Comment on “On the logical consistency of
special relativity theory and non-Euclidean
geometries: Platonism versus formalism”

Radhakrishnan Srinivasan®

Abstract

As observed in the PhilSci preprint ID Code 1255 [1], consistency in
the author’s proposed non-Aristotelian finitary logic (NAFL) demands
that Euclid’s fifth postulate must necessarily be provable from the first
four, and that diagrammatic reasoning with Euclidean concepts must nec-
essarily be admitted into the rules of inference for plane neutral geometry
in order to argue for the said provability. Two important consequences,
namely, the indispensable role of diagrams as formal objects of Euclidean
geometry in NAFL and the resulting NAFL concept of ‘line’ as an infi-
nite proper class of line segments are highlighted and elaborated upon.
A misleading comment in Remark 6 of [1], regarding negation for unde-
cidable propositions in the theory of special relativity (SR), is corrected.
This comment is unrelated to the main argument in [1] and the resulting
analysis reinforces the conclusions of [1] that negation and implication are
problematic concepts for undecidable propositions in SR.

1 The essential role of diagrammatic reasoning
in NAFL and the resulting concept of ‘line’ as
an infinite proper class in Euclid’s geometry

Consider plane neutral geometry (NG) as formalised in classical first-order pred-
icate logic (FOPL). Our goal in this section is to highlight and further elaborate
upon two important results deduced in [1], namely, the essential role of dia-
grams as formal geometric objects in the non-Aristotelian finitary logic (NAFL)
proposed by the author [2, 3] and the consequent NAFL concept of ‘line’ as an
infinite proper class of line segments. In contrast, classical logic admits a line as
a mathematical object and considers diagrams to be informal (and sometimes
unreliable) reasoning tools.
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An excellent reference for the formalization of diagrammatic reasoning is the
work of Miller [4]. The modern attitude towards diagrams is neatly summarized
by the following quote from Chapter 1 of [4]:

It has often been asserted that proofs like this, which make crucial
use of diagrams, are inherently informal. The comments made by
Henry Forder in The Foundations of Geometry are typical: ‘Theo-
retically, figures are unnecessary; actually they are needed as a prop
to human infirmity. Their sole function is to help the reader to fol-
low the reasoning; in the reasoning itself they must play no part.’
... The transition from mathematics with geometry at its core to
mathematics with arithmetic at its core had a profound influence
on the way in which people viewed geometric diagrams. When ge-
ometric diagrams were seen as the foundation of mathematics, the
geometric diagrams used in these proofs had an important role to
play. Once geometry had come to be seen as an extension of arith-
metic, however, geometric diagrams could be viewed as merely being
a way of trying to visualize underlying sets of real numbers. It was
in this context that it became possible to view diagrams as being
“theoretically unnecessary” and mere “props to human infirmity”.

Miller [4] proceeds to develop the thesis that diagrams can indeed be considered
as formal objects in plane Euclidean geometry and that diagrammatic proofs
are as rigorous as their sentential counterparts. NAFL takes this a step further:
diagrams are necessarily formal objects and diagrammatic reasoning must nec-
essarily be admitted into the rules of inference of classical NG in order to argue
for the provability, required by consistency in NAFL, of Euclid’s fifth postulate
from the first four; see Sec. 2 of [1].

The theory NG(NAFL) is the NAFL version of NG with diagrammatic rea-
soning (admitting only Euclidean concepts) introduced formally into the rules
of inference. For an idea of how this can be done, see [4]. In order to argue
for the provability of the fifth postulate in NG(NAFL), ‘parallel’ was re-defined
in [1] as follows:

Definition 1. Two distinct coplanar lines are parallel if and only if they are
equidistant at all points, where distance between the lines at a point (on either
line) is defined as the length of the perpendicular to the other line dropped from
that point. Similarly, a line segment AB that does not lie on a line [ is parallel
to [ if and only if AB is equidistant from [ at every point of AB.

