Computation Without Representation

Gualtiero Piccinini

9/21/2004

Abstract

According to the received view of computation, there is no computation without representation. In other words, computational states are individuated, at least in part, by their content. I propose an alternative view of computation, according to which computational states are individuated by their functional properties, and their functional properties are specified by a functional analysis of the mechanism independently of their semantic properties. I defend my alternative on the grounds that unlike the received view, my alternative view fits the way the relevant community of experts—namely, computability theorists and computer designers—individuate computational states. I also argue that the three main arguments that have been offered in favor of the received view are unsound. Finally, I briefly point out how my alternative account helps us to better understand the relationship between computational theories of mind and theories of mental content.

It is, alas, one of the scandals of cognitive science that after all these years the very idea of computation remains poorly understood (Clark 1997, p. 159).

This paper pertains to the individuation of computations. For short, I will mainly talk about computational states. The same conclusions apply to computational inputs and outputs.

The received view of computation is that computational states are essentially endowed with content. In other words, computational states are representations, which are individuated, at least in part, by their semantic properties. I call this the semantic view of computation. There has been a debate about the proper way to ascribe content to computational states.
 There has also been a debate about whether the content of computational states is individualistic or narrow (i.e., it supervenes on intrinsic properties of the computing mechanism) or wide.
 We need not be concerned with the resolution of these debates. Here we focus on the semantic view of computation, which is shared by most participants.

A third debate concerns which properties of computational states are causally efficacious. The received view is that computational states are causally efficacious by virtue of their non-semantic properties. According to this view, which may be called the non-semantic view of computational causation, computing mechanisms are “insensitive” or “indifferent” to the content of computational states; rather, they are sensitive only to non-semantic properties of computational states. The properties to which computing mechanisms are sensitive are often characterized as “formal” or “syntactic.”

Some have pitched the semantic view of computation against the non-semantic view of computational causation. They have argued that, since computational states are individuated semantically, the non-semantic view of computational causation should be rejected (Dietrich 1989; Peacocke 1994a, 1999; Shagrir 1999). Their argument presupposes that the semantic view of computation and the non-semantic view of computational causation are incompatible. Perhaps this is true, but no one has argued effectively for it. As things stand, it seems possible that computational states are semantically individuated but are causally efficacious by virtue of their non-semantic properties. As a matter of fact, some of the staunchest supporters of the non-semantic view of computational causation are also some of the most forceful believers in the semantic view of computation.

In this paper, I reject the semantic view in favor of what I call the functional view of computation. According to the functional view, the computational states of a computing mechanism are individuated by their functional properties, and their functional properties are specified by a functional analysis of the mechanism in a way that need not refer to any semantic properties. A functional analysis is a partition of a mechanism (e.g., the human body) into components (e.g., the heart) and an assignment of functions (e.g., pumping blood) to those components. The functional view of computation does not entail that computational states have no content—they may or may not have content. What it does entail is that, if a computational state does have content, it does not have its content essentially.

Over the last two decades, the principal battlefield for the philosophical debate over computation has been David Marr’s theory of vision (Marr 1982). Unfortunately, as some participants have noted, there may be no fact of the matter as to what the correct philosophical interpretation of Marr’s theory is, for Marr was not concerned with philosophical issues about the individuation of computation. More importantly, as distinguished as his work is, Marr was only one person. What about other psychologists and neuroscientists? What about computer scientists, for that matter? In this paper, I will abandon the tradition of the Marr commentaries and instead focus on the way computational states are individuated within the scientific practices that are the source of the modern notion of computation. The modern notion of computation, on which computational explanation in psychology and neuroscience is based, originated in computability theory and computer science, so in getting clear on the individuation of computational states, we should examine those scientific practices. In the next section, I will formulate the functional view of computation and defend it on the basis of how computational states are individuated within computability theory and computer science. In the following section, I will respond to arguments in favor of the semantic view of computation.

1 The Functional View of computation

In the mathematical theory of computation, abstract computing mechanisms are individuated by formal descriptions, some of which are called programs. Programs and other formal descriptions of computing mechanisms specify which inputs may enter the mechanism, how the inputs affect the internal states of the mechanism, and which outputs come out of the mechanism under which conditions. Inputs and outputs are strings of letters from an alphabet, often called symbols. In computability theory, symbols are typically marks on paper individuated by their geometrical shape. Symbols and strings of symbols may or may not be assigned an interpretation; if they are interpreted, the same string may be interpreted differently, e.g. as representing a number, or a program, etc., depending on what the theorist is trying to prove at any given time. In these computational descriptions, the identity of the computing mechanism does not hinge on how the strings are interpreted.

For example, the best-known computational formalism is that of Turing Machines (TMs). All TMs have two principal components: a potentially infinite tape, which is divided into squares whose function is to hold a symbol, and an active device, whose function is to move along the tape and write and erase symbols on it. Particular TMs are individuated by listing instructions of the form: if on the tape there is a certain letter and the active device is in a certain internal state, then the active device prints a certain letter, moves one step to the left or right, and goes into a certain state. Each particular TM is uniquely individuated by its specific list of instructions. Nothing in these descriptions involves any content ascription; they simply describe how the hypothetical active component of the TM reacts to the presence of certain letters on the tape while in certain internal states.

