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Belot, Earman, and Ruetsche (1999) dismiss the black hole remnant proposal as an inadequate
response to the Hawking information loss paradox. | argue that their criticisms are misplaced
and that, properly understood, remnants do offer a substantial reply to the argument against the
possibility of unitary evolution in spacetimes that contain evaporating black holes. The key to
understanding these proposals lies in recognizing that the question of where and how our current
theories break down is at the heart of these debates in quantum gravity. | also argue that the
controversial nature of assessing the limits of general relativity and quantum field theory

illustrates the significance of attempts to establish the proper borders of our effective theories.

1. Introduction. Any attempt to formulate afull theory of quantum gravity faces the difficulty
of establishing the dynamical behavior of the theory when spacetime itself is subject to quantum
uncertainties. Typically, our only justification for offering any picture of truly quantum

gravitational processes comes from arguing that in certain limits we can trust the models
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provided by classical general relativity (GR), low energy quantum field theory (QFT), and their
hybrid offspring, semi-classical gravity. However, we recognize that these models will break
down in certain regions, specifically in regions where interactions on the scale of the Planck
energy are likely to occur. We then face the challenge of using our effective models to the extent
that we can, marking off the areas where these models can no longer be trusted, and making
reasonabl e guesses at what takes place beyond those borders.

A rich variety of responses to this challenge can be found in the debate surrounding the
Hawking information loss paradox. Both the argument supporting the paradox (Hawking 1976)
and therepliesto it rely on semi-classical methods and guesses about the behavior of systemsin
the quantum gravitational regime, but there is considerable controversy over the success of these
various arguments. Belot, Earman, and Ruetsche (BER) argue in their 1999 overview of
responses to Hawking’s argument that a class of proposed solutions to the paradox, namely,
those that postulate the existence of black hole remnants, do not provide an adequate answer to
Hawking’s challenge. These proposed solutions, argue BER, either fail to rebut the argument
driving the paradox or they only escape by denying the existence of the explanandum, that is, by
denying the existence of black holes.

Here | argue that this criticism of the remnant proposals is misguided on three important
counts. First, BER either fail to consider, or misrepresent, remnant scenarios that postulate the
existence of residual black holes. This is a prominent response to Haxlangdox that clearly
escapes their argument. Second, they neglect or misunderstand the limits of the classical
description of the spacetime postulated by the remnant theorists, and thereby miss the substance

of the remnant proposal. Third, the definition of black holes they appeal to is overly restrictive
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in a quantum gravitational context and leads them to misjudge a legitimate reply to Hawking’s
argument.

My purpose in rebutting BER arguments is not to champion the remnant proposal,
which faces serious physical challenges unrelated tdB&Harges, but is instead to clarify the
nature of the debate in which this scenario has been proposed. It seems that the rost of BER
misreading of the proposal lies in their overreliance on theoretical descriptions that are called
into question by this debate. Because the question of precisely how and where these descriptions
fail is at the heart of this controversy, one cannot hope to understand force of Hgawking
argument, or the responses to it, unless one recognizes the significance of arguments over the

correct limitations of our classical and semi-classical theories.

2. TheInformation Loss Paradox. The basis of the information loss paradox is Hawking's
1974 discovery that the theory of quantum fields in curved spacetime implies that black holes
will give off thermal radiation at a temperature inversely proportional to their mass.
Conservation of energy implies that the black hole will lose mass through this process, and if
nothing halts the evaporation, the black hole will eventually disappear completely. This premise
of complete evaporation is essential to Hawking's argument, and is denied by some of the
remnant proposals that we will be considering in the next section.

Figure 1 is a Penrose conformal diagram representing the formation and complete

evaporation of a black hoteThe shaded area represents the black hole, the region that is not in

1. The Penrose conformal diagrams that are used throughout this paper represent spherically
symmetric spacetimes in which we have suppressed two angular dimensions. Thus each point of
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the causal past of future null infinity J*. The causal curvesthat pass through the black hole
cannot be extended to J* but instead are assumed to terminate in a curvature singularity indicated
by the jagged line. Although the existence of a black hole classically implies that a spacetimeis

singular, we will see that many remnant theorists deny that black holes harbor curvature singularities.
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the diagram represents a sphere. All of spatial infinity (r = «) isrepresented by the single point
i°, at which all “time slices” (i.e., spacelike surfaces without edge) end. Past and future temporal
infinity are represented by the pointsi* and i, respectively. While spatial and temporal distances
will be systematically distorted as one approaches these points at infinity, the null rays (light
paths) of the spacetime are always represented as lines of 45, regardless of the curvature of the
spacetime. By clearly indicating the lightcone structure of a spacetime, these diagrams capture
the possible causal (luminal or sub-luminal) paths of the spacetime. For example, they allow us
to represent a black hole as a region from which nothing can escape to future null infinity, J°,
without traveling faster than light, i.e., on a path more than 45° from vertical.



