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Solitons can be well described by the Lagrange formalism of effective field theories. But usually
mass and coupling constants constitute phenomenological dimensions without any relation to the
topological processes. This paper starts with a two-spinor Dirac equation in radial symmetry includ-
ing vector Coulomb and scalar Lorentz potentials, and arrives after bosonization at the sine-Gordon
equation. The keys of non-perturbative bosonization are in this case topological phase gradients
(topological currents) that can be balanced in iterative processes providing for coupling constants
driven by phase averaging and “noise reduction” in closed–loops and autoparametric resonance. A
fundamental iterative spin–parity–asymmetry and dimensional shift quite near to the electron to
proton mass ratio is found that can only be balanced by bosonization including Coulomb interaction.

Introduction. Solitons appear in almost all
branches of physics, such as hydrodynamics, condensed
matter phenomena, particle physics, plasma physics,
nonlinear optics, low temperature physics, nuclear
physics, biophysics and astrophysics. Solitons can be
well described by the Lagrange formalism of effective
field theories [1]. But usually the coupling constants
are phenomenological variables without relations to
the topological processes. In a previous paper it was
indicated that sine–Gordon solitons (SG) [2] could be
stabilized by a topological phase gradient, a field-induced
shift in effective dimensionality [3]. This gradient defines
topological currents that provide also for an iterative
approach to topological phase coupling and coupling
constants. In this paper those currents will be identified
in a coupled two-spinor Dirac model including vector
and scalar potentials and bosonized to a SG equation.
The resulting potentials and soliton particle masses will
be related to a fundamental soliton mass limit (includes
mass shifts identical to the Fadeev-Bogomolny bound).

Bosonization. Similar to the work of Mandelstam
and Coleman [4] we want to start with a proper Dirac
fermion formalism and arrive after bosonization at the
SG equation, the only non–trivial minimal quantum
field theory in 1+1–dim. space–time which describe
non–perturbative phenomena. With the help of the
bosonization results of the massive Thirring model [5],
we will start with a Dirac Hamiltonian that carries
pairs of standard vector and scalar potentials. Non–
perturbative bosonization will generate in the first step
from two first–order Dirac ODE with fermion solutions
one second order Klein–Gordon type relativistic wave
equation with boson solutions. After defining topological
currents in the second step we will arrive at the SG
equation in accordance with exact relationships of the
previous work, i.e. the fine structure iteration.

Radial symmetric Dirac equation. SG–solutions
can represent a torque or spin–precession field often in-
terpreted as continuous chain of coupled penduli initi-
ated by spin–spin and spin–orbit coupling. This requires
to compare at least two interacting states carrying spin.
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FIG. 1: Spin–asymmetry introduced by vector Coulomb (red)
and scalar Lorentz (blue) currents ψL/ψR = α/κ with oppo-
site parity states ψR and ψL and symmetry U(1)L × U(1)R.
With charge-parity symmetry both states carry opposite
charges.

Consider the Dirac equation ĤDΨ = MγΨ based on a
Dirac - Hamiltonian ĤD for a mixed potential consisting
of a scalar potential Vs(r) and a vector potential Vv(r)
given by

ĤD = cα̂ · p̂ + γ̂0 [V0 + Vs] + Vv , (1)

where α̂ and γ̂0 are the usual Dirac matrices [6, 7]. The
vector and scalar potentials will provide for spin–spin
and spin–orbit coupling and will be necessary to bosonize
the Dirac equation with two opposite parity two–spinors.
In the same way the vector Coulomb potential part of
Vv corresponds to the exchange of massless photons be-
tween a nucleus and leptons orbiting around it, the scalar
Lorentz potential potential part of Vs with −1/r charac-
teristics corresponds to the exchange of massless scalar
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mesons. The resulting energy eigenvalue Vγ corresponds
to opposite parity and polar two-spinors components
with total mass V0. The two-spinor wave–function in
spherical symmetry is given by