It was stated in [1] that Definition 1 is first due to Posidonius in the first
century B.C.; however, it appears that Archimedes (287-212 B.C.) in his treatise
On parallel lines had already defined parallelism similarly. Definition 1 can be
extended in an obvious manner to define parallelism between two coplanar line
segments and we assume that this has been done. Proposition 1 of [1] is stated
below for convenience:



Proposition 1. Given a linel and a point P at an arbitrary non-zero distance
D from 1, there ezists a unique line segment M through P parallel to 1, such that
P is at the midpoint of M and M is of a given arbitrary non-zero length L. Here
D and L are (standard) finite lengths. The line segment M will remain parallel
to I when extended by an arbitrary (standard) finite length such that P continues
to remain at the midpoint of M. Here ‘parallel’ is defined in Definition 1.

A diagrammatic proof of Proposition 1 was given in [1], with a scaling argu-
ment to represent line segments M of arbitrary length in a single diagram drawn
to scale; different line segments will imply different scale factors for the diagram.
Here we emphasize that Tarski’s axioms for NG do not permit the considera-
tion of ‘arbitrary’ entities, such as, line segments; if NG is suitably modified to
permit this, it becomes classically incomplete, since NG would then interpret
classical Peano Arithmetic [5]. NAFL, however, rejects Godel’s incompleteness
theorems [3] and so NG(NAFL) can admit arbitrary line segments without be-
coming incomplete (equivalently in NAFL, inconsistent). In fact consistency
demands that NG(NAFL) interpret Peano Arithmetic, for the notion of ‘arbi-
trary’ line segment is essential in the above diagrammatic proof.

The rationale for the diagrammatic proof is that NAFL permits only con-
structive Euclidean concepts, and the diagram represents precisely the construc-
tions we must have in mind when we think of ‘line’ or ‘line segment’. The scaling
argument is simply justified by noting that the ideal ‘lengths’ of line segments
in NG(NAFL) have nothing to do with the physical length of the line segment
drawn in the diagram; we are completely free to attribute an arbitrary scale
factor to represent arbitrary ideal lengths, which are mental constructions, by
a single physical diagram. Let ‘idlg’ represent the unit ideal length of a line
segment in NG(NAFL), and let the (usual, real-world) ‘inch’ be the correspond-
ing unit length in the diagram. One might take the scale factor for the line
segment M of Proposition 1 in the diagram as “one inch = one hundred idlgs”;
one could also take the scale factor as, for example, “one inch = one hundred
thousand idlgs”, etc. It should be emphasized that these two scale factors cor-
respond to two different line segments M in NG(NAFL), represented in a single
diagram. The point here is that there is no reality for the question of how
many idlgs are ‘actually’ contained in one inch, since NAFL does not require
our mental constructions of line segments and their unit length scale idlg to
have any connection whatsoever with the real world; formally, this question
is undecidable in NG(NAFL), and the Main Postulate for NAFL [2, 3] makes
truth for such a proposition purely axiomatic in nature. It follows that in the
absence of any axiomatic declaration as to the value of the length L (in idlgs)
of the line segment M represented in the diagram, all ideal length scales are
present in one inch in a superposed state, as required by NAFL. It is this fact
that permits the scaling argument in NAFL, and the consequent representa-
tion of arbitrarily long (mentally constructed) line segments superposed in a
single (physical) diagram. In fact this scaling argument is absolutely essential
for consistency of NG(NAFL), as will be argued shortly. In contrast, FOPL
requires that the line segment M in the diagram represents one and only one



instance of Proposition 1, which prevents the diagram from being a direct proof
of Proposition 1 and amounts to a Platonic assertion that the line segments of
NG ‘really’ exist. Clearly, FOPL requires that there is a fact of the matter as to
the conversion factor between the ideal length scale idlg and the physical length
scale of one inch in the diagram, despite the undecidability of this proposition
in NG; different conversion factors only succeed in redefining idlg in terms of
inches from the FOPL point of view, and we are looking at one and only one
line segment M of a fixed length. Of course, similar diagrammatic proofs can
be given in NG(NAFL) for each of the other four postulates of Euclid which
must also be asserted as tautologously true in NG(NAFL). The fifth postulate
was perceived to be ‘counter-intuitive’ precisely because FOPL does not permit
such a diagrammatic proof, as will be explained below.