In computability theory, internal states of TMs are never assigned interpretations. Inputs and outputs of TMs are typically interpreted, but they need not be. Sometimes it is useful to describe TMs without assigning any interpretation to their inputs and outputs. A good example is a TM discovered by J. Buntrock and H. Marxen in 1989 (cited by Wells 1998). It uses two symbols and has only five possible internal states. This machine is offered as a demonstration of how difficult it is to predict the behavior of a TM from its abstract description, and how a very simple TM can have very complex behavior. When started on a blank tape, this simple TM halts after executing 23,554,764 steps. As Wells describes it, nothing in Buntrock and Marxen’s TM has any content under anybody’s notion of content, yet a computability theorist has no difficulty in recognizing it as an individual TM, which is uniquely individuated by its instructions. The identity of individual TMs is determined by their instructions, not by the interpretations that may or may not be assigned to their inputs and outputs. The whole mathematical theory of computation can be formulated without assigning any interpretation to the strings of symbols being computed (e.g., Machtey and Young 1978).

In the practice of computer programming, however, programs are created by combining instructions that are prima facie contentful. For example, a high-level programming language may include a control structure of the form UNTIL P TRUE DO ___ ENDUNTIL.
 In executing this control structure, the computer does ___ until the variable P has value TRUE and then moves on to the next instruction. The programmer is free to insert any legal sequence of instructions in the ___, knowing that the computer will execute those instructions until the value of P is TRUE. This awesome ability of computers to execute instructions is one of the motivations behind the semantic view of computation. For when people execute instructions, i.e. they do what the instructions say to do, they do so because they understand what the instructions say. By analogy, it is tempting to conclude that in some sense, computers respond to the semantic properties of the instructions they execute, and hence the instructions and the corresponding computational states of the mechanism are individuated by their content. This temptation is innocuous to the extent that one understands how computers execute instructions and specifies the relevant notion of computational content accordingly; otherwise, to speak of computers responding to semantic properties or of instructions being individuated by their content is misleading.
 So I will briefly explain how computers execute instructions.

In ordinary stored-program computers, instructions are encoded as binary strings (strings of bits). Each bit is physically realized by a voltage level in a memory cell or some other state capable of physically affecting the computer in the relevant way. Before the processor of a computer can execute a binary string written in a high-level programming language, the computer must transform the string into a different binary string. The computer has a mechanism, typically a so called compiler, which takes binary strings encoding high-level programming language instructions as inputs and outputs binary strings encoding assembly language instructions. In assembly language, complex instructions such as UNTIL P TRUE DO ___ ENDUNTIL are replaced by sequences of instructions that refer to operations that can be immediately executed by the processor, and variables like P are replaced by names of memory registers.
 Like high-level programming language instructions, assembly language instructions are encoded as binary strings. But from the point of view of the programmer, all that assembly language instructions do is tell the computer to transfer certain bits from one register to another and to perform primitive operations on those bits. (Primitive operations include arithmetical operations, such as addition and multiplication, and logical operations, such as conjunction and disjunction.)

This still makes it sound as if the computer understands its instructions: the assembly language instructions are interpreted by programmers as referring to primitive operations, primitive operations are interpreted as arithmetical or logical, and certain bit sequences are interpreted as naming registers. But before an instruction can be executed, it must still be transformed into a new form. There is another mechanism, called assembler, which transforms assembly language instructions into machine language instructions, which the machine can execute. A machine language instruction is a binary string that, when placed into the appropriate register of a computer processor, causes the computer’s control unit to generate a series of events in the computer’s datapath. The sequence of events may include the transfer of binary strings from one register to another, the generation of new strings from old ones, and the placement of the new strings in certain registers. For example, the control unit may generate three signals and send them as inputs to the datapath: one signal sets up the datapath to perform a 32-bit addition and the other two signals act as inputs for the addition. Then, the control unit receives the output from the datapath and places it in an appropriate memory register.

The crucial point is that the computer is designed so that the operations performed by the computer’s components in response to a machine language instruction correspond to what the instruction means in the relevant programming language. The assignment of content to instructions, to the effect that an instruction asserts what its execution accomplishes within the computer, may be called internal semantics of the computer. An internal semantics should be kept distinct from an external semantics, which relates states of something to things other than the thing itself and its components. (The semantic view of computation and the theories of content discussed in this paper are concerned with external semantics.)

At the level of machine language execution, instruction execution is explained by the functional analysis of the mechanisms in terms of how various sequences of bits (causally) affect certain circuits. Since machine language instructions implement assembly language instructions (in the sense described above), and assembly language instructions implement high-level programming language instructions, the automatic shifting of bits from register to register, coupled with the generation of new binary strings from old ones, corresponds exactly to the execution of complex instructions like UNTIL P TRUE DO ___ ENDUNTIL. In this sense, the internal semantics of a computer turns out to ultimately assign only content about the shifting of bits between registers and the generation of new binary strings from old ones. Internal semantics is assigned to computer instructions without involving anything external to the computer. In other words, having an internal semantics does not entail having an external semantics.

Although assigning instructions an internal semantics is indispensable to programming, because the programmer must understand what the computer is going to do in order to write the program, from the point of view of explaining computer instruction execution, a complex instruction like UNTIL P TRUE DO ___ ENDUNTIL is a string of symbols, which will be encoded in the computer as a binary string, which the compiler will transform into another binary string, which the assembler will transform into another binary string, which will affect the computer’s control unit in a certain way. A computer is a powerful, flexible, and fascinating mechanism, and we may feel compelled to say that it responds to the semantic properties of the instructions it executes. But as I briefly argued, this kind of “computer understanding” is exhaustively and mechanistically explained without ascribing any external semantics to the inputs, internal states, or outputs of the computer, and is fully compatible with the non-semantic view of computational causation. The case is analogous to TMs, whose computational behavior is entirely determined and uniquely individuated by their instructions.

In summary, a computer is a physical system with certain input-output properties described by a certain kind of functional analysis. Although for practical purposes the internal states of computers are usually ascribed content by an external semantics, this need not be the case and is unnecessary to individuate the functions they compute, to individuate their computational states, and to explain their behavior.

