2005], but constrained by model M.

The lowest level is that of the device in which the process is to be phys-
ically realized. Clearly, if natural cognition is the focus, then neurophysiol-
ogy/neuroanatomy is the level that should be addressed.

2 Bayesian explanations

In Chater et al. [2006] and Knill et al. [1996], the Bayesian framework is used
to formalize Marr’s three-fold hierarchy in two levels: the computational level
and the implementation level (embedding both Marr’s algorithmic and physical
realization levels).

Figure 2: The levels of explanation according to Yuille and Kersten (adapted
from [Knill et al., 1996]).

Interestingly enough, both levels are denoted ”theories” [Chater et al., 2006]
and, differently from Marr, a tight interaction between computational (here
Bayesian) theory and implementation theory is assumed.

Beyond such claims and independently of methodological issues, current re-
search practice in Bayesian cognition seems to reflect and widen such epistemo-
logical shift.

Much cognitive processing is naturally interpreted as uncertain inference
which can be shaped by probabilistic methods at the computational level. At
such level the Bayesian framework is exploited to specify the so called generative
model, via the joint probability density function (pdf).

The joint pdf P ({Xk}
K
k=1) of the random variables (RVs) X1, · · · , XK is

defined and constraints accounted for through a graphical model GM (e.g., a
Bayesian network, or a Markov Random Field), an iconic representation of RVs
dependencies where each node of the graph represents a RV, and arrows denote
conditional dependencies between variables.
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To make this point clear, consider the following example (a similar one is
discussed in Kersten and Yuille [2003]). We want to model the ability of the
visual system in recognizing that the object represented in the two images shown
in Fig. 3 is one and the same despite considerable image variation caused by a
viewpoint change (object invariance).

Figure 3: The same object seen under different views.

More precisely, the issue here is to make a decision about the object O,
when the image I being observed takes the value I∗ (this is also known as
the evidence), while discounting the ”noisy” change of view V ; in probabilistic
terms, the problem amounts to infer the marginal probability P (O|I = I∗).

Thus, knowledge is represented by the joint probability P (O, V, I). Note
that such pdf is symmetrical with respect to the three variables O, V, I. In fact
any three variable distribution P (X1, X2, X3) may be written, by application of
product rule of probability, in any of the 6 ways

P (Xi1 |Xi2 , Xi3)P (Xi2 |Xi3)P (Xi3 )

where (i1, i2, i3) is any of the 6 permutations of (1, 2, 3). Hence, whilst all
graphically different, they all represent the same distribution which does not
make any conditional independence statements.

In the example we are considering, we can assume that the data I are de-
termined (generated) by the object O plus a possible view change V ; further, it
is plausible to assume that the target object O does not directly influence the
set of possible views V , neither views affect object model O (conditional inde-
pendence P (O, V ) = P (O)P (V )). In other terms, the problem at hand suggest
a joint probability decomposition of the type

P (O, V, I) = P (I|O, V )P (O, V ) = P (I|O, V )P (O)P (V ) (1)

whose equivalent iconic representation is the graph GM = {(O, V ) → I}. Thus,
the generative model of object appearance under a change of view can be de-
picted as in Fig. 4.

(A common practice is to work the way round: design the graph structure
that best represent the addressed problem, and then straightforwardly turn such
representation in the corresponding joint pdf decomposition).

Recall that we want to infer the marginal probability P (O|I = I∗) given
the evidence (observation) I = I∗. For simplicity, assume that probabilities
P (I|O, V ), P (O), P (V ) specifying the generative model in Eq. 1 are actually
known, either in parametric form or in terms of conditional probability tables.
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Figure 4: A directed graphical model constraining the P (O, V, I) distribution.
The image pair represent actual observations I = I1, I = I2.

Inference on variable O can be performed via the Belief Propagation (BP) al-
gorithm described in the Appendix.

Figure 5: Message passing in BP: from parents O, V to child I (left) and from
child to parents (right).

The BP algorithm is an efficient way to solve inference problems based on
passing local messages. By applying the procedure described in the Appendix,
in this simple case we can straightforwardly pass messages from parents O, V

to the evidential node I, as

µPar
O→I(O) = P (O),

µPar
V →I(V ) = P (V ).