BER employ algebraic QFT to formulate their argument for information loss because of
worries about non-unitarily equivalent representations of quantum fields in curved spacetimes.
However, in the interests of brevity and clarity, and because nothing in my discussion will
depend on this choice, | will use the more standard Hilbert space vocabulary. Consider the three
spacelike hypersurfaces, 2, Zo, and Z,,., 0N which we can define our global state at a“time.”
¥, isthe latest hypersurface that includes the black hole and is composed of the section inside the
black hole, which we will call Z,,, and the section outside, labeled X ,,. We assume that our
quantum field beginsin a pure state, o, a an early time, that is, on our hypersurface Z,,,.

Quantum mechanics tells us that this state will then unitarily evolve into another pure state, p,,
on I,

At this point in the argument we appeal to the validity of local QFT, which claims that p,
will beastatein H,;, ® H.,,, where these two Hilbert spaces will be defined by local field
operatorson %, and X, respectively. We can then define the component states p,,, and p,,, by
tracing p, over the degrees of freedom associated with X, and Z,,,. These component states, o,
and p,,., Will be pure states if and only if g, isan uncorrelated, factorizable state, that is, if and
only if

Po = Poh ® Pext:
However, it seems that we should expect there to be quantum correlations between the field on
Z,, and thefield on £.,. Such correlations are quite easy to form — for example, the interaction
of a pair of particles followed by one of them falling into the black hole will result in a correlated

global state — and there seems to be no mechanism to prevent such correlations from forming



between the inside and outside of the black hole. Further, Hawking explicitly showed that the
outgoing radiation will be correlated with the state of the quantum field inside the black hole.
Given that g, will be an entangled state, we must conclude that p,;,, and p,,, will be mixed states.
A further requirement of locality, often called microcausality, requires all spacelike

related observables to commute. This implies that no act represented by a local operator — for
example, performing a measurement, or making local changes to the Hamiltonian density — can
change the state of the fields outside of the causal future of the region associated with that local
operator. BER appeal to microcausality and theXggis completely spacelike related to the
interior of the black hole to justify theicommutation conditiofi. This condition claims that any
local observables associated with the black hole region, for example, any observable that can be
constructed from the local field operators¥yp should commute with all local observables
defined on the late time sliég,,. Given the validity of local QFT, we can then conclude that
our late time statey ., will be independent of the local field valuesXyp and thap,,, will
unitarily evolve fromp,,,.

But we now recall thab,,, is a mixed state, which implies thaj, is also mixed (since
unitary evolution preserves the purity or mixedness of states). It therefore appears that the
formation and complete evaporation of a black hole cannot be described quantum mechanically.
Quantum mechanics describes all evolution as unitary transformations of quantum states, but the
evolution described above cannot be unitary since it begins with a purggiatand ends with

a mixed stateg,.. This is Hawking'$paradox.



3. Black Hole Remnants. Many physicists feel that Hawking's conclusion is unacceptable in
light of the past success of describing time evolution by unitary transformations of quantum
states. Further, there are concerns that the postulated non-unitary evolution may violate locality
or energy conservation. Responses to the information loss paradox typically argue that some
aspect of the above picture of evaporating black holes will be excluded by afull theory of
guantum gravity, and thus we can expect such atheory to retain unitary quantum mechanical
evolution. The remnant proposal, in particular, points to the fact that the semi-classical methods
used to derive the Hawking effect are clearly invalid when the black hole reaches the Planck
mass. This opens the possibility that quantum gravitational processes might safeguard, and
perhaps even return, the information contained in the black hole, thus allowing for the unitary
evolution of our global quantum state.