Ψ ∝
(

ψR(r)ym
jlR

iψL(r)ym
jlL

)
, (2)

where ym
jl are the normalized spin-angular functions con-

structed by the addition of Pauli spinors to the spherical
harmonics of order l. The spinors ψR and ψL are eigen-
functions with eigenvalues lR(lR + 1), and lL(lL + 1),
respectively. A new parameter κ can be interpreted as
orbital (spin) excitation between the two–spinor compo-
nents, where 2κ = lR(lR+1)−lL(lL+1) > 0 characterizes
a left/right spin-asymmetry or difference, see fig.1. The
inclusion of i with ψL(r) is in order to make ψL(r) and
ψR(r) real for bound-state solutions. Substituting this
result back into the Dirac equation and performing some
algebra [7], we arrive at two coupled first order ordinary
differential equations

dψR

dr
+

1 + κ

r
ψR =

[
V0 − Vγ + Vs − Vv

~c

]
ψL,

dψL

dr
+

1− κ

r
ψL =

[
V0 + Vγ + Vs + Vv

~c

]
ψR. (3)

The first step towards a bosonic solution can be estab-
lished by the condition

ψR(r)
ψL(r)

=
α

κ
> 1 , (4)

this couples opposite parity radial functions, and pro-
vides for a wide variety of possible Lorentz scalar Vs(r)
and vector Coulombic potential Vv(r) functions that have
to obey the asymmetry relation

Vγ

V0
=

Vv(r) + ~cα
r

Vs(r) + ~cα
r

=
α2 − κ2

α2 + κ2
, (5)

the asymmetry is shown in fig.1. To couple opposite
parity components in eq.(3) via eq.(4) demands that
both, the vector and scalar potentials in eq.(5) have
to include Coulombic −~cα/r and −~cα/r terms,
respectively. But finally those two components will
merge after bosonization to one −~cα/r potential and
give the SG equation. The two first order ODE can
now be combined to a Schrödinger/Klein–Gordon type
relativistic wave equation that have bosonic solutions.

Towards solitons. SG–solitons correspond to a
bosonic field theory, without eq.(4) the Dirac equation
provides for fermionic solutions. What can we learn
from a well established bosonization techniques? The
Lagrangian of the massive Thirring model [5] has usually
the form

LT = iΨ̄γν∂νΨ−mf Ψ̄Ψ− 1
2
g(Ψ̄γνΨ)(Ψ̄γνΨ) , (6)

where Ψ is Fermi field and γν are Dirac matrices in (1 +
1) dimensions. Coleman [4] and Mandelstam have shown
that the SG and the fundamental fermion of the massive
Thirring model in (1+1) dimensions [5] are equivalent.
The SG Lagrangian is usually given by

LSG =
µ

2
∂νθ∂νθ − V (θ) , (7)

where V is the soliton potential and θ a field scalar. The
stationary, time independent field equations simplify in
one spatial dimension to

∂tV = 0, µ∂2
rθ = ∂θV , V (θ) =

µ

2
(∂rθ)2 , (8)

with SG potential [2]

V (θ) =
µ

2β2
[1− cos(θ)], (9)

where 2V0 = µ/β2. The standard form often corresponds
to µ/2 = m, βφ = θ. Both Lagrangians, eq.(7) and eq.(6)
are equivalent if 4π/β2 − 1 = g/π. The correspondence
in topological currents is established by the relation

− εµν

2π
∂νφ = Ψ̄γνΨ ≡ jν . (10)

This means topological currents are given by phase gra-
dients. The second bosonization relation relates mass to
the trigonometric function

µ

2β2
cos(βφ) = V0 cos(βφ) = −mf Ψ̄Ψ (11)

in accordance with eq.(9). The two bosonization rela-
tions can now be used to find out the proper vector and
scalar functions in eq.(3).

Topological SG currents and potentials. For
SG–solitons in more than one spatial dimensions a radial
topological current eq.(10) can be introduced according
to

q(r) =
∂rθ

r
,

2V

µ
= (∂rθ)2 = q(r)2r2, (12)

where q(r) can be interpreted as a (fractional) radial di-
mension shift induced by vector and/or scalar currents
[3], in this and previous papers it represents simply the
electric charge (quantum). Based on these relations,
an iterative and auto–parametric coupling process was
found that can stabilize higher-dimensional partner soli-
tons or pulsons by balancing the dissipative terms in [3].
For constant q eq.(12) immediately provides with eq.(8)
for a harmonic oscillator coupling potential with propor-
tionality between potential and phase

V (r) =
µ

2
(qr)2 , V (θ) =

µ

2
qθ, Eµ = µc2 , (13)
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and unit condition

V0 = V (r = 1) = V (θ = q) =
µ

2
q2 . (14)

Before we find the proper potentials in the Dirac
Hamiltonian and construct the SG equivalent, it should
be noted that both, the phase shift and potential
shift V0 are based on eq.(12)-eq.(14) and lead di-
rectly to an iterative condition for the spin/orbit (or
fine–structure) coupling strength and will be shown later.