These messages forward prior probabilities of objects and views
To pass a message from node I to parent node O we need to gather informa-

tion from node V , and similarly to pass a message from node I to parent node
V we need to obtain information from parent node O, namely:

µCh
I→O(O) =

∑

V

P (I = I∗|O, V )µPar
V →I(V ) =

∑

V

P (I = I∗|O, V )P (V ),
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µCh
I→V (V ) =

∑

O

P (I = I∗|O, V )µPar
O→I(O) =

∑

O

P (I = I∗|O, V )P (O).

Note that
∑

X P (X) denotes a sum with respect to values taken by RV X , e.g.,
P (X = x1) + P (X = x2) + P (X = x3).

Eventually the probability P (O|evidence) can be approximated as:

P (O|I = I∗) ∝ P (O) ·
∑

V

P (I = I∗|O, V )P (V ). (2)

Summing up, the (Bayesian) computational model can be precisely defined
as the pair M = 〈P ({Xk}

K
k=1),GM〉 (and, obviously, by exactly specifying the

form/parameters of conditional distributions)
Model M together with probabilistic calculus, could in principle be used

for Bayesian inference and estimating any variable Xk. Note that by infer-
ence we simply mean the computation of these marginal probabilities (beliefs).
It is worth noting that for a small Bayesian network as that used before, we
could have easily performed direct marginalization. However, when scaled-
up to real-world problems, exact Bayesian computations are intractable and
approximate algorithms have been developed for both learning and inference
(e.g., the Expectation-Maximization algorithm, the Belief Propagation algo-
rithm [MacKay, 2004, Lee and Mumford, 2003], and also Appendix A). The
virtue of the BP algorithm is that we can use it to compute approximate
marginal probabilities in a time that grows only linearly with the number of
nodes in the system. In this perspective BP can be properly considered as a
simulation of the inference process in the sense of Winsberg [2004]. In other
terms, Marr’s algorithmic level now performs a computer simulation by using
the GM as a representation (data structure).

Eventually, for what concerns Marr’s implementation level, current debate
is focusing on whether the brain itself should be viewed in probabilistic terms
and the nervous system as implementing probabilistic calculations [Lee and
Mumford, 2003, Kersten and Yuille, 2003, Paulin, 2005]. This issue will become
evident in the case study presented in the following Section.

3 A case study

One clear and elegant example of Bayesian methodology is provided by Rao
[2005] who addresses the issue that neurons in cortical areas V2 and V4 can be
modulated by attention to particular locations of an image I (the retinal input).

According to the classical what/where model [Mishkin et al., 1983], Rao
assumes that neurons in V4 area encode feature F (preferred stimulus) while
spatial locations L are encoded within the parietal cortex area; V1 and V2 areas
play the role of encoding an intermediate representation, say C.
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The hierarchical organization of visual attention processing is summarized
in Fig. 6. The same figure shows the corresponding graphical model, where
F, L, C, I play the role of random variables.

Figure 6: The underlying hierarchical neural architecture (top) supporting vi-
sual attention and the corresponding graphical model (bottom).

Marr’s levels of explanations for such a problem can be restated as follows.
Computational level. The computational problem is now from our point

of view that of estimating the probabilities of gazing at object features F and/or
spatial locations L, given an observed input image I = I∗, namely P (L|I =
I∗), P (F |I = I∗).

Thus, model M is expressed by the joint pdf P (F, L, C, I), where C is an
intermediate RV, and by RV dependencies GM = {(F, L) → C → I} (cfr. Fig.
6).

Algorithm. At the algorithmic level, Belief Propagation is put into run
on the graph GM by computing the steps described in Appendix A until con-
vergence.

At convergence, it is easy to show that the marginals of interest related to
non-evidential variables F, L, C, under the evidence I = I∗, can be estimated
as:

P (C|I = I∗) ∝ P (I = I∗|C)
∑

F,C

P (C|L, F )P (F )P (L) (3)
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P (L|I = I∗) ∝ P (L)
∑

F,C

P (C|L, F )P (F )P (I = I∗|C) (4)

P (F |I = I∗) ∝ P (F )
∑

F,C

P (C|L, F )P (C)P (I = I∗|C) (5)

Note that P (L), P (F ) represent prior probabilities of focussing attention on
certain locations or specific features.

Implementation. At the neural level, a recurrently connected network
of spiking neurons is assumed; such network is just another kind of graphical
model, say G̃M.

More precisely, G̃M is a recurrent network of standard leaky integrator neu-
rons, where for each neuron k the dynamics of the instantaneous membrane
potential vk(t) is given by:

τ
dvk(t)

dt
=

neuron membrane potential︷ ︸︸ ︷
−vk(t) +

external injected current︷ ︸︸ ︷
f(

∑

j

wkjij(t)) +

recurrent connections︷ ︸︸ ︷
g(

∑

j

ukjvj(t)) ;

(6)
here wkj , ukj represent input neuron ij(t) and recurrent connection synaptic
strengths, respectively; f, g are (non-linear) dendritic filtering functions.