This functional view of computation is compatible with the non-semantic view of computational causation and goes beyond it. It holds that the identity conditions of computing mechanisms, their states, and the functions they compute are completely determined by their functional properties. Even in the special case of stored-program computers, where the functional individuation of computational states gives rise to an internal semantics, external semantics is not part of the individuation of computational states. In other words, I reject the semantic view of computation. From the functional view of computation, it follows that computational descriptions are not ipso facto (external) semantic descriptions. So, if the functional view is correct, then the semantic view of computation is incorrect, and (external) content ascription must come from something other than computation ascription.

From now on, unless otherwise noted, by “semantics” I will mean external semantics, and by “content” I will mean content ascribed by an external semantics.

The functional view of computation bears some similarity to a view proposed by Egan (1992, 1995, 1999, 2003). Egan appears to reject the semantic view of computation, because she rejects the view, championed by many philosophers, that computational states postulated by psychological theories are individuated by the cognitive contents of those states (e.g., visual contents for the states of visual mechanisms, auditory contents for the states of auditory mechanisms, etc.). Instead, Egan argues that computational states are individuated individualistically, i.e. by properties that are shared by all physical duplicates of a mechanism. But when Egan specifies how computational states are individuated, she points to their “mathematical contents,” namely the “mathematical” function whose domain and range elements are denoted by the inputs and outputs of the computation (Egan 1995, p. 187; 2003, p. 96). Although there is much in Egan’s view that I agree with, from the present perspective Egan’s view is the semantic view all over again, which should be replaced by the functional view of computation.

Egan’s view also faces an internal problem, which the functional view is equipped to solve. According to Egan, the mathematical contents she employs in individuating computational states are unlike the contents employed by other philosophers in that they are individualistic, i.e., shared by all physical duplicates (Egan, personal correspondence), but I don’t see how this can be. Egan’s mathematical contents are no more individualistic than the cognitive contents invoked by other philosophers to individuate computational states. The mathematical objects referred to by a computational state are no more intrinsic to a computing mechanism than the environmental features appealed to by other philosophers, and the denotation relation between computational states and mathematical objects is no more internal to the mechanism than the denotation relation between computational states and features of the mechanism’s environment. It is certainly possible to assign the same mathematical interpretation to all physical duplicates of a computing mechanism, but by the same token, it is equally possible to assign the same cognitive interpretation to all physical duplicates of a computing mechanism.
 Moreover, just as internal states of the same mechanism can be given different cognitive interpretations, it is well known that the same set of symbolic strings can be given different mathematical interpretations. So, if cognitive contents are not individualistic enough for Egan’s purposes, mathematical contents aren’t either. If Egan wants to individuate computational states in a genuinely individualistic way, she needs something other than mathematical contents. Here is where an individualistic version of the functional view of computation can help: under a narrow construal of functional explanation (e.g., Fodor 1987, chap. 2), functional properties of computing mechanisms are individualistic in precisely the sense needed by Egan.

I will not defend an individualistic version of the functional view of computation, however, because I endorse a wide (non-individualistic) construal of functional explanation.
 For present purposes, it is important to distinguish between wide individuation and individuation based on wide content. Individuation based on wide content is one type of wide individuation, but wide individuation is a broader notion. Wide individuation appeals to the relations between an entity and its environment regardless of whether those relations are of a kind that warrants content ascription to the organism. For my purposes, of course, what is needed is wide individuation that does not appeal to content.

Organisms have many intrinsic properties, only some of which are functionally relevant. In order to know which intrinsic properties of organisms are functionally relevant, it may be necessary to consider the interaction between organisms and their environment. For instance, organisms absorb and emit many types of electromagnetic radiations, most of which have little or no functional significance. But when radiation within certain frequencies hit certain specialized tissues, it helps produce vision—an event of great functional significance. Without knowing what causes certain events within the organism and what the organism does with them within the environment, it may be hard or impossible to know their functional significance.

The same point applies to the functional properties of computing mechanisms. As Harman (1988) points out, many philosophers have assumed that computing mechanisms are individuated purely individualistically (Putnam 1967, Fodor 1980, Stich 1983), but this assumption is false. Concrete computing mechanisms, like all other mechanisms, have many intrinsic properties, only some of which are relevant to the results of their computations. For instance, most ordinary computers would not work for very long without a fan, but the fan is not a computing component of the computer, and blowing air is not part of the computer’s computations. In order to determine which properties of a computing mechanism, either natural or artificial, are relevant to the results of its computations, the interaction between the mechanism and its environment must be taken into account. Because of this, the functional view of computing mechanisms should be grounded on a wide construal of functional properties.

The present argument in favor of the functional view of computation may be unpersuasive to someone firmly committed to the semantic view of computation. She might prefer to use the semantic view of computation as a premise and conclude that the functional view of computation must be incorrect. This would fly in the face of how computability theorists and computer designers individuate computing mechanisms and their states. But the fact that philosophers have maintained the semantic view of computation for decades in spite of computability theory and computer design shows that she wouldn’t be deterred. To address this possible reply, I will discuss arguments for the semantic view of computation.

2 Against the Semantic View of computation

There are three main arguments on offer for the semantic view of computation. The first pertains directly to computing mechanisms and their states, and it goes as follows:

Argument from the identity of computed functions

(1) Computing mechanisms and their states are individuated by the functions they compute.

(2) Functions are individuated semantically, by the ordered couples <domain element, range element> denoted by the inputs and outputs of the computation.

(3) Therefore, computing mechanisms and their states are individuated semantically.