Charge and current density. Let the Dirac equa-
tion describe topological charge and current density, the
3-dim. case allows to introduce two orthogonal 2-dim.
topological currents or phase gradients

ψL(r) =
∂rθL

r
, ψR(r) =

∂rθR

r
. (15)

The path of the topological currents is given by dimen-
sional shifts, the SU(2) → U(1)L × U(1)R bosonization
will describe these currents by combining eq.(15) and
eq.(12) to

|Ψ|2 = q(r)2 = ψL(r)2 + ψR(r)2. (16)

The 1/r-terms in eq.(3) carry dimensional information
and can be interpreted as fractional dimension shifts, κ
by spin–asymmetry (a fractional parity property) and α
by vector potentials. These shifts could be algebraically
assigned to topological currents, where the balancing
condition is given by eq.(4) and can be approached with
a proper definition of topological currents or topologi-
cal phase evolutions θR and θL according to the massive
Thirring bosonization. With eq.(15) both types of 1/r–
coupling, coulombic coupling and spin–asymmetry corre-
spond to relative topological phase evolutions

θL = πκf(r), θR + θ0 = παf(r), (17)

where f(r) will be a special function of r and θ0 a
phase offset. With eq.(17) and eq.(15) the balancing
current becomes proportional to both, the rate of phase
evolution and amplitude leading to eq.(4) that provides
for exact analytical bosonic solutions, see also [8, 9].

Electromagnetic coupling and phase shift. For
electrodynamic sources the gauge group is U(1). It is con-
venient for our Dirac spinors to write the symmetry as
U(1)L × U(1)R. For both components single–valuedness
requires an integer number M of wavelengths on an or-
bital loop with U(1) symmetry and leads also to a topo-
logical definition of charge. This has the topology of a
circular loop, on which the homotopy classes of closed
curves are labelled by their winding or subloop numbers,
and where the magnetic charge is quantized taking inte-
gral values [10]. This quantization can be compared in
the classical sense to an orbital phase evolution of type
“whispering gallery modes” (WGM) [11]. In electromag-
netism the charges are multiples of a fundamental charge

q with spin J , so that the wave-function transforms as

ψ → e±iMθψ, q =
2πJ

M
, (18)

the unit charge corresponds to the phase sub-interval
[0, 2πJ/M ] and to a special topological phase evolution
per loop in the interval T with loop frequency µ = 2π/T
and M -gonal U(1) symmetry. With eq.(8) and eq.(13)
this periodic phase offset can be assigned to a unit poten-
tial shift, see eq.(13) and eq.(14). The topological poten-
tial shift V (θ)−V (q) = V (θM ) is assigned to a minimum
topological phase shift (the fundamental charge q)

q(r) = qψ(r) = q
∂rf(r)

r
, q = θ − θM , (19)

see eq.(14) with V0 = V (q).

Possible route to solitons. Now we can almost in-
tuitively find the proper potentials and solutions to ψ.
But the main task is to bosonize the first order ordi-
nary differential equations eq.(3) to one SG equation with
the help of eq.(12) and eq.(4). With eq.(15) the coupled
equations read

d2θR

dr2
= −κ

r

dθR

dr
+

[
V0 − Vγ + Vs − Vv

~c

]
dθL

dr
, (20)

d2θL

dr2
= +

κ

r

dθL

dr
+

[
V0 + Vγ + Vs + Vv

~c

]
dθR

dr
.

The balancing bridge eq.(4) linearly couples phase gra-
dients, where the phases can be coupled via αθL =
κ(θR + θ0). With eq.(4) and eq.(5) it is sufficient to con-
sider only one part, therefore we omit the index θR → βφ

d2φ

dr2
=

κ

r

dφ

dr
+

[
V0 + Vγ + Vs + Vv

~c

]
κ

α

dφ

dr
. (21)

With eq.(5) the potentials can be written as

Vv = g(r)Vγ − ~cα
r

, Vs = g(r)V0 − ~cα
r

, (22)

where g is a real function. A solution to g = 0 can be
found in [7]. The SG-formalism requires with eq.(8) and
eq.(9)

dφ

dr
− 2β−1 sin(βφ/2) = 0 . (23)