Playfair’s postulate, logically equivalent to Euclid’s fifth postulate v, asserts
that for every line [ and for every point P that does not lie on [, there exists
a unique line m through P that is parallel to I. We use Playfair’s postulate
interchangeably with ¢. It was argued in [1] that Proposition 1 provides a
direct, constructive proof of 1) in NG(NAFL). An indirect proof of ¢ may also
be obtained in NG(NAFL) by dropping perpendiculars from the end-points of
the line segment M to the line [ of Proposition 1 and exhibiting diagrammatically
the rectangle bounded by M, [ and the two perpendiculars. Since only Euclidean
concepts are permitted in diagrammatic proofs, the existence of such a rectangle
is equivalent to and proves ¢ in NG(NAFL). It was noted in [1] that such a
diagrammatic proof is not legitimate in classical NG, because FOPL requires
that even infinitely many instances of Proposition 1 (with Euclidean concepts)
do not prove ¥ in NG; none of these instances represent the line m, which has
infinite length and is a separate mathematical object in classical logic. Thus we
have the classical anomaly that infinitely many instances of Proposition 1 should
not prove ¢ in NG, but if the diagrammatic proof (with Euclidean concepts)
is permitted, ¢ can be inferred indirectly from a single such instance. It was
concluded in [1] that consistency in FOPL necessarily requires the uninterpreted
entities of NG to have a non-constructive existence, and consequently, 1) must
necessarily be undecidable in NG with non-Euclidean concepts permitted. The
above classical scenario is diametrically opposite to the notion of consistency in
NG(NAFL), as noted in [1].

The first observation is that the scaling argument in the diagrammatic proof
of Proposition 1 in NG(NAFL) neatly removes the classical anomaly noted
above; a single instance of Proposition 1, as represented in the diagram, can be
interpreted via the scaling argument to represent infinitely many instances and
hence provides a direct as well as indirect proof (via the rectangle construction
noted above) of Proposition 1. Hence it is absolutely essential to incorporate the
scaling argument into the rules of inference of NG(NAFL). Once this is done, we
might as well rename the resulting theory as EG(NAFL), where ‘EG’ stands for
Euclidean geometry; all the axioms of classical EG are theorems of EG(NAFL),
provable by diagrammatic constructions. Here we have in mind a finitely ax-
iomatizable version of EG proposed by Tarski [5], all of whose theorems are
provable by elementary ruler and compass constructions. EG(NAFL) has only



diagrammatic rules of inference and no axioms. It follows that diagrams of
EG(NAFL) are formal objects that come prior to and are more fundamental
than the axioms of Tarski’s elementary EG. Indeed, since all of the theorems
of EG are provable by ruler and compass constructions, it is obvious that the
axioms of EG must also be so provable. It is striking that diagrammatic rea-
soning, which plays a crucial and indispensable role in preventing inconsistency
in EG(NAFL), would be considered as ‘inconsistent’ and ‘unreliable’ in classi-
cal neutral geometry. Note that the diagrams are physical (real-world) devices
by which we communicate our mental geometric constructions as ‘proofs’ of
the Euclidean postulates to our fellow-human beings. As shown in Sec. 2 of
[1], we can only have these Euclidean constructions in mind; the classical non-
Euclidean models neccessarily have to assume the metamathematical (Platonic)
truth of the Euclidean postulates and so are not models at all by the NAFL
truth definition. If there were only one human being in the whole world, such
an individual need not construct any diagrams as formal devices to prove the
Euclidean postulates; the mental constructions would suffice for this purpose.

The second observation is that the line segment M of Proposition 1 is of
arbitrary length L, which is to be interpreted in NAFL as being in a superposed
state of (quantification over) all possible standard values for L. As noted in
[1], this amounts to an explicit construction for the line m because there are
no nonstandard models for arithmetic (and hence, for EG) in NAFL. Thus the
line m of Proposition 1 is modelled as the union of an infinite proper class of
line segments M, as represented by the superposed state. Here we wish to make
a few remarks on the notion of infinite class, which is a proper class and not a
mathematical object in NAFL [2].

