
CAN CLASSICAL DESCRIPTION OF PHYSICAL

REALITY BE CONSIDERED COMPLETE?

GABRIEL CATREN
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Abstract. We propose a definition of physical objects that aims

to clarify some interpretational issues in quantum mechanics. We

claim that the transformations generated by the objective prop-

erties of a physical system must be strictly interpreted as gauge

transformations. We will argue that the uncertainty principle is

a consequence of the mutual intertwining between objective prop-

erties and gauge-dependant properties. The proposed definition

implies that in classical mechanics gauge-dependant properties are

wrongly considered objective. We will conclude that, unlike classi-

cal mechanics, quantum mechanics provides a complete objective

description of physical systems.

I. Introduction

According to Einstein, quantum mechanical description of physical

reality cannot be considered complete.1 In other words, there would

be ‘elements of physical reality’ that do not ‘have a counterpart in the

physical theory’. In classical mechanics, both the exact position and

the exact momentum of a particle can be simultaneously predicted for

all times from a given set of initial conditions. In quantum mechanics,

on the other hand, the momentum of a system characterized by a well-

defined position cannot be predicted by the theory (and vice versa).

More generally, these quantities can be simultaneously predicted up

to some inversely correlated uncertainties. Indeed, this is the crux of

Heisenberg’s celebrated uncertainty principle. The conceptual content

1This is the conclusion of the seminal Einstein-Podolsky-Rosen article (Einstein

et al. [1935]). An historical account can be found in (Mittelsteadt [2006]).
1
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of this principle has been the object of a heated debate that remains

unresolved today.2

In this paper, we will argue that quantum mechanics can be under-

stood as the formalization of a rigorous definition of physical objects.

According to the standard characterization, the objective properties

of a physical object are the invariants under a certain set of symme-

try transformations (Auyang [1995]; Born [1998]; Nozick [1998]; Weyl

[1952]). However, it is never clearly stated which transformations need

to be considered. We will argue that these transformations are gener-

ated by the objective properties themselves. In other words, we claim

that the transformations generated by the objective properties of a

physical system must be strictly interpreted as gauge transformations.

This definition imposes a compatibility condition on the set of objective

properties that characterizes a certain object. This condition requires

that an objective property be invariant under the transformations gen-

erated by the other objective properties of the same object. The signif-

icant result is that this compatibility condition is not consistent with

classical mechanics, but rather with quantum mechanics.

According to our definition, the uncertainty principle would be the

formal translation of the intertwining between objective properties and

gauge-dependent properties. Roughly speaking, to ask which position

is objective in a quantum particle with a well-defined momentum would

be as nonsensical as asking which side of a die is the objective one. In

other words, in classical mechanics non-objective elements of physical

reality are considered objective. On the contrary, quantum mechanics

provides a complete description of all the objective elements of physical

reality. It follows that the quantum description of a physical system is

not incomplete, but rather that classical states are specified by means

of too many variables. This explains why the quantum mechanical

2Many interpretations were proposed for the uncertainty principle. It was alter-

natively interpreted as a consequence of the unpredictable perturbations in experi-

mental measures of physical quantities, as a result of the mutual incompatibility of

certain experimental contexts, in terms of a subjective lack of knowledge of well-

defined objective states, as a description of the statistical spread in an ensemble of

similarly prepared systems, as the manifestation of an ontological indeterminate-

ness in the definition of physical quantities, etc. (see for example Hilgevoord and

Uffink [2006]).



GABRIEL CATREN 3

description of a physical system depends on half of the variables as the

classical description.

This article presents a conceptual version of the results discussed in

(Catren [unpublished]).3 In translating these technical arguments into

conceptual terms, we hope not only to make them intelligible to a wider

audience, but more importantly to contribute to an understanding of

the rational necessity of quantum mechanics from a philosophical per-

spective. In Section II, we propose a definition of physical objects. In

Section III, we consider the dynamics of physical systems. Section IV

compares the quantum mechanical description of physical objects with

the classical description. Finally, the last Section provides a summary

of the obtained results.

II. Physical objects, objective properties and profiles

A physical object will be defined as a physical configuration that

can be completely characterized by a set of objective properties. Such

a set will be called the eidos ε of the physical object.4 In order to

unpack this definition, it is necessary to specify what we understand

by “objective property”. In doing so, we will try to keep our reflections

as close to common sense as possible.