Combining eq.(23) with eq.(22) and eq.(21) provides for

d2φ

dr2
+

κ

r

dφ

dr

−
[
(g + 1)

V0

~c
+ (g + 1)

Vγ

~c

]
κ

α
2β−1 sin(βφ/2) = 0 . (24)

The “massless” case g = −1 provides for

d2φ

dr2
+

κ

r

dφ

dr
= 0 , (25)
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with power-law radial phase solution φ ∝ r1−κ. For

g(r) =
~cα

r(V0 + Vγ)
, Vv = g(r)V0, Vs = g(r)Vγ , (26)

the first order term in eq.(24) vanishes

d2φ

dr2
− (V0 + Vγ)

~c
κ

α
2β−1 sin(βφ/2) = 0 . (27)

The vector and scalar potentials necessary to bosonize
the Dirac equation with two opposite parity two–spinors,
merge with eq.(26) to one Coulomb-type potential

V0 + Vγ + Vs + Vv

= (g + 1)V0 + (g + 1)Vγ − 2~cα
r

= V0 + Vγ − ~cα
r

. (28)

Eq.(23) directly leads to the SG equation

d2φ

dr2 − β−1 sin(βφ) = 0 , (29)

that can be written as

d2φ

dr2 − 2β−1 cos(βφ/2) sin(βφ/2) = 0 . (30)

Comparing eq.(30) with eq.(27) provides for the condi-
tion

(V0 + Vγ)
~c

κ

α
= cos(βφ/2) =

(V0 − Vγ)
~c

α

κ
. (31)

An additional trigonometric relation is given by

V 2
0 − V 2

γ

V 2
0 + V 2

γ

= tan2(βφ/2) =
1− cos(βφ)
1 + cos(βφ)

, (32)

where the SG energy can be related to the Dirac energies
by

V (θ)
V0

= 2
V 2

0 − V 2
γ

~2c2
= 1− cos(βφ) . (33)

Now we have arrived at the SG equation that provides
for a compatibility condition between pseudosphere
surfaces with constant negative curvature [1]. Symmetry
arguments support our result. Driven by the topological
phase gradient eq.(12) the local 2n-dimensional oscillator
potential eq.(13) can be mapped under PSL(2,R) to a
n + 1 dimensional Coulomb potential on pseudospheres
[12]. This means, that local topological currents can be
mapped to distant sinks/sources via vector Coulomb and
scalar Lorentz potential, cylindric symmetry suggests
n = 1.

θ

q

q

1

2

4

V

q

V0

µ

2

2

αµq3
4π

FIG. 2: Phase fluctuations and mean phase shift (linear hori-
zontal axis) responsible for energy exchange between solitons
mediated by (virtual) photons. The one-dimensional coupling
strength (log. vertical axis) soliton–wave–soliton and soliton–
waves shows an energy cascade 2V0 = q2Eµ = q42V .

Background-soliton and soliton-soliton cou-
pling. According to [13] it can be assumed, that soli-
tons show phase fluctuations excited by background fluc-
tuations, where the mean background radiation power
energy is mediated by waves and coupled to massive soli-
tons by a Compton–type permanent scattering process.
The mean background potential for a spectral frequency
c/λµ has the mean potential

2V = q−2Eµ = q−2 hc

λµ
, (34)

where soliton fluctuation amplitude of the soliton Comp-
ton wavelength λµ with respect to the scattering photon
wavelength is considerably reduced by a factor q that
can be obtained from a temporal phase averaging pro-
cess providing for the potential reduction q−2 = (∂tθ)2.
In this context it was proposed that the energy reduction
q−2 = β2 is the Fadeev-Bogomolny bound [14, 15, 16],
see fig.2. In [13] this coupling bound was obtained from
an oscillator solution in 1-dim. auto-parametric reso-
nance. The relative phase–fluctuations between two–
solitons leads to soliton–soliton coupling since the fluctu-
ations mediated by waves are reduced or averaged by an-
other q2 = 2V0/Eµ factor, where q is the reduction of the
phase amplitude, see eq.(13) and SG equation eq.(29).
Starting with the background potential V the energy cas-
cade leads to the soliton energy Eµ that reduces to the
unit coupling energy V0. The reduction can be simplified
to

2V0 = 2V (r = 1) = q2Eµ = 2q4V , (35)

see fig.2. In Planck units (r = c = ~ = 1) the cascade
starts at the reference 2V0 = 1. This means, that
soliton–soliton interaction scales with q4.

