Computational Modeling vs. Computational Explanation: Is Everything a Turing Machine, and Does It Matter to the Philosophy of Mind?

© Gualtiero Piccinini 2004

Abstract

According to pancomputationalism, everything is a computing system. In this paper, I distinguish between different varieties of pancomputationalism. I find that although some varieties are more plausible than others, only the strongest variety is relevant to the philosophy of mind, but only the most trivial varieties are true. As a side effect of this exercise, I offer a clarified distinction between computational modeling and computational explanation.

1. Pancomputationalism and the Computational Theory of Mind

The main target of this paper is pancomputationalism, according to which everything is a computing system. I have encountered two peculiar responses to pancomputationalism: some philosophers find it obviously false, too silly to be worth refuting; others find it obviously true, too trivial to require a defense. Neither camp sees the need for this paper. But neither camp seems aware of the other camp. The existence of both camps, together with continuing appeals to pancomputationalism in the literature, compel me to analyze the matter more closely. In this paper I distinguish between different varieties of pancomputationalism and find that although some are more plausible than others, only the strongest variety is relevant to the philosophy of mind, but only the most trivial varieties are true. As a side effect of this exercise, I offer a clarified distinction between computational modeling and computational explanation.

The canonical formulation of pancomputationalism is due to Putnam: “everything is a Probabilistic Automaton under some Description” (Putnam 1967, p. 31; “probabilistic automaton” is Putnam’s term for probabilistic Turing Machine).
 Pancomputationalism is typically stated without evidence or argument, but that is not my main concern.
 My main concern is that there is a tension between pancomputationalism and the Computational Theory of Mind (CTM).

According to the Computational Theory of Mind, minds are computing systems. Different varieties of CTM can be formulated by picking appropriate classes of computing systems. For instance, there are versions of CTM according to which minds are kinds of Turing Machine (Putnam 1967), digital computers (Fodor 1975, Pylyshyn 1984), connectionist computing systems (McCulloch and Pitts 1943, Rumelhart and McClelland 1986), or even hypercomputers (Copeland 2000). All versions of CTM have in common that they purport to explain mental phenomena by appeal to the computations minds perform. CTM claims not only that minds are a special kind of computing system among others, but also that computation is a special kind of process—a process with characteristics that are relevant to explaining mental phenomena.

Supporters of CTM have offered different reasons for why computation should explain mentation. Warren McCulloch, the principal founder of modern CTM, thought that the ability to acquire and use knowledge can be reduced to the ability to draw logical inferences, and the ability to draw logical inferences can be explained by hypothesizing that the brain is a certain kind of computing system.
 In philosophy, the canonical formulation of the connection between mentation and computation is due to Hilary Putnam, who argued that there is an important analogy between minds and Turing Machines. Putnam wrote that minds and Turing Machines have at least two things in common: they can describe themselves and are “open to rational criticism” (Putnam 1960, p. 149). Another early proponent of the link between mentation and computation, Jerry Fodor, argued that both minds and computing systems exhibit their capacities by executing instructions, and hence the appeal to instruction execution is the standard form of psychological explanation (Fodor 1968a). The putative commonalities between computing systems and minds—that they draw logical inferences, are open to rational criticism, execute instructions, etc.—are an important motivation for the view that CTM explicates the sense in which minds are genuine rule-following, as opposed to merely rule-governed, systems. For now, we need not to settle what feature of computing systems allows them to explain what minds do. It is enough that according to CTM, computation has this explanatory role to play.

If pancomputationalism is true and thus everything is a computing system, then minds are computing systems too. But at the same time, computation ceases to be a specific kind of process among others. If the fact that minds are computing systems follows trivially from the fact that everything is, it is unclear how computation could explain how minds exhibit their peculiarly mental characteristics.
 In other words, if everything is a computing system, it is unclear how computation could have anything interesting to do with inference, rationality, executing instructions, following rules, or anything else specific to explaining mental phenomena.

The problem becomes more striking when CTM and pancomputationalism are combined with a third assertion, which may be found in the writings of some of the same authors. That is, the assertion that some things are not computing systems: “the solar system is not a computational system, but you and I, for all we now know, may be” (Fodor 1975, p. 74, n. 15).
 Besides planetary systems, stomachs and the weather are some of the most often cited paradigmatic examples of systems that do not perform computations. The view that some things are not computing systems is intuitively plausible, and it is compatible with CTM’s claim to explain what minds do, but it flatly contradicts pancomputationalism. To resolve this contradiction, something needs to be done.