If Planckian physics were simply to shut down the Hawking radiation, then we would be
left with a very small black hole that would be quantum entangled with the external state of the
universe. We might call such an entity a“residual black hole” in recognition of the fact that it
retains the essentially spatiotemporal character of ablack hole. By contrast, we can consider a
scenario that postulates the evolution of a Planck sized black hole into some new object: a“black
hole remnant.” Such aremnant istypically described as afundamental particle, of an essentially
guantum gravitational nature, that retains all information that fallsinto a black hole.

If the remnant, or the residual black hole, remains for all future time, then we call it a
stable remnant. However, there is also the possibility that Planckian physics will allow the
information stored in the remnant to return to the external universe. Once all the correlations are

passed off to field operators localized outside the remnant, thus securing the purity of the
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external state, the remnant can safely pass out of existence. These transient objects are referred
to aslong-lived remnants in recognition of the fact that their finite lifetime will nonetheless have
to be quite lengthy, given the potentially immense amount of information that they will have to
return, and the meager Plank-sized mass they have to return it with.

The amount of information that these remnants would have to storeis the basis of the
most substantial physical objection to this proposal. There would appear to be no bound on the
number of internal degrees of freedom that a remnant would have to possess. Suppose, for
example, that we form a black hole from alarge amount of matter that is entangled with some
system outside the black hole. We can then wait for the black hole to shrink by giving off
thermal radiation that will be uncorrelated with any external system. We then feed in more
correlated matter, let the hole shrink, and so on. There seems to be no bound on the number of
correlations (the amount of information) that the black hole - and hence the remnant - would
have to support. However, this seemsto imply that a remnant should have an indefinitely large
number of internal states, while only having Planckian mass. Thisin turn implies that such
remnants should be pair produced without bound in background el ectromagnetic or gravitational
fields, which isclearly false. (See, for example, Giddings 1995b, for more details of this
argument.) Whilethisisavery serious problem facing the remnant scenario, it is not the reason

that BER offer for rgjecting it.

4. Belot, Earman, and Ruetsche’'s Assessment. BER’s paper first offers a derivation of pure to

mixed state evolution, and then offers ataxonomy of proposed solutions to the Hawking paradox



based on which premise of the derivation is denied by a particular solution. My attempt to
defend remnant proposals from BER’s conclusions will require me to focus on the expected
breakdown of local QFT and GR at Planck scales. However, BER explicitly assume the validity
of local QFT, and of the classical general relativistic spacetime indicated in Figure 1. We
therefore face the question of whether my criticisms actually confront BER's argument, or
whether they simply point to apossibly fruitful extension of their project. | wish to set this
guestion to one side here. My goal is not so much to decide whether BER' s assessment of the
remnant proposal isfair given the project they set out, asto clarify how this scenario should be
understood in the context of the debate over information loss.

Given their aim of offering ataxonomy of responses to Hawking’ s Paradox based on how
the response rejects a premise of their argument, what is BER'’ s evaluation of the remnant
proposal? They claim that the proposal faces a“fundamental difficulty” which they posein the
following dilemma.

Either remnants are remnants--that is, of black holes--in which case they do not provide

for a satisfying resolution of the Hawking paradox, or they are not remnants--at |east, not

of black holes--in which case they can do nothing to address the problem of black hole
evaporation. (BER 1999, 216)

Thefirst horn of the dilemma, which will be discussed more fully in the next section, points out
that the derivation of pure to mixed state evolution rests solely on the commutation condition,
and the claim that there are quantum correl ations between the interior and exterior of the black
hole (BER’s “correlation condition), where this black hole evaporates as indicated in Figure 1.
The mere postulation of information retaining remnants, according to BER, does not appear to

block any premise used in their derivation, and therefore this responseis not “satisfying.” On the



other hand, as we shall see in Section 6, one could see the remnant proposal as denying the
existence of black holes. But thismove, according to BER, merely changes the subject and does
not address the concern at issue. Thus either remnants should be grouped with inadequate,
confused responses to the paradox, or they should be seen as (apparently uninteresting) denials of
the original assumption that black holes exist. | will argue below that the solution offered by
remnants is both satisfying and completely relevant to the question of evaporating black holes,
regardless of which horn of BER’s dilemma we decide to face.

First, however, let us consider the case of residual black holes, that is, Planck scale black
holes that no longer Hawking radiate. It isnot clear whether BER take their criticismsto apply
to this remnant scenario as well, or whether they consider it to be outside the scope of their
discussion, asit denies the premise of complete evaporation. Thisis nevertheless a prominent

remnant scenario that clearly deserves our attention.