Variants of the argument from the identity of computed functions can be found in the writing of several authors (Dietrich 1989, Smith 1996, Shagrir 1997, 1999, Peacocke 1999).

The argument from the identity of functions ignores that in talking about computation, functions can be individuated in two ways. One appeals to the set of the ordered couples <domain element, range element> denoted by the inputs and outputs of the computation (for example {<1, 10>, <10, 11>, …}, where ‘1’, ‘10’, ‘11’, … denote the numbers 1, 2, 3, ...). The other individuates functions as the set of ordered couples <input type, output type>, where input and output types are realized by the strings of tokens (or “symbols”) that enter and exit the computing mechanism (for example {<‘1’, ‘10’>, <‘10’, ‘11’>, …}, where ‘‘1’’, ‘‘10’’, ‘‘11’’, ... denote inscriptions of types ‘1’, ‘10’, ‘11’, ...). In other words, functions can be defined either over entities such as numbers, which may be the content of computational inputs and outputs, or over entities such as strings of (suitably typed) symbols, which are the inputs and outputs themselves. Both ways of individuating functions are important and useful for many purposes. Both can be used to describe what is computed by a computing mechanism. The relevant question is which of these ways of individuating functions is relevant to individuating computing mechanisms and their states.

In light of the previous section, the function individuation that is relevant to individuating computing mechanisms and their states is the one based on strings. The other way of individuating functions may be useful for many other purposes, including explaining why people build computers the way they do and why they use them, but it is irrelevant to individuating computing mechanisms and their internal states.

Given a functional description of a computing mechanism that individuates the function being computed in terms of input and output strings, one may ask how it is that that mechanism also computes the function <domain element, range element>, defined over numbers or other entities. In order to explain this, what is needed is a further fact: that the inputs and outputs of the computation denote the elements of the domain and range of the function. This is a semantic fact, which relates functionally individuated inputs and outputs to their content. Stating this semantic fact requires that we individuate the inputs and outputs of the computation independently of their denotations. Individuating inputs and outputs functionally, independently of their content, is a necessary condition for stating this semantic fact. So a functional (non-semantic) individuation of computational states is a prerequisite for talking about their content.

Another problem with the argument from the identity of computed functions is that using the semantic values of the inputs and outputs does not individuate computing mechanisms and their states as finely as we need when talking about computing mechanisms, and it is hard to see what other semantic properties should be added to the semantic values in order to reach an adequate degree of fine-grainedness. Any domain of objects (e.g., numbers) may be represented in indefinitely many ways (i.e., notations). Any computable function may be computed by indefinitely many algorithms. Any algorithm may be implemented by indefinitely many programs written in indefinitely many programming languages. And any programming language may be executed by indefinitely many computer architectures. Even within the same programming language or computer architecture, typically there are different ways of implementing the same algorithm. So the semantically individuated function itself, or even the function in combination with the algorithm,
 does not individuate the computing mechanism and its states as finely as we need. This way of individuating computational states has the paradoxical consequence that mechanisms that have different architectures, use different programming languages, and execute different programs that implement different algorithms (perhaps of different computational complexity) and manipulate different notations, are ascribed the same computational states only because they compute the same semantically individuated function. To avoid this, we should allow not only the computed function (defined over strings), but also other functional (non-semantic) aspects of the computation, such as the program and the architecture, to be part of the total functional analysis that individuates the computing mechanism and its computational states.

A final problem with the argument from the identity of computed functions is that using the semantic values of the inputs and outputs to individuate computational states introduces spurious distinctions between computing mechanisms and their states. The same physical mechanism performing the same manipulations of the same symbols may be ascribed different computational states at different times simply because the interpretation of the symbols is different at those times. Since this is the same concrete mechanism working in the same way, explaining its behavior in terms of its internal states requires a language that is neutral between the different possible interpretations assigned to its inputs and outputs. A language that fulfills this purpose is the language of functional analysis. This is, as noted above, the language of choice of computability theorists and computer designers. The resulting individuation of computational states is functional, not semantic.

The second argument for the semantic view of computation appeals to computational explanations of mental processes:

 Argument from the identity of mental states

(1) Computational states and processes are posited in explanations of mental states and processes (e.g., inference).

(2) Mental states and processes are individuated by their semantic properties.

(3) Therefore, computational states and processes are individuated by the semantic properties of the mental states and processes they explain.

Variants of the argument from the identity of mental states can be found in several authors (the most explicit include Pylyshyn 1984, Burge 1986, Peacocke 1994a, 1999, Wilson 2004, p. 161).

Premise 1 is uncontroversial; it simply takes notice that some scientists formulate computational explanations of mental states and processes. Premise 2 has been challenged (e.g., by Stich 1983), but for the sake of the argument I will ignore any concerns about whether content can be legitimately used to individuate mental states for scientific purposes.

As appealing as the argument from the identity of mental states may sound, it is a non sequitur. As Egan (1995) notes, the only way that the conclusion can be derived from the premises is by assuming that explanantia must be individuated by the same properties that individuate their explananda. This assumption is at odds with many, perhaps all, of our explanatory practices. For instance, suppose that I leave the room and my sandwich disappears from the table. Suppose the explanation is that my dog ate it. The individuation of the explanandum (disappearance of the sandwich) depends on where the sandwich is, whereas the individuation of the explanans (my dog’s eating the sandwich) depends on what my dog did. For a more scientific example, consider the explanation of the tides in terms of gravitational forces. The tides are individuated by the movements of seas along the earth’s coasts, whereas their explanans (the motion of the moon and earth and the gravitational forces at work) are individuated through a combination of astronomical observations and physical theory. Now consider the explanation of the capacities of a mechanism, which may be considered more similar in kind to the explanation of mental states and processes. For example, consider the explanation of digestion in terms of the secretion of certain glands in combination with the stomach’s movements. The explanandum is individuated by the properties of substances before and after they enter the stomach, whereas its explanans is individuated by the activities of the stomach and its glands. These examples show that the individuation of explanantia independently of their explananda is common in our explanatory practices. There is no reason to believe that this should fail to obtain in the case of explanations of mental states and processes. And without the assumption that explanantia must be individuated by the same properties that individuate their explananda, the argument from the identity of mental states doesn’t go through.