A way out of this conundrum would be to distinguish different kinds of computational descriptions. Some computational descriptions might be relevant to explaining the behavior of things by appeal to their computations, others might not. The former would be relevant to CTM, the latter would not. If it should turn out that in the relevant sense, the thesis that everything is a computing system is false, then the explanatory import of CTM would not be trivialized. Some authors have suggested something along these lines. For example, Block and Fodor write that “there are many ways in which it could turn out that organisms are automata [i.e., probabilistic Turing Machines] in some sense more interesting than the sense in which everything is an automaton under some description” (Block and Fodor 1972, p. 250).
 No one, however, has spelled out in a satisfactory way the different kinds of computational descriptions and their implications for pancomputationalism and the philosophy of mind. In the rest of this paper, I propose to do that.

To a first approximation, the distinction we need is between using a computational description to model the behavior of a system—such as when meteorologists predict the weather using computers—and using it to explain the behavior of a system—such as when computer scientists explain what computers do by appealing to the programs they execute. The two kinds of computational descriptions have different ontological implications about whether the behavior being described is a computation.

In computational modeling (as I’m using the term), the outputs of a computing system C are used to describe some behavior of another system S under some conditions. The explanation for S’s behavior has to do with S’s properties, not with the computation performed by the model. C performs computations in order to generate subsequent descriptions of S. The situation is fully analogous to other cases of modeling: just as a system may be modeled by a diagram or equation without being a diagram or equation in any interesting sense, a system may be modeled by a computing system without being a computing system in any interesting sense.

In computational explanation, by contrast, some behavior of a system S is explained by a particular kind of process internal to S—a computation—and by the properties of that computation. For instance, suppose we have a calculator in working order (i.e., our calculator has power and is functioning properly). Shortly after we press certain buttons on the calculator in a certain order—say, the buttons marked “5” and “(”—, a certain string of symbols—“2.236…”—appears on the calculator’s display. We explain the calculator’s output by pointing to the inputs we inserted into the calculator, the fact that the string “2.236…” represents the number 2.236…, the fact that 2.236… is the square root of 5, and most crucially for present purposes, the specific activity performed (ceteris paribus) by the calculator; namely, the computation of square roots. Whether or not we use another computing system to describe our calculator’s behavior is independent of whether the explanation for that behavior appeals to a computation performed by the calculator. If we do use a computing system C distinct from our calculator to describe the calculator’s ceteris paribus behavior, then there will be two different computations: the calculator’s and C’s. Nonetheless, the behavior of the calculator is explained by the fact that it performs a square root computation.

In the rest of the paper, I provide a more explicit and precise taxonomy of legitimate senses in which something may be described computationally. I discuss ordinary computational models based on differential equations, then computational models based on discrete formalisms (such as cellular automata), and finally computational explanation. In each case, I formulate a precise version of pancomputationalism, evaluate it, and draw the relevant consequences for CTM.

2. Computational Modeling (1)

In one type of computational description, the states of a system S are represented by the outputs of a computing system C, and C computes representations of S’s state at different times. In order for C to compute representations of S, C must be given two sorts of inputs: (i) an input specifying S’s state at some initial time t0, and (ii) an input specifying S’s dynamical evolution (i.e., how S’s state evolves over time).

Trivially, S’s dynamical evolution may be specified by representations of S’s states at subsequent times, which may be obtained by measuring the relevant variables of S at subsequent times. Such a trivial specification would then constitute a look-up table of S’s dynamical evolution. In the presence of such a table, C’s job reduces to retrieving the appropriate item from the look-up table. Less trivially, and more commonly, S’s dynamical evolution is given by a mathematical description A—where A is typically a system of differential equations—that specifies how S’s variables vary as a function of S’s state. If A is solvable analytically (and if the solution is known), then C may be given a representation of A’s solutions as inputs, and C may use that input (together with an input specifying S’s initial state) to compute a representation of S’s state at any given time. As is well known, however, most systems of differential equations are not solvable analytically, and this is where the present type of computational modeling proves most helpful. Mathematicians have devised numerical methods for approximating the values of a system S’s variables directly from S’s dynamical description A, without needing to rely on A’s analytic solutions. In such a case, C may be given a representation of A as input, and C may apply numerical methods to those inputs (together with an input specifying S’s initial state) to compute a representation of S’s state at any given time. This is the most common type of computational modeling, which has become ubiquitous in many sciences.