In NAFL, whenever infinitely many mathematical objects identified by a
given property (such as, that of being a natural number) exist within a the-
ory, that theory must also necessarily admit the corresponding infinite class
of such objects. The class comprehension scheme is necessarily a theorem of
NAFL theories which admit infinitely many objects in the universe of discourse;
quantification is restricted to be only over objects that belong to classes. NAFL
interprets the axiom of extensionality for classes (which is also necessarily a the-
orem of such NAFL theories) to mean that an infinite class must be identified
by all and only its elements; the infinite proper class is by itself not a mathe-
matical object. The existence and uniqueness of an infinite class can be inferred
from, and is equivalent to, the existence and uniqueness of every element of that
class. In the example of Proposition 1, EG(NAFL) requires it to be universally
quantified over all possible lengths L; that there are infinitely many such line
segments M of arbitrarily large lengths results from Euclid’s second postulate,
which is a theorem of EG(NAFL). It immediately follows in NAFL that an
infinite proper class of such line segments, identified constructively by a given
property, exists; call this class C. The assertion that m is parallel to [ is to be
interpreted in NAFL as meaning that every line segment of the infinite class C
is parallel to every line segment of the corresponding infinite class constituting
l. The ‘existence’ and ‘uniqueness’ of the line m is to be identified with, and
may be inferred from, the existence and uniqueness of every element of C.



At this stage the reader might wonder why NAFL requires quantification to
be restricted to classes when infinitely many objects are involved. This has been
formally established in [3]; here we will give an intuitive explanation as follows.
Let us take the example of a line segment of initial length Ly, and successively
extended (equally on both sides of the segment) to lengths 2Lg, 3Lg, 4Ly, etc.
NAFL asserts that the process of extending the line segment may be said to
have been ‘completed’, or equivalently, reached an ‘arbitrary’ length nlL,, if
and only if the infinite proper class C = {Lg, 2L, 3Ly, ...,nLg,(n+1)Lg,...,}
exists. This infinite class represents all extensions of the original line segment
at the same time. If C' did not exist, one can only imagine the line segment
being extended, say, one instance (in general, at most finitely many instances)
at a time, but by induction, such a process can never ever be ‘completed’ and
it would be wrong to quantify over ‘all’ such extensions. Equivalently, one can
never exhaust the class NV of natural numbers by counting them one at a time;
induction says that there will always be infinitely many natural numbers left
to be counted. Therefore quantification over infinitely many natural numbers
automatically implies the existence of N in NAFL [3]. However, N is a para-
doxical entity because any element of N is clearly accessible by counting one at
a time. It is clear that ‘any’ in the preceding sentence does not translate to ‘all’,
for then the above induction (that N cannot be exhausted by counting one at a
time) would be violated. This is the intuitive explanation for why N must be a
proper class in NAFL; for the formal argument that results from the axiomatic
nature of NAFL truth, see Sec. 3 of [2]. To summarize, for the purposes of
quantification over infinitely many mathematical objects, NAFL requires that
N must necessarily exist as a ‘completed’ infinite class, but the ‘incomplete’
or ‘potential’ nature of N is recognized by not admitting it as a mathematical
object (i.e., a set) in NAFL theories. Thus NAFL provides the correct logical
framework for assertions denying the existence of a ‘completed’ infinity by a
long list of famous logicians/mathematicians/philosophers, including Aristotle,
Gauss, Kronecker, Poincaré and Brouwer; it is somewhat ironic that, in order
to accomplish this feat, NAFL has to deny two of the most fundamental laws
of classical logic enunciated by Aristotle, namely, the laws of non-contradiction
and the excluded middle [2].

Classical logic (FOPL), however, insists that we can talk about ‘all’ natural
numbers or ‘all’ elements of C' without ever invoking the existence of N or C'; the
induction mentioned above that such a counting process is always incomplete
then leads us to nonstandard models of arithmetic and the corresponding Pla-
tonism which is rejected by NAFL as inconsistent and unacceptable [3]. That
NAFL should consider a ‘line’ to be the union of the infinite proper class C
(rather than a separate mathematical object as in classical logic) is also entirely
natural and consistent with the axiomatic nature of NAFL truth. Indeed, we
do not have any mental picture (i.e., a ‘construction’) of a completed line as a
separate mathematical object; we can only conceive of an infinitely long line as
obtained by the process represented in C of extending a (finite) line segment
infinitely many times. This is an inherent human limitation of being unable to
conceive of the infinite and is intuitively another reason why N and C must be



proper classes in NAFL; the classical position that infinite entities nevertheless
‘exist’ as mathematical objects (i.e., as sets) independently of human limita-
tions violates the axiomatic nature of NAFL truth and leads to Platonism and
inconsistency (from the NAFL viewpoint).