The connection between BP estimates given in Eqs. 3, 4, 5, and neuron
dynamics (Eq. 6) is derived as follows.

First, neuron’s dynamics is discretized via a finite difference scheme obtain-
ing

vk(t + 1) = f(
∑

j

wkjij(t)) + g(
∑

j

ũkjvj(t)) (7)

Second, BP is assumed to be performed in the log domain; considering for
instance, Eq. 3, it can be written as:

log P (C|I = I∗) ∝ log P (I = I∗|C) + log
∑

F,C

P (C|L, F )P (F )P (L) (8)

By comparing the discrete membrane potential equation (Eq. 7) with the
log BP equation (Eq. 8) the following correspondences hold:

vk(t + 1) ∝ log P (C|I = I∗) (9)

f(
∑

j

wkjij(t)) = log P (I = I∗|C) (10)

g(
∑

j

ũkjvj(t)) = log
∑

F,C

P (C|L, F )P (F )P (L) (11)

In particular Eq. 9, which can be rewritten exactly by introducing appro-
priate constants, vk(t + 1) ∝ c log P (C|I = I∗) + T straightforwardly provides
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the following relation:

P (C|I = I∗) = ρ exp{
vk(t + 1) − T

c
} (12)

which defines the spiking probability of a neuron of type C in terms of the
distance between the membrane potential v and the membrane threshold T

Similar relations can be obtained for the other BP equations and F, L vari-
ables.

In other terms, Rao’s approach provides a new interpretation of the spiking
probability of cortical neurons in terms of posterior probabilities and is used
to simulate and predict behaviors of neurons within the V4 cortical area under
different conditions [Rao, 2005].

From an architectural standpoint, if for instance feature F can take one
among m values/states {f1, f2, · · · , fm}, then the F node in GM is implemented

by m leaky integrate-and-fire neurons in G̃M. The same holds for nodes L, C.
This shows how the design of GM top-down constrains the design of G̃M.

4 Discussion

The case study presented above suggests a remarkable conceptual shift with
respect to Marr’s three levels proposal.

In the framework of a Bayesian approach, the computational model M =
〈P ({Xk}

K
k=1),GM〉 is fully specified when the graphical model GM has been

defined. Such graphical model indeed is an iconic model of the world W [Giere,
2004, Hartmann and Frigg, 2005]; in the case at hand (cfr. Fig. 6) condi-
tional dependencies are derived so as to reflect functional dependencies occurring
among brain areas. More precisely, GM is iconic in the sense that the hierarchy
(F, L) → C → I reflects the (Parietal,V4) → V2/V1 → Retina hierarchy (cfr.
Fig. 6). Thus, computational model M, related to cognitive level activity, is
specified in terms of the underlying neural architecture as illustrated in Fig.
6, where GM is conceived as a blueprint for the biological neural architecture.
In turn, once GM has been obtained it can be used to top-down constrain the
design of the artificial neural architecture.

In this respect, the notion of architecture becomes a central tenet in the
Bayesian approach in defiance of Marr’s methodological effort to provide, in the
vein of traditional AI, a careful separation between ”hardware” and ”software”
issues.

As a consequence, the algorithmic level rather than encompassing, as for
Marr, specific procedures/routines to solve problems stated at the computa-
tional level, becomes a general purpose simulation step: it does not depend on
what is computed (except for structural constraints imposed by GM), and it is
usually used for inference and learning (much like learning algorithms in artifi-
cial neural nets). Indeed, when BP equations are put into run they provide a
simulation (approximate inference), say S of model M.

Two further aspects deserve some comments.

9



First note that Eq. 7 is the discrete form of the differential equation (Eq. 6)
that models a leaky integrate-and-fire neuron. Recall that discretization turns
differential equations, which relate continuous rates of change over infinitesimal
intervals, into difference equations, which relate rates of change over finite, or
discrete, intervals. The values that these difference equations give can then
be calculated by a digital computer, in discrete time steps. In other words, as
pointed out by Winsberg [2004], ”finite differencing”, namely the transformation
of the differential equations into difference equations constitutes a simulation,
say S̃ of M̃, which in the case is the system of differential equations defined on
a recurrent network G̃M of leaky integrate-and-fire neurons.