Figure2
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Such a scenario has been advocated by Banks (1995), who argues that Planck scale
physics might shut down the Hawking radiation and prevent the formation of a singularity in the
center of the black hole. Aswe can seein Figure 2 (copied from Banks 1995), appropriate late
time dices will include all the matter that fell into the black hole, and thus our global state can
remain pure. Although at any time the partial state associated with the region that is accessible to
an external observer will be mixed, the evolution of the total state will be unitary, and thus we
have a response to Hawking's argument. This proposal violates BERs commutation condition
because there will be no time dlice, 2., whose observables will all commute with the black hole
region. Thisisasimple consequence of the fact that the black hole continuesto exist for all
time. While there may be physical reasons to reject this proposal — based, for example, on the
aforementioned worries about black hole pair production — it is nonetheless a conceptually

adequate response to HawKesgrgument.

5. Remnantsvs. The Commutation Condition. Banks proposal explicitly retains the
spatiotemporal nature of the end product of black hole evaporation, which is therefore a residual
black hole or &remnant black hofeas BER also refer to it. The main target of their argument,
however, is the black hole remnant proposal, which claims that Planck scale processes will

replace the black hole with a new sort of fundamental particle, namely a black hole remnant.

A way of picturing remnants which does not involve a residual black hole is given in
[Figure 3]. The spacetime in question still has the event horizon structure constitutive of
a black hole, so while the remnant (the ??7? of [Figure 3]) is not a remnant black hole, it is
[a] remnant of a black hole, and so confronts the dilemma'’s first horn. In this situation
one can proclaim as loudly as one wants that information is stored in the remnant. Be
that as it may, observables in the algebra associated with post-evaporatig, slice
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...(stable remnant) or £,; ...(long-lived remnant) ought to commute with observables
associated with the black hole interior. (BER 1999, 216)

BER’s Stable remnant BER’s Long lived remnant

Figure3

They consider one possibility for fleshing out the remnant story. The remnant (the ?7?? of their
diagrams) could be a placeholder for a set of boundary conditions imposed at the singularity
that would preserve unitarity.
But until remnant enthusiasts produce the new physics that incorporates the boundary
conditions in anatural way, the present proposal ‘solves' the information loss paradox

only by inserting the missing information by hand, and ‘remnant’ is just a name that does
nothing to justify the sleight of hand. (BER 1999, 218)

L eaving aside the question of whether thisisafair appraisa of the attempt to save unitarity
through the imposition of boundary conditions, we should recognize that remnant theorists have
other resources available.

The most common direction for the remnant proposal to take, and | think the most

promising, isto deny that there is atrue singularity in the center of black holes. (Whether these
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objects then deserve the titldack holé is a question | address in the next section.) Indeed, |
believe that this how Giddings (1995a) intended the reader to interpret his figure that served as

the model for BER's diagrams reproduced above.

Figure4. Giddings: “A Penrose diagram appropriate to a

long-lived remnant scenario. The singularity is replaced

by a planckian region nearx 0.”
While Giddings does not explicitly label the remnant in Figure 4, it seems clear that he intends
the remnant, and not a curvature singularity, to be the terminus of all causal paths in the black
hole. Why should this be a remnant rather than a singularity? Consider the claim that the
remnant theorist is making. A large amount of matter undergoes gravitational collapse. This
matter steadily loses mass through Hawking radiation, but it remains entangled with the external
world. Eventually the black hole shrinks to Planck size and evolves from a black hole into a

Planckian remnant. In the absence of evidence for a contrary interpretation, it would seem that

we should take the claim that the information of the infalling matter is transferred to the remnant
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to imply that the remnant is in the causal future of this matter.

While Figure 4 represents a long-lived remnant, we can also correct BER’ s representation

of astable remnant by replacing the spacelike singularity with aremnant, asindicated in Figure 5.

remnant

Figure5

Both the long-lived and the stable variants of this remnant proposal escape BER’s argument by
denying their commutation condition. The late time dice, X, includes the remnant, which in
turn isin the causal future of all observables |ocalized inside the black hole. Thus these
observables will generally not commute with all observables on %,,.. In the case of stable
remnants only the observables associated with the remnant itself will fail to commute with
observables |ocalized inside the black hole. (Here we simply assume that it is legitimate to refer
to the remnant degrees of freedom as “observables,” even though they cannot even in principle be
measured by a macroscopic observer.) If we have along-lived remnant, on the other hand, field

observables in the causal future of the remnant will also fail to commute with the black hole
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observables.