Coulomb coupling. In this over–determined sys-
tem the linear relationship between potential and phase
eq.(14) provides for an iterative solution. Combining
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eq.(13) - eq.(19) the discrete orbital phase evolution will
be constrained by a source term eq.(12) and soliton po-
tential term according to eq.(9) and eq.(14)

1− cos(θM ) =
V (θ)
V0

= 1 +
θM

q
. (36)

V0 can be assigned to a basic topological phase q. This
leads quickly with eq.(36) and eq.(18) to the iterative
condition for the optimum phase shift θM

θM = πα = βφ , (37)

MθM = −2πJ cos θM , (38)

where α defined according to eq.(17) can be identi-
fied as a generalized fine–structure coupling constant,
alternatively one could also change to the convention
α → α/(2J). In 3d the coupling strength between
half spin particles (J = 1

2 ) provides with 1/q2 = 12π2

and M = [4π/q] for M = 137 [11]. The Sommer-
feld fine structure constant can be well approached
by α137 = 1/137.00360094... [17, 18]. In [19] θM

was identified as an conic deficit angle responsible
for the Aharonov–Bohm effect. This fits well to the
interpretation, that the topological phase gradient or
charge/current q provides for a dimensional shift.

Spin-asymmetry κ. The orbital phase shift in-
duced by two iteratively coupling and orbiting solitons
(orbital soliton–wave–soliton coupling) θM is different
from the orbital phase shift θ = πκ characterizing the
spin–asymmetry of 2 two–spinors. Consider a perma-
nent Compton scattering process driven by a mean back-
ground radiation of strength 2V and mean wavelength
λ1 = 1, where the scattered quanta with wavelenght shift
4λµ couple back to the scatterer, see fig.3. This provides
also for a special mean scattering angle θ that should be
in a constructive resonance with the excited radial modes
where

1− cos(θ) =
Vr(θ)

V
=

V (θ)
2πV

= f(θ)
4λµ

2πλ1
. (39)

V replaces the relative soliton–soliton coupling energy
V0 = V (q) in eq.(36). The linear relation between phase
and radial potential Vr(θ) suggests an angular relation
of the form f(θ) ∝ θ, where θ = π shows the maximum
wavelength shift and provides for f(θ) = θ/π. This pro-
vides with 4λµ(θ = π) = 2λµ or 4λµ(θ = π)/λ1 = 2q2

for an iterative condition for the optimum phase shift

1− cos(θ) =
θ

π

q2

π
=

1
N

, θ = πκ . (40)

Alternatively, one could say that the linear relation be-
tween phase and radial potential Vr(θ) or orbital poten-
tial V (θ) with

Vr(θ) = V (θ/2π) =
V (θ)
2π

=
V (π)
2π

θ

π
, (41)

θ   = πκ

FIG. 3: The relative rotation and wavelength change due to
spin–asymmetry can be assigned to a Compton type scatter-
ing angle πκ. Radial modes provide for a resonance condition,
here N = 6.

leads quickly with Eµ = V (π), eq.(34), and eq.(39)
to the iterative condition for the optimum phase shift
eq.(40). 1/q2 = 12π2 provides for the balancing phase
shift in eq.(17) κ = 1836.11766.... If WGM are formed
(where the epi/hypo–cycloidal round-trip path fits inte-
ger numbers of the wavelength), the number is given by
N = 683174 with a shift 12π3/κ/683174− 1 = 9.7 · 10−8.
Integer N corresponds to both, orbital radial and stand-
ing waves. The value of κ controls the current based on
spin–asymmetry.

Origin of the basic soliton energy. A re–scaling
to human artificial units requires to apply the proper
scaling relations. In [13] a scaling relation has been found
that relates the unit values q2Eµ = V = 1 obtained with
Planck units (~ = c = λ1 = 1) with special reference
distance λ1 = q2λµ = ~c/(2V ) on one end to the fa-
miliar/measurement values based on the human artificial
energy unit Eu provided by the system of units (SI) on
the other end. The central role identifying the correct
baryon mass scale is the shift of Planck velocity units
to human artificial velocity, length, and arbitrary mass
units. Planck velocity units demand that the light veloc-
ity equals the unit velocity c = u = 1, such that the mean
background energy V scales with the square of the wave
velocity and the SI unit energy scales with the square of
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the unit velocity u (in SI Eu =1J = 1kg m2/s2)

2V

Eu
=

c2

u2
= Ξ2, Ξ = 299792458 . (42)

Practical necessity motivates to choose a unit velocity
0 < u ¿ c with Ξ = c/u À 1.