Computational explanations of mental states and processes offer a mechanism by which certain outputs are produced based on certain inputs and certain (perhaps theoretically posited) internal states. They also explain mechanistically how the theoretically posited internal states affect one another. To achieve this, computational explanations need not involve content at all. If so, it has been objected that a non-semantic computational explanation hinders the reconciliation between folk psychology and scientific psychology (e.g., Wilson 2004, p. 161). But the fact that folk psychology individuates mental inputs, outputs, and internal states by their content does not impugn the appropriateness of (non-semantic) computational explanations. The further questions of the extent to which the internal states posited by computational explanations match those posited by folk psychology, whether the computational states have content or not, and whether they have the contents postulated by folk psychology are questions entirely separate from the appropriateness of the computational explanation. Perhaps some or all the internal computational states have contents that match the folk psychological states, as many computationalists believe (e.g., Fodor 1987, Pylyshyn 1984). Or perhaps they don’t, as other computationalists maintain (e.g., Stich 1983, Dennett 1987, esp. chap. 5). These are substantive questions that depend on the relationship between computational theories of cognition and theories of mental content, and are at least in part empirical; they should not be settled by philosophizing a priori on the metaphysics of computation.

There is no doubt that most of the computational states ascribed by scientists to agents in explaining their mental states and processes are interpreted, i.e. they are ascribed content. In this limited sense, semantic properties are part of computational theories. There is also no doubt that this is very useful and perhaps indispensable in formulating and understanding computational theories (or at least the most common types of computational theories) of mental processes as well as in designing artificial intelligent agents. In particular, it may be practically impossible to specify how the computational states of an agent relate to the task the agent is performing without resorting to an interpretation of the computational states. In many cases, one understands the function of a certain set of tokens and their manipulation by an agent when one is told what those tokens represent. Interpreting computational states relative to tasks also allows us to compare different mechanisms that are designed to solve the same task by relying on our understanding of the interpretation, without having to find and understand some non-semantic specification of the task. For instance, two different programs may be interpreted as playing chess, and one can be seen as playing chess better than the other, without needing to specify in a non-semantic way what playing chess consists in and what the functional properties of the mechanisms are.

None of this entails that the posited computational states are essentially endowed with content, i.e. that they are individuated by their semantic properties. If anything, the need to ascribe content to computational states reinforces the conclusion that computational states are not essentially semantic. For even though certain states of two machines may have the same interpretations (e.g., chess positions), their different performance when playing the game forces us to distinguish between them. In order to individuate computational states, we need to resort to the functional analysis of the mechanism. The same system of symbols and procedures may be ascribed different contents under different circumstances, and different systems of symbols and procedures may be interpreted in the same way even though they are computationally different. For example, two programs for computing the same semantically individuated function—say, addition of natural numbers—may be different programs because they are written in different programming languages, even though they do addition using the same notation. And within the same programming language, two programs for addition using different notations are two different programs giving rise to different computational states, even though under their intended interpretation they compute exactly the same semantically individuated function.

The point is not that content has no role to play in formulating and evaluating computational theories. It has many important roles to play, at least under the most common methodologies and assumptions. The point is that computing mechanisms and their states have functional identity conditions, and that the functional properties of computing mechanisms are all that is needed to individuate computing mechanisms and their states. Once computational states are functionally individuated, interpretations may (or may not) be assigned to them.

In recent years, a subtle new argument for a weakened version of the semantic view of computation has been formulated by Shagrir (2001). I have reformulated the thrust of Shagrir’s argument as I understand it, using the terminology employed in this paper:

Argument from the multiplicity of computations:
(1) The same computing mechanism M implements multiple (non-semantically individuated) computations C1, … Cn at the same time.

(2) For any task that M may perform, there is a unique Ci ({C1, … Cn}, such that Ci alone explains M’s performance of the task, and Ci is determined by the task performed by M in any given context.

(3) Tasks are individuated semantically.

--

(4) Therefore, in any given context, Ci is individuated semantically (in part).

(5) Therefore, in so far as computations explain the performance of a task by a mechanism in any given context, they are individuated semantically (in part).

Premise (1) appeals to the fact that the inputs, outputs, and internal states of a mechanism can be grouped together in different ways, so that different computational descriptions apply to them. For instance, imagine a simple device that takes two input symbols and yields one output symbol and whose inputs and outputs may take three possible values (which may be called ‘0’, ‘½’, and ‘1’). And suppose that the outputs are related to the inputs as follows:

Inputs
→ Output

0, 0
→ 0

0, ½
→ ½

½, 0
→ ½

0, 1
→ ½

1, 0
→ ½

½, ½
→ ½

½, 1
→ ½

1, ½
→ ½

1, 1
→ 1

The above is a bona fide computational description of our device. Under this description, the device performs an averaging task of sorts. Since this averaging task exploits all of the functionally significant inputs and outputs of the device, I will refer to it as the maximal task of the device, and the corresponding computation maximal computation. By grouping together and re-labeling our inputs and outputs, we may find other computational descriptions. For instance, we may group ‘0’ and ‘½’ together and call both of them ‘0’, or we may group ‘½’ and ‘1’ together and call both of them ‘1’. In the first case, our device turns into what is ordinarily called an AND gate, whereas in the second case it turns into an OR gate. As a consequence of this grouping and re-labeling, our device implements several computations at once: our original averaging, the AND operation, the OR operation, etc. These operations form our set of computations C1, … Cn mentioned in premise (1), all of which are implemented by our device at the same time.