In order to describe a physical object completely, it is first necessary

to observe it. In general, there are different kinds of observations that

can be performed. For example, we could rotate the object and regis-

ter its different profiles, we can observe the object at different times,

etc.5 An objective property will be defined as a generator of a partic-

ular kind of transformation of the object’s profiles. This means that

an objective property specifies how the object’s profiles change when

the object is acted upon by a certain operation. For example, there is

an objective property that specifies how the observed profiles change

when the object is rotated, there is another objective property that

3These results were obtained by means of a conceptual analysis of the symplectic

formulation of mechanics (Abraham and Marsden [1978]; Libermann and Marle

[1987]; Marsden and Ratiu [1999]; Souriau [1997]) and the geometric quantization

formalism (Brylinski [1993]; Kostant [1970]; Souriau [1997]; Woodhouse [1992]).
4This terminology is borrowed from (Heelan [2004]).
5In principle, there is no difference between rotating an object and modifying the

angle of observation. Hence, there is an equivalence between active transformations

of the object and passive transformations of the observer’s position. In what follows,

we will use both descriptions indistinctly.
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II.eps

Fig. 1

specifies how the observed profiles change when the object is observed

at different times, and so on. We will say that each objective prop-

erty specifies the particular way in which the physical object realizes

a universal operation, such as a rotation or a temporal evolution.6 In

this way, the eidos defines the identity of the object by generating the

transformations between all its possible profiles.

By way of example, it will be useful to point to a physical object as

common as a die. In order to simplify the exposition, let us suppose

that the die is composed of a hexagonal base and a hexagonal top that

define six rectangular sides (see Fig.1). Each side of the die can have a

different natural number n ∈ N. Let’s also suppose that the die is very

long, such that the die can be assumed to land on one of its six lateral

sides when thrown.

Let us now consider the set of all possible distinct dice. Each die

in this set is a different physical object with a different sequence of

numbers on its six sides. When we perform an observation of a partic-

ular die from this set, the result is a particular die’s profile (that is to

say a die’s side with a natural number). However, if we rotate the die

around the axe z, the observed profile will change. According to the

previous definition, this change is prescribed by an objective property

6In (Catren [unpublished]), it was argued that this assertion is encoded in the

so-called momentum map (see for example Marsden and Ratiu [1999]).
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pz which specifies how the die rotates around the axe z. Now, let us

compile a catalogue of all the die’s profiles when it is rotated 360◦ in

intervals of 60◦. This catalogue composes a discrete sequence of six

natural numbers {nθ1
, nθ2

, ..., nθ6
}. Such a sequence will be called an

orbit of profiles. The orbit of profiles contains all the possible results

of an observation. By definition, an objective property is the generator

of an orbit of profiles for a certain kind of operation. For each kind of

operation, there is a different objective property and a different orbit

of profiles of the same object. In particular, the objective property pz

generates the die’s orbit of profiles under rotations around the axe z.

We can thus restate our definition as follows. An object is a physical

configuration that can be completely identified by specifying the set of

generators of its orbits of profiles.

Our definition establishes a difference between two possible kinds of

predicates that can be asserted about physical objects, namely the ob-

jective properties and the profiles. Since a particular object’s profile

changes when we modify our perspective on the object, the profile is

not objective. Reciprocally, an objective property cannot change when

we modify the relative position between the object and the observer.

In other words, a property is objective if it is invariant under the op-

erations that interchange the object’s profiles. In this way, we recover

the idea that an object can be defined by means of the invariants under

the transformations that connect its different representations or projec-

tions (see for example Auyang [1995]; Born [1998]; Nozick [1998]). The

transformations that leave the object (i.e. the set of its objective prop-

erties) invariant will be called automorphisms of the object. Following

H. Weyl, we can thus state that ‘[...] objectivity means invariance with

respect to the group of automorphisms’ (Weyl [1952]). Nevertheless

this standard characterization is not sufficient for defining objectivity.