Particle and photon energies can be compared via
Compton and photon wavelengths that refer to the
light velocity. Planck length units demand that the 1-
dimensional quantum energy of waves coupling to parti-
cles Eµ is inversely proportional to the wavelength, espe-
cially to the Compton wavelength with

Eµ

Eu
=

λu

λµ
. (43)

With Planck units we get λ1 = q2λµ = 1, q−2Eµ = 1.
As a result, the characteristic soliton wavelength of one-
dimension coupling is with eq.(34), eq.(42), and eq.(43)
exactly given by

λµ =
λu

q2Ξ2
≈ 1, 31777... · 10−15m . (44)

Eq.(44) provides for the basic soliton mass µ via Comp-
ton relation µ = h/(cλµ) = q2Ξ2h/(cλu). Realized in SI
units the value is

µ =
~
c

Ξ2

6πm
≈ 1.67724... · 10−27kg . (45)

The 3-dim. coupling constant. It is interesting
to note, that the small synchronizing/coupling current
in the standard SG formalism is given by qRα = qLκ,
compare eq.(4). The Gauss relation can connect the 1-d
coupling energy E1d with potential φ1d to a 3-d coupling
energy E3d with a spherical symmetric potential φ3d(r)
such, that the radial coupling energy is defined by

E3d =
q

ε0
φ3d, E1d =

q

ε0
φ1d , (46)

with

E3d(r) = − 1
ε0

∫ r

∞
φ2

3d4π
dr′

λ1
=

q2λ1

4πε0r
, φ3d =

qλ1

4πr
. (47)

The fine structure constant can be defined by

α =
q2

4πε0~c
=

E3d(r = λµ)
E1d(λµ)

=
φ3d(r = λµ)

φ1d(λµ)
, (48)

where the relations at the special reference distance λ1 =
q2λµ = ~c/(2V ) given by dimensionless Planck units ~ =
c = λ1 = 1 must obey the unit condition

E1d(λ1) = 2V = φ1d(λ1) = 1 , (49)

with a length scale reference exactly given by λ1 =
q2λµ = |c−2|/(2π)m. This provides for

ε0 =
λ1q

~c
=

q

2V
, α = φ3d(λ1) =

q

4π
, M =

[
1
α

]
, (50)

where [ ] means next higher integral value [11].

Another interesting relation. Leaving Planck
units by replacing q by the SI elemental charge e (and
assigning the measured or defined SI values to all
constants), ε0 = λ1e/(~c) ≈ 8.974129 · 10−12(s/m)2
is slightly above the SI vacuum permittivity constant
(≈ 1.35%), see eq.(50). If we assume, that eq.(50) is
correct, the dimension of charge becomes kilogram and
we have determined the most likely charge–to–mass
ratio of a fundamental baryon. This would mean that
Coulomb coupling approached by topological phases
seems to be somehow related to Newtonian gravity.
What about the small difference? The deviation in ε0
could be due to the difference in charge to mass ratio of
an isolated free baryon and a nuclear clustered baryon
where mass is reduced by nuclear effects and binding
energies (≈ 1%). In other words, nuclear mass is not
simply additive, so the charge–to–mass ratio of protons
depends on the context.

Conclusion. We have introduced a formalism to de-
scribe a spin–asymmetry that can be interpreted as a
local dimensional shift. This leads to an orbital current
based on κ 6= 0 that can be assigned after bosonization to
a SG condition. This includes the compatibility between
pseudospherical manifolds with local 2-dimensional oscil-
lator potential that can be mapped under PSL(2,R) to a
2 dimensional Coulomb potential [12, 20]. The strength
of the stationary current is balanced by Coulomb inter-
action, where κ obtained in eq.(40) is quite near to the
electron to proton mass ratio 1/1836.15... [21]. These
results could approach the nature of quantum charge
driven by the topological phase gradients. For bosoniza-
tion and iterative relations beyond field theories it was
important to assign both coupling “constants” α and κ
to iterative feedback processes driven by phase averaging
and “noise reduction” in closed–loops and autoparamet-
ric resonance. In subsequent papers it will be shown,
that the balancing current regulated by eq.(4) can be
identified with high precision as the electron.
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