In principle, our device could be used to perform different tasks, each of which corresponds to one of the computations implemented by the device. It could be used to perform its maximal task (averaging) as well as a number of non-maximal tasks (conjunction, disjunction, etc). But in any given context, our device might be performing only one specific task. For example, our device might be part of a larger device, which uses it to perform conjunctions. Premise (2) points out that in order to explain how our device performs a given task, say conjunction, we must appeal to the relevant computational description, namely AND. So, the task performed by a computing mechanism in a given context determines which computational description is explanatory in that context.

Although premises (1) and (2) are true and philosophically suggestive, I think they make little difference in scientific contexts. For in practice, computing mechanisms like our simple device above are usually employed to perform their maximal task. In engineering applications, it would be unnecessarily costly and cumbersome to build a device with inputs and outputs of three kinds but use it to perform tasks that require inputs and outputs of only two kinds. In nature, it is unlikely that natural selection would generate a process that can differentiate between more possible inputs and outputs than it needs to in order to carry out its tasks. So I think the possibilities mentioned in premises (1) and (2) have little practical significance. Nevertheless, it is philosophically useful to know what they entail about the individuation of computation, so let us examine the rest of the argument.

Premise (3) says that tasks are semantically individuated. For instance, one of our device’s tasks, averaging, is defined over quantities, which are the implicit referents of the inputs and outputs of the device. Since, by (2), tasks determine which computational description is explanatory in a given context, (4) concludes that the computational identity of a device in a given context is partially determined by semantic properties. In other words, the computation that is explanatory in any given context is partially individuated semantically. Given that the argument does not depend on the specific device or computational description, (5) is a universal generalization of (4).

Before discussing the merits of the argument, notice that its conclusion is weaker than the traditional semantic view of computation. For the argument from the identity of computational tasks begins by conceding that the (multiple) computations implemented by a device can be individuated non-semantically. Semantic constraints only play role in determining which of those computations is explanatory in a given context. As I pointed out above, it is likely that in most contexts of scientific interest, computing mechanisms perform their maximal task, so that semantic constraints are unnecessary to determine which computation is explanatory. If this is correct, and if the argument from the multiplicity of computations is sound, then semantic constraints will play a role in few, if any, practically significant contexts. It remains to be seen whether the argument is sound.

The main problem with the argument from the multiplicity of computations is with premise (3), and it is analogous to the problem with premise (2) in the argument from the identity of functions. The task of a computing mechanism is to compute a certain function. As I pointed out above, functions may be individuated semantically, and hence so may tasks. But as I also pointed out above, functions may be individuated non-semantically, and hence so may tasks. For the same reasons given in the case of functions, the task description that is relevant to individuating computing mechanisms and their processes is non-semantic.

Shagrir’s reason for (3) seems to be that he works under a narrow construal of functional properties. If functional properties are construed narrowly, then they are insufficient to determine which task a mechanism is performing within an environment, and hence which computation is explanatory in a given context. It goes to Shagrir’s credit that he showed this to us. But the solution need not be an individuation of computations based on content, for there is also the possibility—which I advocated in section 1—of a wide construal of functional properties. Shagrir gives no reason to prefer a semantic individuation of computations to a wide functional individuation. Provided that the interaction between a mechanism and its environment plays a role in individuating its functional (including computational) properties, a non-semantic, functional individuation of computations is sufficient to determine which task is being performed by a mechanism, and hence which computation is explanatory in a context.

In order to know which of the many computations that are implemented by a computing mechanism is explanatory in a context, we need to know the relevant relations between computations and context. Therefore, we cannot determine which computation is explanatory within a context without looking outside the mechanism. Shagrir is right about this, and also about the fact that interpreting computations—describing computations semantically—is one way to relate computations to context. But it’s not the only way: computations have effects on, and are affected by, their context. By looking at which effects of which computations are functionally significant within a context, we can identify the computation that is explanatory within that context. Going back to our example, suppose our device is contained within a larger system. By looking at whether the containing system responds differentially to ‘0’’s, ‘½’’s, and ‘1’’s or responds identically to a pair of them, we can determine which computational description is explanatory without needing to invoke any semantic properties of the computations.

In both computer science and cognitive science, the most perspicuous way of individuating tasks is often semantic. We speak of computers doing arithmetic and of visual systems inferring properties of the world from retinal images—these are semantic characterizations of their tasks. But to those semantic characterizations, there correspond an indefinite number of possible non-semantic characterizations, which individuate different computational architectures, running different programs, written in different programming languages, executing different algorithms. Before a semantic characterization of a task can be mapped onto a physical mechanism, thereby determining the identity conditions of the mechanism qua computational, that semantic characterizations needs to be replaced by a functional, non-semantic task description.

3 Conclusion

Existing arguments for the semantic view of computation fail. There is no reason to believe that computational states are essentially endowed with content. Instead, computational states are individuated by their functional properties, as specified by the functional analysis of the mechanisms that bear those states.