We now face the question of whether this denial of the commutation condition entails a
violation of microcausality. If our spacetime were adequately represented by Figure 1, then the
black hole region and %, . would clearly be spacelike related, because there is no causal curve
connecting these two regions. However, now that we havereplaced the singularity with a
guantum gravitational remnant, what can we say about the existence, or lack of existence, of
causal paths out of the black hole?

We seem to have two options. Thefirst isto agree that there are no causal (i.e., lumina
or subluminal) curves out of the black hole, but claim that in or around the remnant spacelike
related observables will fail to commute. Our second option isto deny that all of 2. is
spacelike related to the black hole region, either because there are causal pathsthrough the
remnant to X ., or because the underlying quantum nature of the spacetime does not alow the
unambiguous specification of whether these regions are spacelike or timelike related. While
remnant theorists often do not distinguish between these two ways of fleshing out their position,
their rgjection of the commutation condition at the Planck scale is typically quite explicit. For
example, immediately before his diagram of along-lived remnant (Figure 4 above) Giddings
writes:

Another possibility is that the information is radiated after the black hole reachesM ~m,

and the semiclassical approximation fails. Here ordinary causality no longer appliesto

the interior of the black hole, and it’s quite plausible that the information escapes.

(Giddings 19953, 551)

But isthisfailure of “ordinary causality” due to superluminal interactions across Planckian

distances, or a breakdown in the causal structure of spacetime? Or is this distinction somehow ill

-15-



posed in atruly quantum theory of spacetime?

In support of reading the proposal as postulating superluminal information transfer, we
can point out that remnant theorists typically claim that remnants are fundamental Planck-sized
particles. The claim that they are fundamental presumably implies that they have no internal
degrees of freedom of a spatial nature, i.e, they will have no spatially related dynamically
distinguishable parts. But if they have afinite (Planckian) size, we can apparently no longer
insist that al spacelike related observables commute. [f aportion of an extended remnant isin
the causal future of a black hole, and another portion of the remnant isin the causal past of a
region of Z ., then an observable associated with the black hole will generally not commute with
an observable defined on that region of X ... The late time observable need only be in the causal
future of some portion of the spatially extended remnant, not necessarily the portion that lies
inside the lightcone of the black hole observable.

If we take the second alternative and argue that the black hole region is not (definitely)
spacelike related to ., then we face both the question of the accuracy of Figure 5, and the
second horn of BER’s dilemma; for it is not clear that such a suggestion is compatible with the
claim (depicted in the diagrams of the remnant spacetimes) that these regions are not in the
causal past of J*, which is the definition of ablack hole. One response to this challengeisto
claim that the diagram is limited: the classical regions have been accurately portrayed, but not all
of spacetime is amenable to this classical description. We misunderstand the proposal if we
argue that because there are two regions of spacetime that would be spacelike related if the

spacetime were completely classical, therefore operators associated with these regions “ought to
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commute.” Unlike the stable residual black hole scenario postulated by Banks, an essential part
of this remnant scenario is a specification of regions where our classical approximations break

down, and it would be a mistake to insist on the commutation condition in this regime.

6. Remnantsvs. the Definition of Black Holes. However, we still have not fully confronted the
second horn of BER' s dilemma, for some versions of the remnant scenario imply that, strictly
speaking, there will be no points that fail to be in the causal past of §*. BER criticize one such
scenario, due to Giddings, on precisely these grounds: it denies the existence of a global event
horizon, and thus denies the existence of a black hole. The spacetime of Giddings massive
remnant proposal is sketched in Figure 6 (reproduced from Giddings 1992, Figure 3). Herethe
collapsing matter does not form a singularity, but rather a Planckian “core” that superluminally

expands past the horizon, thus allowing the information to return to the external universe.

remnant —

collapsing body|

Figure6
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BER question whether it is appropriate to refer to this proposal as a solution of the
problem of information lossin black holes, since thereis no true black hole in Figure 6.
One disturbing feature of this proposal isthat the core expands at a superluminal rate.
Worse, [Figure 6] incorporates no singularity of gravitational collapse. ... Because the
spacetime lacks a genuine black hole, the surface labeled *horizon’ in [Figure 6] must be
an apparent horizon, an object locally delineated, rather than a true event horizon... And
because the relevant event horizon structure is missing, the theorems that underwrite
Hawking radiation do not apply. In short, the |abels of ‘black hole’ and ‘black hole
evaporation’ strike us as misnomers when applied to [Figure 6]. ... It isless a solution to

the information loss paradox than a sweeping denial of the problem. But perhapsthat is
his point. (BER 1999, 219)

While | cannot fully address all of the objections BER raise here, a number of points should be
made on behalf of remnant proposals that deny the existence of singularities.