Second, BP equations also provide the starting point for reduction to what
Marr would call the implementation level. In fact, reduction is achieved by
setting the ”correspondence rules” as in Eq. 9, 10, 11. Interestingly enough,
the derivation of model M̃ from M (represented by arrow (1) in Fig. 7 below),
is achieved as a sort of inter-theoretic reduction [Nagel, 1961] but where the

bridge principle (see Eq. 12) involves equations used in simulations S̃ and S
(cfr. arrow (3) in Fig. 7) rather than a straightforward logical derivation á la
Nagel [1961] of the laws or principles of the reduced theory (in this case M )

from the laws or principles of the reducing theory M̃.
Eventually, it is clear that different from Marr, the implementation level

itself is a kind of theoretical model M̃ = 〈P ({i, t}N
i=1), G̃M〉, related in this case

to neural level activity, where G̃M represents the neural architecture whose
design is constrained by GM.

The state of affairs that has been so far achieved can be generalized, beyond
the specific example, and summarized at a glance as in Fig. 7

Figure 7: The Bayesian computational model M and the neural model M̃; S
and S̃ represent software simulations of models M and M̃, respectively. Arrows
(1) and (3) specify ways of reduction from M to M̃.

The same figure also suggests that in the context we have described, simu-
lation S may also be conceived as a coarse grained simulation of the underlying
neural model (arrow (5) in Fig. 7).
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5 Final remarks

The conceptual shift with respect to Marr’s original proposal is readily apparent.
The Bayesian practice reshapes Marr’s original account in a quite differ-

ent story, where levels of explanation become a hierarchy of models (in Rao’s

case M → M̃ interlaced via simulation) and where the notion of architecture
becomes a central one for all levels.

Also, by recalling again Fig. 7, note that process behavior at the neural
level (differential equations) can in principle be obtained either straightforwardly

(at the same level) by running deterministic finite difference equations (S̃) or
through a coarse grained simulation S performed on probabilities: in this per-
spective much of the controversial debate on dynamical system hypothesis as
opposed to higher level computations becomes an ill-posed question.

Further levels of reduction could be achieved by noting that the firing rate
model of the neuron described by the dynamical system given by Eq. 6, is a
simplified model of neuron (M̃) [Koch, 1999]. It can be easily related to the
standard cable equation, which in turn can be obtained through mathemat-
ical linearization of reaction-diffusion system of partial differential equations
controlling the spatiotemporal dynamics of calcium ions and bound buffer con-
centrations at the chemical level [Koch, 1999].

Thus, in principle, computations can be carried out by using probabilities, or
at a lower level using membrane potential as the crucial variable, controlled by
the cable equation, or further at the lower level by taking into account concentra-
tion of calcium or or other substances governed by reaction-diffusion equations.
As pointed out by Koch (see Koch [1999], p. 279) ”the principal difference
are the relevant spatial and temporal scales dictated by the different physical
parameters, as well as the dynamical range of the [...] sets of parameters”.

Eventually, it is worth noting that at any level l, a model Ml can certainly be
algorithmically simulated, via Sl, but equivalently could undergo a simulation
Al, via a physical analog (actually Marr’s original physical realization level).
For instance, at the neuron level one could implement the circuit corresponding
to the leaky integrate and fire neuron [Koch, 1999]; at a higher level, inference
on the graphical model could be realized through a special purpose hardware
message-passing architecture.

To conclude, the complete picture could be depicted as in Fig 8.
In some sense, by taking a Bayesian stance, Marr’s proposal seems more

related to different kinds of model simulation (namely, Al and Sl) at a given level
l of explanation, rather than actually involving different levels of explanation.
For instance, considering Fig. 8, Marr’s proposal can be accounted for by a single
horizontal level, whilst the Ml+1 → Ml → Ml−1 hierarchy straightforwardly
denotes the hierarchy of explanations.
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Figure 8: Hierarchy of models corresponding to hierarchy of explanations.