A first corollary is that computation ascription does not entail content ascription: describing something as performing computations is not necessarily a way to attribute semantic properties to it. This applies to artifacts and natural systems alike. A computer can be described computationally without ascribing content to it, and so does a mind. This corollary is important in light of the tendency among many theorists (e.g., Fodor 1998, Horst 2003) to construe the computational states postulated by Computational Theories of Mind (CTMs) as representational. This is a mistake, which begs the question of whether the computational states postulated by a theory of mind have content. Perhaps they do, but perhaps—as Stich pointed out some time ago (Stich 1983)—they don’t. Whether mental states have content should not be determined by the metaphysics of computational states but should be an independent substantive question. A good account of computation should not entail—as the semantic view of computation does—that one cannot be a computationalist about mental states while also being an eliminativist about their content. The functional view of computation leaves the question of whether mental states have content independent of the question of whether mental states are computational, thereby vindicating the coherence of Stich’s position.

A second corollary relies on the premise that content ascription does not entail computation ascription. Since I’m not aware of any claim to the contrary, I will not argue for this premise. The second corollary is that computation ascription is independent of content ascription, in the sense that it is legitimate to do the one without the other and vice versa. CTM and the Representational Theory of Mind (RTM) address independent (orthogonal) problems. CTM should be formulated and discussed without any theory of content, indeed without even presupposing that minds have content, so as to avoid getting entangled with the difficult issue of mental content. And RTM should be formulated without presupposing that mental states are computational.

My conclusion has no consequences on whether minds or computers have content, whether mental and computational content are the same, and the project of reducing mental content to computational content. All I argue is that those questions must be answered by a theory of content, not by a theory of computation or a CTM.

References

Bontly, T. (1998). "Individualism and the Nature of Syntactic States." British Journal for the Philosophy of Science 49: 557-574.

Burge, T. (1986). "Individualism and Psychology." Philosophical Review 95: 3-45.

Butler, K. (1996). "Content, Computation, and Individuation in Vision Theory." Analysis 56: 146-154.

Clark, A. (1997). Being There. Cambridge, MA, MIT Press.

Dean, W. (2002). What Algorithms Could Not Be. Pittsburgh, PA, presented at the Computing and Philosophy Conference.

Dennett, D. C. (1987). The Intentional Stance. Cambridge, MA, MIT Press.

Dietrich, E. (1989). "Semantics and the Computational Paradigm in Cognitive Psychology." Synthese 79: 119-141.

Egan, F. (1992). "Individualism, Computation, and Perceptual Content." Mind 101(403): 443-459.

Egan, F. (1995). "Computation and Content." Philosophical Review 104: 181-203.

Egan, F. (1999). "In Defence of Narrow Mindedness." Mind and Language 14(2): 177-194.

Fodor, J. A. (1980). "Methodological Solipsism Considered as a Research Strategy in Cognitive Psychology." Behavioral and Brain Sciences 3(1).

Fodor, J. A. (1998). Concepts. Oxford, Clarendon Press.

Fodor, J. A. (1987). Psychosemantics. Cambridge, MA, MIT Press.

Harman, G. (1987). (Nonsolipsistic) Conceptual Role Semantics. New Directions in Semantics. E. LePore. London, Academic Press: 55-81.

Harman, G. (1988). Wide Functionalism. Cognition and Representation. S. Schiffer and S. Steele. Boulder, Westview: 11-20.

Horst, S. (2003). The Computational Theory of Mind. The Stanford Encyclopedia of Philosophy (Fall 2003 Edition). E. N. Zalta. URL = <http://plato.stanford.edu/archives/fall2003/entries/computational-mind/>.

Machtey, M. and P. Young (1978). An Introduction to the General Theory of Algorithms. New York, North Holland.

Markov, A. A. (1960 [1951]). "The Theory of Algorithms." American Mathematical Society Translations, Series 2 15: 1-14.

Marr, D. (1982). Vision. New York, Freeman.

Newell, A. (1980). "Physical Symbol Systems." Cognitive Science 4: 135-183.

Peacocke, C. (1994a). "Content, Computation, and Externalism." Mind and Language 9: 303-335.

Peacocke, C. (1994b). Content. A Companion to the Philosophy of Mind. S. Guttenplan. Oxford, Blackwell: 219-225.

Peacocke, C. (1999). "Computation as Involving Content: A Response to Egan." Mind and Language 14(2): 195-202.

Piccinini, G. (2003a). Computations and Computers in the Sciences of Mind and Brain. Pittsburgh, PA, University of Pittsburgh. URL = http://etd.library.pitt.edu/ETD/available/etd-08132003-155121/.

Putnam, H. (1967b). Psychological Predicates. Art, Philosophy, and Religion. Pittsburgh, PA, University of Pittsburgh Press.

Pylyshyn, Z. W. (1984). Computation and Cognition. Cambridge, MA, MIT Press.

Segal, G. (1989). "Seeing What is Not There." Philosophical Review 98: 189-214.

Segal, G. (1991). "Defence of a Reasonable Individualism." Mind 100: 485-493.

Shagrir, O. (1997). "Two Dogmas of Computationalism." Minds and Machines 7(3): 321-344.

Shagrir, O. (1999). "What is Computer Science About?" The Monist 82(1): 131-149.

Shagrir, O. (2001). "Content, Computation and Externalism." Mind 110(438): 369-400.

Shapiro, L. A. (1994). "Behavior, ISO Functionalism, and Psychology." Studies in the History and Philosophy of Science 25(2): 191-209.

Shapiro, L. (1997). "A Clearer Vision." Philosophy of Science 64: 131-153.

Smith, B. C. (1996). On the Origin of Objects. Cambridge, MA, MIT Press.

Stich, S. (1983). From Folk Psychology to Cognitive Science. Cambridge, MA, MIT Press.

Wells, A. J. (1998). "Turing's Analysis of Computation and Theories of Cognitive Architecture." Cognitive Science 22(3): 269-294.