This problem was clearly stated by R. Nozick ([1998]): ‘The notion

of invariance under transformations cannot (without further supple-

mentation) be a complete criterion of the objectivity of facts, for its

application depends upon a selection of which transformations some-

thing is to be invariant under.’7 Our definition provides this “further

supplementation” by stating that the transformations that must be

7Analogously, H. Weyl continues the preceding quotation as follows: ’Reality

may not always give a clear answer to the question what the actual group of auto-

morphisms is [...]’ (Weyl [1952]).
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considered in order to define these invariants are generated by the ob-

jective properties themselves. Hence, the object itself prescribes those

transformations which define its automorphisms. Hence, not only is an

objective property invariant under all the object’s automorphisms, but

it also generates one of these automorphisms.8

One important consequence of this definition is that the operation

generated by an objective property in the object’s eidos cannot modify

the other objective properties in the eidos. Objective properties there-

fore must be invariant under operations generated by other objective

properties. Let’s consider for example an object defined by the eidos

ε = {p1, p2, ..., pn}, where each pi is an objective property of the ob-

ject. The standard definition of objectivity requires that each objective

property pi be invariant under a certain group of appropriate transfor-

mations. Nevertheless, it is not clearly stated which transformations

have to be considered. Our definition overpasses this flaw by stating

that each objective property pi is the generator of a particular kind of

transformation that interchanges the different profiles in a certain or-

bit. By combining both prescriptions, we arrive at the conclusion that

each objective property has to be invariant under the transformations

generated by all the other properties in the same eidos. This fact im-

poses a restrictive condition on the eidos of an object. The eidos is not

just a collection of unrelated objective properties. Each property has

to satisfy the condition of being invariant under the transformations

8This link between objective property and generators of automorphisms is the

conceptual kernel of the correspondence between observables and operators. In

classical mechanics, an observable f ∈ C∞(M) defines a Hamiltonian vector field

vf by means of the expression ivf
ω = df , where ω is the symplectic form of the

phase space M . The Hamiltonian vector field vf is the generator of a symplectic

diffeomorphism φ
f
λ : M → M , that is to say of the canonical transformation in-

duced by the observable f (Abraham and Marsden [1978]; Libermann and Marle

[1987]; Marsden and Ratiu [1999]). The problem in classical mechanics is that the

correspondence between the Poisson algebra of classical observables f ∈ C∞(M)

and the Lie algebra of classical operators vf (under the Lie bracket of vector fields)

is not an isomorphism of Lie algebras (since the map f 7→ vf is not injective). The

conceptual consequences of this fact were analyzed in (Catren [unpublished]). The

guiding idea of geometric quantization is that a Lie algebra isomorphism between

observables and operators can be forced by properly extending classical operators

to quantum operators (see Brylinski [1993]; Kostant [1970]; Souriau [1997]; Wood-

house [1992]).
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generated by all the others. If a property p1 is invariant under the

action generated by p2, we will say that they are compatible. There-

fore, the eidos is characterized by an internal structure that guarantees

the mutual compatibility between the objective properties that define

the object.9 The object will be completely determined if the eidos

contains the maximum number of mutually compatible properties. In

particular, a predicate q that is modified by the action generated by an

objective property p cannot also belong to the eidos. In other words,

q and p are not compatible. In our previous example, the numbers in

the different sides are not objective properties of the die, but rather

its possible profiles. In other words, since the property pz belongs to

the die’s eidos, the predicates modified by the action that pz generates

cannot be objective properties, but only possible profiles that change

when the die is rotated. In general, we will say that the predicates

modified by the action of an objective property are gauged out by this

action. The action generated by an objective property will be called

gauge transformation.

We claim that the following statement can be considered the concep-

tual translation of the uncertainty principle: if a predicate q is modified

by a gauge transformation generated by an objective property p in the

object’s eidos, then the predicate q cannot be an objective property

of the object, but only its profile. In particular, the momentum p of

a physical object is the generator of a transformation that modifies

the object’s position q (and vice versa).10 If the momentum p is an

objective property in the object’s eidos, then the position q cannot be

an objective property, but rather is a profile that changes when the

object is acted upon by a transformation generated by p. As we have

already stated, asking which position is objective in an object with a

well-defined momentum is as nonsensical as looking for the objective

face of a die. Nevertheless, even if the die has no privileged side, it will

show a particular side when thrown. Analogously, even if a physical

system with a well-defined momentum has no objective position, it will

appear in a particular position if a position observation is performed.

9In technical terms, the eidos defines a commutative algebra.
10The Poisson bracket {q, p}

.
= vp(q) = Lievp

q = 1 means that the symplec-

tic diffeomorphism generated by the Hamiltonian vector field vp induced by the

momentum p transforms the position q. This means that the momentum p is the

generator of the infinitesimal canonical transformations of the position q.
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This does not mean that the observed position is the objective position

of the system.

