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In this paper the Berry and Aharonov-Bohm phases are generalized to nonlinear topological
phase fields on pseudospheres, where the coordinate vector field is parallel transported along the
signal/soliton vector field with Levi–Civita connection. Projective PSL(2,R) symmetry describes
the relativistic self-interacting bosonic sine-Gordon field. A Coulomb potential can be induced
as the stereographic projection of a harmonic oscillator potential mapping angles or phases to
distances and vice versa resulting in mutual coupling with a generalized coupling constant given by
a nonlinear iteration. With single-valuedness requirement in 137-gonal symmetry it fits within a
few ppb uncertainty to the Sommerfeld fine structure constant.

PACS numbers: 02.10.De, 03.65.Bz, 03.65.Vf, 03.65-w, 03.67.Lx, 05.45.Yv, 06.20.Jr, 12.20.-m, 42.65.T

Introduction. The geometric origin of the sine-
Gordon equation SG can be assigned to the study of
Riemannian geometry on surfaces of constant negative
scalar curvature, also known as pseudospherical surfaces
that can be considered as varieties embedded (with the
induced natural Riemannian metric) into the three di-
mensional Euclidean space R3 [1, 2] (very similar to the
Liouville equation). The curvature and coupling param-
eter are given by the Levi–Civita connection, where the
SG appears by fixing special local coordinate frames on
pseudospherical surfaces with a Riemann tensor that has
only one independent component R1212. The SG has
soliton solutions which describe elastic collision of local-
izable waves, that can be interpreted as particles of non–
perturbative nature. This is relevant for spatial and spec-
tral localization of energy, intrinsic nonlinear modes, self-
induced transparency, and supra effects (energy propa-
gation in the forbidden band gap by means of nonlinear
modes) [3].

Topological and/or geometric phases are subject of
concepts in differential-geometry and topology associated
with abelian and non–abelian groups [4, 5, 6]. Generally,
phase factors or phases representing the ‘holonomy’ pro-
vide for important boundary conditions while reducing
the degree of redundancy in variables. This is one of the
reasons why phases and gauge theories are not unimpor-
tant in quantum mechanics, despite of the central role
of amplitude densities. Berry showed that the geomet-
ric phase has the same mathematical (gauge) structure
as the Aharonov-Bohm (AB) phase [5] and is the inte-
gral of an effective vector potential along a closed path.
Both phases even combine [7] especially if a charged par-
ticle is in an spatial extended quantum state, i.e. if
the orbital loop includes spatially extended sub-loops.
Both, the local non–abelian Berry phase evolution on
S2 = SU(2)/U(1) and the nonlocal abelian AB scat-
tering effect on R2 with conic metric provide for phase
evolutions and deficit angles that can be combined. In a
previous work it was shown how the deficit angle of the
AB conic metric and the geometric precession cone vertex
angle of the Berry phase can be mutually adjusted to re-
store single-valuedness. The resulting interplay between

both phases provides a non–linear iterative system pro-
viding for generalized fine structure constants [8]. Here
we start to generalize the Berry and Aharonov-Bohm
phases to nonlinear topological phase fields on pseudo-
spheres, where projective PSL(2,R) symmetry describes
the relativistic self-interacting bosonic sine-Gordon field,
and where the iterative interplay can be assigned to a
harmonic oscillator potential.

The central news of this paper is, that oscillators
on the sphere and the pseudosphere are related by the
Bohlin–Levi–Civita transformation with the Coulomb
system on the pseudosphere [9, 10]. Consequently,
we can introduce the Coulomb potential and the
corresponding coupling constant as the stereographic
projection of the harmonic oscillator potential mapping
angles or phases to distances. With this relations the
previous work [8] can be fundamentally confirmed and
generalized, SG relativistic soliton dynamics can be
related to electrodynamics.

Strategy. This paper outlines the 4 essential steps.
Step 1: starting with a Riemannian geometry of surfaces
of constant scalar curvature (pseudospherical and spher-
ical) embedded into the three dimensional Euclidean
space with symmetry group SU(2) or SU(1, 1). Step 2:
fixing local coordinates that have only one independent
component given by the curvature scalar (sine-Gordon
and Liouville). Step 3: introducing feedback coupling by
the stereographic projection onto (conformal-flat) coor-
dinates of the two-dimensional oscillator with symmetry
group PSL(2,R) and identifying the dual potentials
with su(d) and so(d + 1) symmetry (for d = 2). Step 4:
fixing the coupling constant by a nonlinear iteration.