In conclusion, we have demonstrated in this section the importance of dia-
grams as formal objects in EG(NAFL) and that the provability of Euclid’s fifth
postulate in EG(NAFL) (as demanded by consistency) poses severe restrictions
on the concept of ‘line’, which cannot be treated as a mathematical object; con-
sequently, quantification over ‘lines’ is banned in EG(NAFL). It was stated in
[1] that a problem for future research is to figure out how the classical contin-
uum of real numbers can be handled in EG(NAFL). Indeed, not only ‘lines’, but
even ‘points’ and ‘line segments’ must be analytically represented in any con-
tinuum theory by (collections of) real numbers, which are also infinite proper
classes in NAFL. So the question of how points and/or line segments may be
treated analytically (rather than diagrammatically) as mathematical objects in
EG(NAFL) must be resolved. The author believes that physically meaningful
statements about (sets/classes of) real numbers, as represented by diagrams,
could possibly be treated analytically in NAFL by some sort of ‘translation’
procedure into Peano Arithmetic (or equivalently, finite set theory); such a pro-
cedure will have to differ radically from its classical equivalents. The resulting
NAFL theory, if accomplished, should satisfactorily resolve classical paradoxes,
such as, the Banach-Tarski paradox or Zeno’s paradoxes of motion, without
having to deny the existence of precise positions in space or instants in time as
done by Lynds [6, 7]. Indeed, it is already clear that ‘points’ (real numbers)
must exist in NAFL theories as infinite proper classes and these can certainly
represent precise positions in space or instants in time. It is only quantifica-
tion over sets/classes of real numbers that is problematic in NAFL, for the real
numbers constitute neither a set nor a class (being themselves proper classes);
here justification of any formal translation procedure of statements that involve
quantification over real numbers into finite set theory must necessarily come
from diagrams as formal objects. Thus the formal existence of diagrams would
still play an essential and indispensable role in justifying such an analytical
treatment of geometry/analysis. The author also believes that any continuum
theory of space, time and matter, even if possible to formulate consistently in
NAFL, is nevertheless an approximation to reality and will fail at quantum
scales. As noted in the concluding remarks of [3], the ultimate NAFL theory
that describes reality must be one in which everything, including space, time
and matter, is discrete (quantized).

2 Relativistic determinism — the clash with logic

As in [1], we consider the theory of special relativity (SR) formalized in classical
first-order predicate logic (FOPL). The context for this section is best explained
by the following extensive quote from Sec. 1 of [1]:

“Let A and B be relatively moving inertial observers who happen to



coincide in space at a given instant defined by t = 0 in A’s frame
and ' = 0 in B’s frame. Let C be an instantaneous event that
is localized in space and distant to both A and B. Let U(IBC)
define a non-trivial universe of material objects with certain well-
posed initial-boundary conditions IBC'. Define the proposition P as
“From A’s point of view, C' occurs in U(IBC) when A’s local clock
reads t = 0” and the proposition ) as “From B’s point of view, C'
occurs in U(IBC) when B’s local clock reads t' =T”. Here T' > 0 is
a constant obtained from the Lorentz transformations as applied to
the event C in A’s and B’s inertial frames. Relativistic determinism
asserts that if P is true then () must be true (or P = @Q); in other
words, B’s future at time ¢’ = 0 is determined by the fact that A
has observed C' at precisely that instant (when A and B coincided)
and so B must necessarily observe C at t' =T.”

“In order to obtain a logical contradiction from the above scenario,
let us further stipulate that the proposition “Event C' occurs in
U(IBC)” is undecidable in SR, i.e., in particular, neither A nor
B can either prove or refute this proposition. Such undecidability
could occur in many ways, for example, as a result of Gédel’s incom-
pleteness theorems; alternatively, C' could be a probabilistic event,
such as, the outcome of a coin toss experiment or some quantum
phenomenon; or else, C' could be completely unpredictable as a re-
sult of being decided by the instantaneous free will of a human being.
It immediately follows that P and () are undecidable in SR; see the
ensuing paragraph for the definition of such undecidability. Note
however, that SR requires P < (@ to be a theorem despite the unde-
cidability of P and @Q; this fact immediately makes SR inconsistent
in the non-Aristotelian finitary logic (NAFL) proposed by the au-
thor in [4] and [5] (in particular, see Remark 5 of [4] and Section 2.2
of [5]). This argument for inconsistency of SR in NAFL is simpler
than the one given using inertial frames in [6]. It follows that the
philosophy of formalism as embodied by NAFL [5] immediately re-
jects relativistic determinism. The goal of this paper is to show that
an inconsistency can be deduced in SR even within FOPL, if one
insists on formalism.”