For the sake of simplicity we have only considered the case of an

object with a well-defined momentum and a completely undetermined

position. The reciprocal case (a well-defined position with an undeter-

mined momentum) is completely analogous. In the general case, both

the position and the momentum are subject to certain indeterminacies.

In fact, the flexibility of quantum mechanics’ formalism makes possible

the definition of intermediate physical states characterized by prop-

erties which are neither objective properties nor profiles, but rather

a mixture of both. In these cases, neither q nor p are sharp objective

properties of the object. If, for example, q is an unsharp objective prop-

erty of a physical state, the conjugated momentum p is not completely

gauged out. Hence, p is in turn an unsharp objective property that

partially gauges the coordinate q. This means that, for a given phys-

ical state, a certain predicate can be partially considered an unsharp

objective property (that partially gauges the conjugated variable) and

partially a profile. It follows that the sheer distinction between in-

variants and gauge-dependent properties does not suffice for treating

generic cases. The resulting subtle equilibrium between unsharp objec-

tive properties and induced unsharp non-objective profiles is formally

governed by the uncertainty principle.

III. Dynamics

The analysis presented in the previous section makes no reference to

temporal processes. Since physics, as it is usually understood, studies

the temporal evolution of physical systems, we will now introduce a

temporal parameter. A consideration of temporal processes will allow

us to shift the discussion from momenta (whose definition does not

make any reference to a temporal parameter) to velocities (temporal

variation of positions).

We will begin by noting that a physical system moving with a well-

defined velocity lacks, by definition, a well-defined position. Analo-

gously, one may think of this as a nomad who necessarily lacks a fixed

address. We claim that this trivial fact contains the conceptual kernel

of the uncertainty principle for positions and velocities. One might

argue that it is necessary to distinguish between the definition of the

physical system as an object and the specification of its instantaneous
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states. Even though its state of motion makes it impossible to assign

it a well-defined constant position, it might still be possible to define

its instantaneous position at any time. To the object’s definition given

by its eidos we could add the information concerning its instantaneous

state. We will now analyze whether this strategy can be consistently

pursued in the framework of our definition of physical objects.

In our previous example, we could imagine that the die is uniformly

rotating such that a different side is visible to us at each time of a given

sequence. If we observe the die at any time belonging to this sequence,

we will observe a die’s profile, that is to say a single side of the die

with a natural number. Even if the die does not change as a physical

object, the observed side changes. We could therefore define an instan-

taneous state at time t given by the objective property pz and the side

observed at t. While the observed side is not an objective property of

the die (since it is a profile acted upon by the gauge transformation

generated by pz), it might nevertheless be an instantaneous objective

property. If this were the case, then we could define the die’s instan-

taneous objective states as in classical mechanics. However, there is a

fundamental objection to this strategy. In order to make sense of the

notion of instantaneous states, it is necessary to introduce an auxiliary

parameter to index the different observations. As usual, this parameter

is called time. Just as the die can be observed from different angles,

in principle it can also be observed from different times. Nevertheless,

the transformation of the temporal perspective on the object will be an

admissible transformation only if the property pt that generates “time

evolution” is included in the object’s eidos. In other words, in order

to define a uniformly rotating die, it is necessary to assume that the

property pt that generates the die’s orbit of profiles parameterized by

the variable t is also an objective property of the die.11 If pt belongs to

11This argument supposes that it is possible to treat time and energy as if they

were another pair of conjugated canonical variables. In fact, this is possible in the

framework of the so-called parameterized systems (see for example Lanczos [1986]

and Castagnino et al. [2002]). In a parameterized system, the pair (t, pt = −h)

(where h is the Hamiltonian) is added to the original set of canonical variables

(qi, pi). To do so, it is necessary to incorporate the definition of pt within the

action by means of the so-called Hamiltonian constraint H = pt + h = 0 and the

corresponding Lagrange multiplier. The variable of integration of the resulting

parameterized action is a parameter τ which has no physical meaning (i.e. the

theory is invariant under reparameterizations of τ).
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the object’s eidos, then different times are just different perspectives