Bäcklund transformations. The nonlinear SG phase
field evolves with a pseudospherical curvature constraint.
This property is found with generalized Chebyshev coor-
dinates on a plane S embedded in R3

ds2 = M−2(dx)2 + M2(dy)2 + 2 cos θdxdy (1)
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with scalar curvature R = 2R1212/ det(gij) [2] of the gen-
eralized Chebyshev metric, where

∂x∂yθ = (πMg)2 = −R sin θ/2 (2)

is the SG. As a generator of the SG eq.(2) and manifesta-
tion of integrability, the Bäcklund transformations (BT)
maps the SG into itself and enables to build new surfaces
of constant negative curvature from old [1]. From a given
solution of the SG [1, 2] we can construct new solutions
by solving the ordinary differential equations for a family
of elementary BT θ 7→ θ̃

(∂xθ̃ + ∂xθ)/M = 2πMg sin[(θ̃ − θ)/2],

(∂y θ̃ − ∂yθ)M = 2πMg sin[(θ̃ + θ)/2]. (3)

The second order equation eq.(2) arises as the integrabil-
ity conditions of a pair of first order equations eq.(3), i.e.
∂y(∂xθ̃) = ∂x(∂y θ̃). Provided θ is a solution of the SG,
then θ̃ is also a solution. For simplicity, θ̃ will serve as
the special reference field of constant phase given by the
rather trivial case θ̃ = 4π( 1

2 + n), with quantum gauge
(or spin) dependent winding number n = 0, 1, 2, ... . This
provides for a simplification and the dimensional reduc-
tion ∂x = M2∂y in eq.(3) with

∂xθ/M = M∂yθ = 2πMg sin(θ/2). (4)

This form corresponds to travelling waves-like solutions
with ξ = πMg(ax + by), where the SG can be reduced to
the ordinary differential equation ab∂2

ξψ(ξ) = sin ψ(ξ),
in our case b = 1/a = M . The stationary SG soliton
solutions are expressed by elliptic functions, the gener-
alized pseudosphere solution follows immediately from
integrating eq.(4) ψ(ξ) = 4 arctan exp(ξ/

√
ab). With

cos θ = 1 − 2 sin2(θ/2) and introducing r2 = x2 + y2 =
(1 + 1/M4)x2 = (M4 + 1)y2 with ∂2

r = ∂2
x + ∂2

y the po-
tential is usually given by

2V (θ) = (∂xθ/M)2 = (M∂yθ)2

= (M2 + 1/M2)(∂rθ)2 = 2π2M2
g (1− cos θ), (5)

From eq.(5) the self-energy term can be identified as a
constant θ-independent Riemann curvature scalar R =
−2/ρ2, with eq.(2) πMgρ = 1. Therefore, it is plausible
to decompose energy in eq.(5) into at least two terms:
a self-energy term π2M2

g and a dynamic coupling term
π2M2

g cos θ that accounts for the field evolution based on
the BT.

Coupling space and phase coordinate by harmonic os-
cillation. Searching for external coupling and synchro-
nization, eq.(5) allows to force global harmonic oscilla-
tions via potential

Vo(r) =
1
2

(
r

ρ

)2

=
1
2

(πMgr)
2 = −1

4
Rr2. (6)

Regarding eq.(4) and the square roots of eq.(5) and
eq.(6), space and phase coordinate become directly cou-
pled

r = ∓ρ
√

M2 + 1/M2∂rθ = ∓2 sin(θ/2), (7)
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FIG. 1: Oscillation by precession on the sphere S2 with am-
plitude r = 2|A − B| (blue) stereographically projected to
the Coulomb distance rc = |O −Q| (red) with r = 2 sin(θ/2)
and rc = cot(θ/2). The horizontal distance d = |A − Q| =
|A−O|2/|A−B| = cos(θ/2)rc = (1 + cos θ)/r.

which provides for an additional dimensional reduction.
The coupling space and phase coordinate provides for
a coupling constant since integration of eq.(7) provides
for adynamic coupling term ∓πMg

√
M2 + 1/M2θ that

can be combined with a self-energy term and integration
constant to

V (θ) = Vo(y) = π2M2
g ∓ πMg

√
M2 + 1/M2θ. (8)

Comparing the correspondent parts of self-energy and
dynamic coupling in eq.(8) and eq.(5), we immediately
obtain an iterative equation of cooperative macroscopic
phase shift driven by stereographic feedback

√
M2 + 1/M2θ = ±πMg cos θ, (9)

where the coupling allows for two possible signs.