Wilson, R. A. (1994). "Wide Computationalism." Mind 103: 351-372.

Wilson, R. A. (1995). Cartesian Psychology and Physical Minds. Cambridge, Cambridge University Press.

Wilson, R. A. (2004). Boundaries of the Mind: The Individual in the Fragile Sciences. Cambridge, Cambridge University Press.

� An ancestor to this paper was presented at the 2002 Northwest Philosophy Conference, in Portland, OR. I thank the audience and commentator, Anastasia Panagopoulos, for their feedback. I also thank those who commented on previous versions of this paper, especially Frances Egan, Peter Machamer, Susan Schneider, and Oron Shagrir.

� For a sample of different views, see Harman 1987, Dennett 1987, and Fodor 1998.

� Bontly 1998; Burge 1986; Butler 1996; Egan 1992, 1995, 1999; Segal 1989, 1991; Shagrir 2001; Shapiro 1997; Wilson 2004.

� A prominent exception to the consensus is Egan (1992, 1995, 1999, 2003). Her view is discussed below.

� The locus classicus is Fodor 1980: “computational processes are both symbolic and formal… What makes syntactic operations a species of formal operations is that being syntactic is a way of not being semantic” (Fodor 1980, p. 64). See also Newell 1980.

� Cf. Fodor: “I’ve introduced the notion of computation by reference to such semantic notions as content and representation: a computation is some kind of content-respecting causal relation among symbols… Suppose, however, it’s your metaphysical view that the semantic properties of a mental representation depend, wholly or in part, upon the computational relations that it enters into; hence that the notion of a computation is prior to the notion of symbol. You will then need some other way of saying what it is for a causal relation among mental representations to be a computation; some way that does not presuppose such notions as symbol and content. It may be possible to find such a notion of computation, but I don’t know where” (Fodor 1998, p. 11). Cf. also Pylyshyn 1984, p. 30.

� I took this example from Loop Programs, a simple but powerful programming language invented by Robert Daley at the University of Pittsburgh.

� For example, Dietrich (1989) argues that since computing mechanisms respond to semantic properties of computational states, the non-semantic view of computational causation should be rejected. The following considerations explain why Dietrich’s conclusion is unwarranted.

� An English rendition of assembly language instructions sounds somewhat like the following: COPY THE CONTENT OF REGISTER 20034 INTO REGISTER 20054, ADD THE CONTENT OF REGISTER 30005 TO THE CONTENT OF REGISTER 20067 AND PUT THE RESULT IN REGISTER 30005, etc.

� Dennett 1987 uses the expressions “internal semantics” and “external semantics” in roughly the same sense. The distinction between internal and external semantics should not be confused with that between semantic internalism and semantic externalism, which pertain to the identity conditions of contents (specified by an external semantics).

� The above explanation of instruction execution is sketchy. In Piccinini 2003, I explain instruction execution in more detail.

� Of course, some of those interpretations may be explanatorily idle, in the sense that they may say nothing about how the mechanism responds to its environment.

� This is individualism about computing mechanisms, not about psychological mechanisms. A narrow reading of the functional view of computation is compatible with there being psychological computing mechanisms that include features of both individual bodies and their environment, as argued by Wilson 1994 and 2004.

� For extended defenses of a wide construal of functional explanation, see Harman 1988, Shapiro 1994, and Wilson 1995.

� Again, this is compatible with Wilson’s wide computationalism (1994, 2004), according to which a psychological computing mechanism may spatially extend beyond the boundaries of an organism, but it is also compatible with the negation of Wilson’s view. I have argued that functional (including computational) properties are partially individuated by their interactions between a mechanism and its environment. I am officially neutral on whether the components of psychological computing mechanisms extend beyond the spatial boundaries of organisms.

� Cf. Dietrich and Peacocke:

a correct account of computation requires us to attribute content to computational processes in order to explain which functions are being computed (Dietrich 1989, p. 119).

There is no such thing as a purely formal determination of a mathematical function (Peacocke 1999, p. 199).

� Using algorithms in combination with semantically individuated functions has been proposed in the literature as a way to individuate computational states (e.g., Pylyshyn 1984). However, there is no accepted way to individuate algorithms themselves other than non-semantically (Markov 1960), and it is doubtful that any satisfactory account of the identity conditions of algorithms in semantic terms is forthcoming (Dean 2002).

� Cf. Burge and Peacocke:

There is no other way to treat the visual system as solving the problem that the [computational] theory sees it as solving than by attributing intentional states (Burge 1986, pp. 28-29; cited by Egan 1995).

One of the tasks of a subpersonal computational psychology is to explain how individuals come to have beliefs, desires, perceptions and other personal-level content-involving properties. If the content of personal-level states is externally individuated, then the contents mentioned in a subpersonal psychology that is explanatory of those personal states must also be externally individuated. One cannot fully explain the presence of an externally individuated state by citing only states that are internally individuated. On an externalist conception of subpersonal psychology, a content-involving computation commonly consists in the explanation of some externally individuated states by other externally individuated states (Peacocke 1994b, p. 224).

� For a similar reply to the argument from the identity of mental states, see Egan 1995, p. 57ff.

� Shagrir suggests another way in which a mechanism might implement multiple computations, namely, by letting different sets of properties (e.g., voltage and temperature) implement different computations (Shagrir 2001, p. 375). But then either the different sets of properties correlate, in which case the two computations are the same, or they don’t, in which case we simply have two mechanisms performing two different computations within the same physical system. (A system may perform many activities thanks to many internal mechanisms, which may or may not have some parts in common; in the case of this example, both activities are computations and both mechanisms are computing mechanisms.)

PAGE
1