“Henceforth, whenever we refer to A (B), it is to be understood that
our argument may apply equally well to any observer in A’s (B’s)
set of inertial frames. Note that we require the following restrictions
regarding propositions involving P and @). The truth of P (Q) can
be asserted (via an observation, for example) or deduced in SR only
by A (B). However, B (A) can consider and either accept or refute
in SR any assertion/deduction of the truth of P (@) made by A (B);
but B (A) cannot assert or deduce the truth of P (Q). The unde-
cidability of P (@) in SR means that A (B) can neither prove nor
refute P (Q) in SR. P = @ is a theorem in B’s (and not A’s) frame;



in other words, only B has the right to deduce @ in SR from an as-
sertion of P made by A (if B happens to agree with A’s assertion).
Similarly, @ = P is a theorem in A’s (and not B’s) frame. In fact
P = @Q and Q = P are illegitimate propositions in A’s and B’s
frames respectively. The idea behind these restrictions is to al-
low A (B) to consider the truth of ) (P) without undermining the
Lorentz transformations.”

“In particular, () is undecidable in SR, which means, as noted above,
that B can neither prove nor refute () in SR. The question we wish
to consider is as follows. Given that A has asserted the truth of P,
and given that P = () is a theorem of SR in B’s frame, can B accept
A’s assertion and conclude 7 In the metatheorem that follows, we
argue that B in fact has a formal refutation of A’s assertion; i.e.,
B has a proof of =P in SR and hence B has no way to conclude @
despite A’s assertion of P. However, B does not have the right to
use () = P along with the said proof of =P to deduce —@), because,
as noted above, = P is a theorem of A’s (and not B’s) frame.
Hence @ continues to remain undecided in SR, (in B’s frame) despite
A’s assertion of P. See Remark 6 below for further clarifications.”

“Before proceeding to the main result in the metatheorem below, we
observe that an additional restriction is necessary, as follows. A and
B accept each other’s observations/theorems as true/valid if and only
if there is no disagreement with (or a refutation of) the observations
or any step used in the proof of the said theorems, including the
theorems themselves. As an example, suppose A asserts =P and
concludes =@ from the theorem ) = P of A’s frame. Then B
accepts A’s assertion —P as true and A’s inference =P = —(@) as
valid despite that fact that such an inference is illegal in B’s frame.
Thus B accepts A’s conclusion —(Q) as true; i.e., B does not insist that
because of the illegality of the inference =P = —() in B’s frame, there
must exist a model for SR in which A asserts —P and B asserts @).”

As explained in the above quote, we considered in [1] the situation when A
asserts P and we concluded that B cannot accept this assertion because B has
a formal refutation of P; consequently, B concludes that ) continues to remain
undecided in SR despite A’s assertion, as noted in the metatheorem of [1].
Conversely, we argued in Remark 3 and Remark 4 of [1] that A cannot likewise
refute an assertion of () made by B; hence A accepts that P follows from the
theorem @) = P of A’s frame.

In the present note, we wish to focus on the misleading claim made in the
final paragraph of the above quote (and also in Remark 6 of [1]) that B will
automatically accept any assertion of =P made by A, because B has a formal
proof of =P in SR. The problem with this claim is that B’s concept of the
negation of P is not necessarily the same as that of A and so the said claim
leads to the incorrect consequence that B must necessarily accept A’s conclusion
of =@ from —P. This is best illustrated with the following example.