Coulomb potential from fractional linear transforma-
tions. The relation between r and θ in eq.(7) is a stere-
ographic projection with (pseudo)spherical angle θ/2
onto the conformally-flat (x, y)-plane, see fig.1. Defining
Lobachevskian planes and constructing a Lie–Bäcklund
transformation which relates the Liouville equation to
the SG [2], these systems possess nonlinear hidden sym-
metries providing for properties similar to those of con-
ventional oscillator and Coulomb systems. In the pre-
vious work is was proposed, that the iterative solution
α(M) = θ(M)/π could be interpreted as a generalized
spin-orbit or fine structure constant, since α enters in
[8] as a Newton-type coupling constant of the conic met-
ric. Let where rc and r denote the radial coordinates
of Coulomb and oscillator systems, respectively. Under
stereographic projection the conventional Bohlin trans-
formation rc = r2 plus inversion relates the harmonic
oscillator potential eq.(6) on the (pseudo)sphere to the
Coulomb system on pseudosphere, as well as those inter-
acting with specific external magnetic fields [10]. Since
the group of the isometries of the Lobachevsky and
Kaehler metric coincides with PSL(2,R), it acts by pro-
jective fractional linear (or Möbius) transformations [2]
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FIG. 2: Precessional coupling by stereographic projection:
mutual geometric interaction of oscillators.

and allows to obtain the typical electromagnetic field pat-
terns. In our case, see fig.1 and eq.(7), the parameteri-
zation is nothing but the stereographic projection of the
two-dimensional (pseudo)sphere

z = rceiϕ =
{

cot θ
2eiϕ sphere;

coth θ
2eiϕ pseudosphere,

(10)

where θ, ϕ are the (pseudo)spherical coordinates [10].
The radial dependence of the Coulomb potential is Vc ∝
1/rc, the oscillator potential Vo ∝ r2. In both, classical
and quantum cases, the fractional linear transformation
and successive transformation rc = r2 converts the su(d)
symmetry algebra of the oscillator to the so(d + 1) sym-
metry of the Coulomb system [10]. Fig.2 extends the
principle to mutual interaction of geometric precession.

The coupling strength. The coupling strength ob-
tained with the radial distance on the projective plan
r differs from the coupling strength obtained from
a pure one-dimensional definition [8, 11] by a factor√

1 + 1/M4, for M = 137 a relative reduction in cou-
pling strength of about 1.42 · 10−9. The iteration eq.(9)
is now invariant with respect to the inversion and duality
M ↔ 1/M . Inversion seems to be in our case the central
linear fractional transformation between local and
non–local holonomy relating the Coulomb and oscillator
potential. M -type inversion could also characterize the
relations between the electric and magnetic monopole

charge ge = 1 with g/e = M2, and also between group
and phase velocity of a wave packet in the ground state
vgvp = 1 with vp/vg = M2. The coupling strength
is balanced by the orbital degree of degeneracy M or
1/M of the precessional field, the Bäcklund parameter
introduced in eq.(3). M as an integral quantum number
describes the phase-locked and single-valued field [8] and
provides for integrability. The coupling constant and
special θ-value or oscillation range is iteratively obtained
in eq.(9), where M = 137 or M = 1/137 provides
with Mg = 1 for 1/α = 137.03600960 that fits within
some ppb’s to the Sommerfeld fine structure constant
obtained in neutron interferometry. The meaning of the
number 137 remains unclear.

Conclusion. There is a clear geometrical interpreta-
tion: the coordinate vector field is parallel transported
along the signal/soliton vector field with respect to the
Levi–Civita connection. A ”privileged” surface H of
scalar curvature R = −2 is given by the Lobachevskian
plane and Poincaré disks. The potential eq.(6) provides
for a global harmonic precession balanced by the topo-
logical phase shift θ(r), where the usual SG coupled pen-
dulum interpretation is extended to a macroscopically
coupled spin interpretation. The situation becomes sta-
ble and self-consistent if the Coulomb feedback synchro-
nizes to local soliton oscillations (breather) that gener-
ate the Coulomb potential by stereographic projection.
Regarding the recent work of [3], the nonlinear mecha-
nism behind V [θ(r)] could have a strong relevance for
self-induced transparency and nonlinear supratransmis-
sion. Eq.(9) is an chaotic algorithm, bifurcation starts
above a special values of Mg. In [3] the bifurcation
of energy transmission is demonstrated numerically and
experimentally on the chain of coupled pendula (sine-
Gordon and nonlinear Klein-Gordon equations). Energy
propagation in the forbidden band gap by means of non-
linear modes requires a degree of macroscopic coherence
initiated i.e. by eq.(6). It appears, that both α(M) and
SG-solitons could be simultaneously observed in Joseph-
son ladders [9] in the context of supratransmission and
supraconductivity.
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