A The Belief Propagation algorithm for directed

graphs

A general node Xn has messages coming in from parents Par(Xn) and from
children Ch(Xn). We can collect all the messages from parents that will be sent
through Xn to any subsequent children as

µPar
Xn

(Xn) =
∑

Par(Xn)

P (Xn|Par(Xn))
∏

Xi∈Par(Xn)

µPar
Xi→Xn

(Xi) (13)

Similarly, we can collect all the information coming from the children of node
Xn that can subsequently be passed to any parents of Xn

µCh
Xn

(Xn) =
∏

Xi∈Ch(Xn)

µCh
Xi→Xn

(Xn) (14)

The bottom-up messages from children are defined as

µCh
Xi→Xn

(Xn) =
∑

Xi

µCh
Xi

(Xi)
∑

Xk∈Par(Xi)\Xn

P (Xi|Par(Xi))
∏

Xk∈Par(Xi)\Xn

µPar
Xk→Xi

(Xi),

(15)
and the top-down messages from parents

µPar
Xk→Xn

(Xk) = µPar
Xk

(Xk)
∏

Xi∈Ch(Xk)\Xn

µCh
Xi→Xk

(Xk) (16)

The structure of the above equations is that to pass a message from a node
X1 to a child node X2 , we need to take into account information from all the
parents of X1 and all the children of X1, except X2 . Similarly, to pass a message
from node X2 to a parent node X1, we need to gather information from all the
children of node X2 and all the parents of X2 , except X1.

Such schedule is formalized in the Belief Propagation algorithm:
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for all evidential nodes Xi do

µPar
Xi

(Xi) = 1 for node Xi in the evidential state, 0 otherwise.

µCh
Xi

(Xi) = 1 for node Xi in the evidential state, 0 otherwise.
for all non-evidential nodes Xi with no parents do

µPar
Xi

(Xi) = P (Xi)
for all non-evidential nodes Xi with no children do

µCh
Xi

(Xi) = 1
for every non-evidential node Xi do

repeat

if Xi has received the µParmessages from all its parents then

calculate µPar
Xi

(Xi).

if Xi has received µCh messages from all its children then

calculate µCh
Xi

(Xi).

if µPar
Xi

(Xi) has been calculated then

for every child Xj of Xi such that Xi has received the µCh messages
from all of its other children do

calculate and send the message µPar
Xi→Xj

(Xi)

if µCh
Xi

(Xi) has been calculated then

for every parent Xj of Xi such that Xi has received the µPar mes-
sages from all of its other parents do

calculate and send message µCh
Xi→Xj

(Xj)

until all the µCh and µPar messages between any two adjacent nodes
have been calculated

for all non-evidential nodes Xi do

compute the marginal P (Xi|evidence) ≃ µPar
Xi

(Xi) · µ
Ch
Xi

(Xi)

References

N. Chater, J.B. Tenenbaum, and A. Yuille. Probabilistic models of cognition:
Conceptual foundations. Trends in Cognitive Sciences, 10(7):287–291, July
2006.

R. Cordeschi. The Discovery of the Artificial: Behavior, Mind and Machines
Before and Beyond Cybernetics. Kluwer Academic Publishers, 2002.

R.N. Giere. How models are used to represent reality. Philosophy of Science,
71:742 – 752, 2004.

S. Hartmann and R. Frigg. Scientific Models, volume 2, pages 740–749. Rout-
ledge, New York, 2005.

D. Kersten and A. Yuille. Bayesian models of object perception. Current Opin-
ion in Neurobiology, 13:150–158, 2003.

D.C. Knill, D. Kersten, and A. Yuille. Introduction: A Bayesian formulation of
visual perception, pages 1–21. Cambridge University Press, 1996.

13



C. Koch. Biophysics of Computation - Information Processing in Single Neu-
rons. Oxford University Press, New York, 1999.

T. S. Lee and D. Mumford. Hierarchical bayesian inference in the visual cortex.
J. Opt. Soc. Am. A, 20(7):1434–1448, 2003.

D.J.C. MacKay. Information Theory, inference and Learning Algorithms. Cam-
bridge University Press, Cambridge, UK, 2004.

D. Marr. Vision: A Computational Investigation into the Human Representa-
tion and Processing of Visual Information. W.H. Freeman, New York, 1982.

M. Mishkin, LG Ungerleider, and KA Macko. Object vision and spatial vision:
Two cortical pathways. Trends Neurosci, 6(10):414–417, 1983.

E. Nagel. The Structure of Science. Harcourt, Brace, and World, New York,
1961.

M.G. Paulin. Evolution of the cerebellum as a neuronal machine for bayesian
state estimation. J. Neural Eng., 2:219–234, 2005.

R.P.N. Rao. Bayesian inference and attentional modulation in the visual cortex.
Neuroreport, 16:1843–1848, 2005.

E. Winsberg. Sanctioning models: The epistemology of simulation. Science in
Context, 12(2):275–292, 2004.

14