Let the event C' in the above quote denote the outcome ‘heads’ in an instan-
taneous coin toss experiment E that is distant to both A and B; the definitions
of P and @ follow. Further, let R denote “From A’s point of view, the coin toss
E occurs in U(IBC) when A’s local clock reads ¢t = 0”7, and let S denote “From
B’s point of view, the coin toss E occurs in U(IBC) when B’s local clock reads
t' = T”; here T is the same positive constant obtained from the Lorentz trans-
formations as in the definition of (). For clarity, information about the spatial
locations of events is suppressed from all propositions defined here and in [1],
although strictly speaking, such information must be considered to be tacitly
present. Finally, let U denote “From A’s point of view, the outcome of the coin
toss E in U(IBC) is ‘tails’ when A’s local clock reads t = 0”7, and let V' denote
“From B’s point of view, the outcome of the coin toss E in U(IBC) is ‘tails’
when B’s local clock reads ¢/ = T 7. It follows that P and () are undecidable in
SR (in the sense noted in the above quote) and so are U and V; further, U and
V must satisfy the same restrictions as P and () respectively, as quoted above,
and may be substituted for P and ) in the metatheorem of [1].

Remark 1. In the first instance, suppose that A can prove R in SR; consistency
demands that IBC must be such that B must also be able to prove S in SR.
Note that B does not have to rely on A’s claim of R in order to prove S; indeed
B has a refutation of R by the metatheorem of [1]. Hence R < S is a theorem
of SR and decidable propositions by themselves do not pose any problem for
relativistic determinism. It immediately follows that

U& P (1)
is a theorem of SR in A’s frame, and
Ve -Q (2)

is a theorem of SR in B’s frame. Next suppose A claims U; from A’s point of
view, (1) implies that a claim of U is equivalent to a claim of = P. Since

—P = —(Q) is a theorem of A’s frame, A concludes (). However, by the metathe-
orem of [1], B has a refutation of U and a proof of =P in SR. Clearly, B does
not accept the equivalence in (1). Since B has a refutation of R in SR (again,
by the metatheorem of [1]), B only accepts =P in the sense that the coin toss
did not happen at all when A and B coincided at (¢t = 0, t' = T'). Hence B
concludes that A has deduced —P from a false assertion of U, and consequently
does not accept the validity of A’s conclusion —@Q. So from B’s point of view
there must still exist a model for SR in which @ is the case, despite A’s claim
of U; equation (2) shows that this is in agreement with the metatheorem of [1],
which asserts that from B’s point of view, there must exist a model for SR in
which =V is the case despite A’s claim of U. Conversely, suppose B claims V,
or equivalently, from (2), =Q). A accepts this claim and concludes U from the
theorem V' = U of A’s frame. A also accepts the validity of B’s conclusion
of =P from the theorem - = —P of B’s frame, despite its illegality in A’s
frame, and one sees that A is acting consistently with (1). There is no clash
with the metatheorem of [1] because, as noted in Remark 3 and Remark 4 of [1],
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A cannot refute any claim of @@ or V made by B. It follows that A accepts the
equivalence in (2) and one again sees the asymmetry noted in Remark 3 and
Remark 4 of [1].

Remark 2. Secondly, suppose that A does not have a proof or refutation of R
in SR. Consistency demands that B likewise does not have a proof or refutation
of S in SR. By our definition of undecidability, R and S are undecidable in SR.
Next suppose that A claims —P; it is easy to see that, by our definitions, B
will accept this claim if and only if it is also accompanied by a claim of —R
by A. Consequently, B accepts the truth of A’s conclusion —(@) in this instance,
despite the illegality of A’s inference =P = —(@ in B’s frame. But if A claims
R& P, the conclusions of Remark 1 will again hold. Conversely, A will accept
an assertion of =) by B irrespective of the status of B’s claim with respect to S;
consequently, A unconditionally accepts B’s conclusion of =P from the theorem
—@Q = —P of B’s frame, despite its illegality in A’s frame.

In summary, we have established here and in [1] that the concepts of negation
and implication for undecidable propositions in SR are problematic in FOPL and
lead to inconsistency from the point of view of formalism. The non-Aristotelian
finitary logic (NAFL) [2, 3] proposed by the author also demands that these
concepts be handled in a different manner for undecidable propositions; the
problems with FOPL should encourage further investigation of these concepts
in NAFL, despite that fact that NAFL refutes SR as noted in [1].

Dedication

The author dedicates this research to his son R. Anand and wife R. Jayanti.
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