from which the physical object can be observed.12 Since time evolu-

tion is only a particular kind of modification of the perspectives on the

same object, the object cannot change objectively in time. It can only

appear differently, that is to say it can only show different temporal

profiles. Reciprocally, properties that change in time cannot be ob-

jective. It follows that instantaneous states cannot change objectively

in time. However, the notion of an instantaneous objective state is

meaningful only if it can become another instantaneous objective state

as time passes. Therefore, it is not possible to define instantaneous

objective states for a physical object whose eidos contains the property

pt. Because the instantaneous states are not objective (i.e. they have

no invariant meaning), we cannot describe the rotating die in terms of

a continuous sequence of instantaneous objective states. If instanta-

neous objective states cannot be defined, then a system moving with

a well-defined constant velocity cannot objectively have a well-defined

position, even at a certain instant. Hence, such a system should not

be analyzed in terms of instantaneous objective states that evolve in

time, but rather in terms of a non-temporal physical object with non-

objective temporal profiles. The fact that the object “evolves” in time,

that is to say that it can be observed at different times, demonstrates

that it is a non-temporal object. These conclusions result from the

assumption that the property pt belongs to the object’s eidos. Never-

theless, in principle it is also possible to define an instantaneous object

such that its eidos contains the property t instead of pt. In this case, the

property pt is no longer an objective property. Since the transforma-

tion that modifies the temporal profiles is no longer an automorphism,

an instantaneous object cannot be observed at different times. There-

fore, an instantaneous object cannot evolve. These arguments suggest

that a satisfactory comprehension of the uncertainty principle for time

and energy is an essential component of a consistent interpretation of

quantum mechanics.

12This statement is a rigorous interpretation of the fact that ‘[...] the motion

of a mechanical system corresponds to the continuous evolution or unfolding of a

canonical transformation.’ (Goldstein [1981]).
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IV. Classical objects

The arguments proposed in the previous section rely on the assump-

tion that the transformations generated by the objective properties of

a physical system are gauge transformations. As we have shown, the

uncertainty principle is a direct consequence of this assumption. If the

momentum p is an objective property of a physical system, then the

position q is completely gauged out by the gauge transformation gener-

ated by p. Since the classical definition of objective physical states com-

prises both its exact position and its exact momentum, this assumption

cannot be consistently implemented in the framework of classical me-

chanics.

We can also argue differently. If both the position and the momen-

tum are included in the object’s eidos, then both the position and the

momentum will be gauged out by the gauge transformations generated

by the momentum and the position respectively. Therefore, both the

position and the momentum will only be gauge-dependant properties

and the physical system will have no objective properties at all. We can

thus conclude that the classical definition of states by means of both

q and p is incompatible with our definition of physical objects. The

classical definition of a physical state is consistent only if we deny that

the action generated by an objective property of the system is a gauge

transformation. In fact, in classical mechanics the action generated by

an objective property is not interpreted as a gauge transformation, but

rather as a transformation between states that are objectively different.

For example, the transformation generated by the Hamiltonian is inter-

preted as a temporal evolution between different objective states. By

doing so, the definition of classical states becomes consistent. Never-

theless, objective properties can no longer be defined as the generators

of the physical object’s automorphisms. Hence, the classical definition

of both objective properties and physical objects remains problematic.

The situation has thus been happily reversed: the problem is no longer

how to recover objectivity in quantum mechanics, but rather to under-

stand how classical objects can be consistently defined.

V. Conclusion

We have defined a physical object as a set of mutually compatible

objective properties. By definition, each objective property generates
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a gauge transformation, that is to say an object’s automorphism. This

relationship between objective properties and automorphisms is the

conceptual counterpart of the formal correspondence between observ-

ables and operators. The compatibility condition guarantees that the

objective properties are invariant under the automorphisms generated

by all the others objective properties of the same object. The un-

certainty principle is a direct consequence of the mutual intertwining

between objective properties and gauge-dependant properties: if p is

an objective property of an object, then the property q gauged out by

p cannot also be an objective property.

We could restate Einstein’s characterization by saying that a sat-

isfactory physical theory has to provide a complete objective descrip-

tion of physical reality (Einstein et al. [1935]). Firstly, this means

that every objective element of physical reality should have a counter-

part in the theory. Secondly, gauge-dependant elements should not be

taken as objective by the theory. The classical description of a physical

system includes both its objective properties and its gauge-dependant

properties. Unlike classical mechanics, quantum mechanics provides a

complete objective description of physical systems.
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[18] Weyl, H. [1952]: Symmetry, Princeton: Princeton University Press.

[19] Woodhouse, N. [1992]: Geometric Quantization, second ed., Oxford: Oxford

University Press.