The question of how we should use the term “black hol€e” is, of course, not the significant
issue here. We can, if we like, identify black holes by the formation of apparent horizons. This
was the concept that Wheeler first applied the term to in 1967, five years before Hawking
introduced his account of global event horizons. Alternatively, we could, with very little
violence to the term, identify a black hole with the region from which all causal curves
necessarily terminate in a Planckian remnant. We might call the border of this region a“remnant
horizon” if we wanted to distinguish it from an apparent horizon. Note that nothing could escape
this region without passing through the Planckian remnant, a prospect not even a fundamental
particleis likely to survive. But nothing of consequence hangs on this terminological issue.

The substantial question is whether apparent horizons or remnant horizons will be
adequate for the derivation of Hawking radiation. Presumably it isthisworry that prompts BER

to charge Giddings with offering a “sweeping denial of the problem.” If he were denying the
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force of the argument for Hawking radiation, there might be something to this charge (although |
would still worry about the distinction between solving a problem and denying that thereis a
problem). But, while Hawking's derivation of black hole radiation rests on the presence of a
global event horizon (and hence the existence of a singularity), one can consistently accept the
predictions of Hawking’s semiclassical model while denying that the spacetime in question is
singular. For example, ‘t Hooft (1985) has demonstrated with a simplistic “brick wall” model
that in certain situations one can derive Hawking-like radiation from the explicitly unitary
evolution of quantum fields. While ‘t Hooft is not a proponent of the remnant scenario, his
model does indicate that nonsingular spacetimes can reproduce the effective descriptions offered
by Hawking.

Granting that Hawking-like radiation is possible in the absence of true black holes, we
still might wonder why a remnant theorist would go through the effort of trying to recover
Hawking’s prediction of black hole evaporation. Onetypically does not see explicit arguments
for the claim that large black holes will give off Hawking radiation even if quantum gravitational
processes prevent the formation of atrue singularity and global event horizon. Thisis because
all the participants in the debate generally agree that Hawking's prediction will be effectively
accurate for large black holes. The debate centers around how accurate this effective description
islikely to be (e.g., whether the radiation will be truly thermal as predicted by Hawking), and
what happens when the effective description breaks down, for example, when the black hole
shrinks to Planck size. The remnant theorist agrees with Hawking that the semi-classical
description ought to be highly accurate on time-slices that stay well away from regions of strong

gravitational curvature. Thisimpliesthat alarge black hole should behave asif it werein the
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process of forming atrue curvature singularity throughout most of itslifetime. Therefore it

should be giving of thermal Hawking radiation — and any Planckian mechanism that might
prevent the formation of a true singularity would seem to be unable to shut down this early time
radiation.

The conviction that Hawkirig prediction should be accurate for early times, along with
the rejection of the claim that black holes completely evaporate away destroying quantum
coherence, led remnant proponents to look for an explicit model, however idealized, of black
holes evolving into remnants. The central project that occupied these theorists in the early 1990s
was trying to find a simplified (usually two dimensional) unitary model of a black hole giving off
radiation and shrinking, while still evolving unitarily. Although a plausible quantum
gravitational model for a black hole remnant was never found, it should be clear that it would be
illegitimate to dismiss such a project as not addressing the question of informatiomlasshol es.

There are serious problems facing the remnant proposal. Indeed, | know of no physicist
who still defends this position. Giddings and Banks, for example, have both abandoned the
remnant view in favor of something like black hole complementarity (private communication), a
position we will briefly consider in the following section. However, these problems do not lie in
a failure to address Hawkiisgargument adequately — if the scenario were plausilbeuit
resolve the information loss paradox — but rather in physical predictions that are difficult to
reconcile with other aspects of physics (e.g., low mass objects having an exceedingly large
number of internal degrees of freedom), and in an apparent inconsistency between the predicted
behavior of remnants and the quantum gravitational theory that currently seems most promising

to the majority of high energy physicists, namely string theory.
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7. Quantum Gravity and Border Disputes. | would like to conclude by suggesting that the
forgoing discussion offers some lessons for exploring scenarios in which we expect our current
theories to break down, asin the case of evaporating black holes. In these situations we can
often do considerably more than simply guess at how a system will behave and report that our
current theories are not completely trustworthy. We often have the resources to develop some
picture of where and how the theories will break down. In the case of black hole evaporation, for
example, we can appeal to the fact that local QFT begins to run into problematic infinities when
we consider very short distances, and the fact that interactions at Planckian energies should
themselves create black holes, to argue that our current theories are inadequate in such aregime.
As the remnant theorists emphasize, however, these same arguments seem to indicate that the
semi-classical approximation should be adequate when these energies are absent.

BER recognize that QFT and GR are only approximately true, but they claim that “we
cannot know how good the approximation is, or even what ‘approximately’ means, until we know
how to combine QM and GR in one theory” (BER 1999, 221). Whilethereisagood deal of
truth in this statement, it neglects the fact that we sometimes can establish some reasonable
boundary lines for the validity of our existing theories. Further, we can hope to glimpse some
features of afull theory of quantum gravity by working to establish the proper domain of the low
energy theories we expect it to reduce to. For this reason we should see the ???in Figure 5 not
merely as a placeholder for some future physics, but also (and perhaps more substantially) as a
proposal for the proper border of our semi-classical description of the situation. Of course,

remnant theorists aimed at more than the demarcation of our current theories, but the question of
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when we should expect the effects of Planckian physics to become manifest remains an
important and controversial question.

To seethisit will be helpful to introduce, briefly and superficially, one other response to
the information loss paradox: black hole complementarity. Advocates of this view argue that
Planckian physics will not be restricted to the center of ablack hole, but will become apparent at
the event horizon aswell. They justify this assumption by pointing out that the modes of the
guantum fields that support Hawking radiation become highly energetic when propagated back in
time to the event horizon, and by arguing that these high energies indicate that our semiclassical
theories are unreliable even at the event horizon of alarge black hole. Superstring models
provide some further support for this claim. While the details of this proposal are beyond the
scope of this paper, we can still recognize that the key issue of debate between the remnant
theorist and the black hole complementarian will be the question of whether classical GR and
standard QFT adequately describe areas of low curvature far from the center of a black hole.
Remnant theorists appeal to the equivalence principle to argue that Planckian effects will be
negligible until one reaches the center of ablack hole, black hole complementarians counter by
pointing to the high energies involved in descriptions that external observerswill offer of the
region around the event horizon. The force of this debate islost if we simply assume the validity
of local QFT and GR, or if wefail to distinguish between proposals (such as some remnant
scenarios) that postulate violations of the commutation condition over Planckian distances, and
other proposals (such as black hole complementarity) that claim that this condition will break
down over macroscopic, or even astronomical scales.

We should recognize that Hawking's argument for information loss also relies on
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assumptions about how and where GR and QFT will break down. The claim that a black hole
will continue to radiate when it has reached Planck size can only be justified by assumptions
about how afull theory of quantum gravity islikely to behave. Even the claim that a singularity
and aglobal event horizon will form from the gravitational collapse of a sufficiently massive
body requires us to make assumptions that go well beyond our semi-classical models, for the
singularity theorems rest on energy conditions that are generally violated by quantum fieldsin
curved spacetimes. Indeed, it isthe violation of these energy conditions that allows us to escape
Hawking’s area increase theorem and claim that black holes shrink as aresult of giving off
radiation.

An understanding of the proposed limitations of our physical descriptionsis therefore
necessary for an adequate account of this particular debate in quantum gravity. But | would
suggest that the importance of finding the proper boundaries of merely “effective” theories
extends well beyond this limited context. Presumably an adequate interpretation of either GR or
QFT would also need to offer an account of when and where these theories are no longer reliable.
And if thisistrue of our physical theoriesit is certainly also true in other sciences. Given that
every scientific theory we have is (at best) an effective theory — able to provide an adequate
description in certain situations, bugffective in others — we should recognize that erecting
signposts in borderlands will be an essential part of laying claim to the understanding of nature

offered by our theories.
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