The versatility of computational models and their popularity in many quarters of science may be part of the motivation behind pancomputationalism, namely, the view that everything can be described as a computing system. Given how many systems are routinely given computational descriptions by scientists in the most disparate disciplines, ranging from physics to biology to the social sciences, it is tempting to conclude that everything can be described as a computing system in the present sense. In fact, sometimes pancomputationalism is formulated as the claim that everything can be “simulated” by a computing system.
 Even in this sense, however, careful examination of computational modeling undermines pancomputationalism.

Most scientific descriptions are not exact but approximate. At the very least, measurements can be performed only within a margin of error, and the values of a system’s variables can be specified only with finite precision. The kind of computational descriptions under discussion are not only approximate in these standard ways, but also in more significant ways. First, the mathematical description A that specifies the dynamical evolution of a system S only represents what is known about the dynamical evolution of S. Some factors that influence S’s dynamical evolution might be unknown, and since A might not capture them, the dynamical evolution specified by A might differ from S’s actual dynamical evolution. Second, to include everything that is known about S in A may make the mathematics analytically or computationally intractable. Typical dynamical descriptions within the sciences embody idealizations and simplifications relative to what is known about a system, and these idealizations and simplifications may generate a difference between what the descriptions say and what the system does. Third, the numerical methods for computing the state of a system from its dynamical equations are only approximate, introducing a further discrepancy between the outputs of the computational model and the behavior of the modeled system. Fourth, computational accuracy requires computational resources, such as memory and time. Typically, the more accuracy is required, the more computational resources need to be invested, but computational resources are always finite. Fifth, most deterministic dynamical systems are nonlinear, and most nonlinear systems have dynamics that are very sensitive to the system’s initial conditions. As a consequence, those systems’ dynamical evolution diverges exponentially from any representation of their dynamical evolution based on a finite specification of their initial condition (a finite specification, of course, is all that scientists can generate in practice). Finally, many systems are non-deterministic, so that their model can predict one of their possible behaviors, but not their actual one. Because of these factors, computational models generate descriptions that only approximate the behavior of a system to some degree.

If we don’t care how good our approximations are, i.e., if we allow the approximations generated by our computational descriptions to be arbitrarily distant from the dynamical evolution of the system being approximated, then the thesis that everything can be described as a computing system in the present sense becomes trivially true. But one virtue of scientific descriptions is accuracy, and one goal of scientists when building computational descriptions is to generate relatively accurate representations of a system’s dynamical evolution. If we do care how good our approximations are, then the thesis that everything can be described as a computing system becomes too fuzzy to be significant. For whether something can be described by a computing system becomes a matter of degree, which depends on whether it can be computationally approximated to the degree of accuracy that is desired in any given case. The answer varies from case to case, and it depends at least on the dynamical properties of the system, how much is known about them, what idealizations and simplifications are adopted in the model, what numerical methods are used in the computation, and how many computational resources are available. Building computational models that are relatively accurate, and knowing in what ways and to what degree they are accurate, takes a lot of hard work.

The statement that something can be described as a computing system in the present sense applies equally well to paradigmatic computing systems (e.g., digital computers can be simulated or approximated by other computers) and to paradigmatic non-computing systems (e.g., the weather can be approximated by meteorological computer programs). What explains the system’s behavior has to do with the properties of the system, which may or may not be computational, not with the computation performed by the model. In the present sense, “S is a computing system” means that S can be described as a computing system to some degree of approximation for some modeling purpose. This can be done in an indefinite number of ways using a variety of assumptions, algorithms, notations, programming languages, and architectures. None of the resulting computational descriptions constitute computations performed by the modeled system. The computational descriptions play a modeling role fully analogous to the role played by differential equations, diagrams, and other modeling tools. Just as the same equation can describe systems that are physically very different, in the present sense the same computational description can describe systems that are physically very different. Just as the same system can be described by many different equations, some of which may approximate its behavior better than others, the same system can be described by many different computational descriptions, some of which may approximate its behavior better than others. Just as being described by a system of equations does not entail being a system of equations in any interesting sense, being described as a computing system in the present sense does not entail being a computing system. So, computational descriptions in the present sense say nothing about whether something literally computes. They are not the basis for a CTM.

3. Computational Modeling (2)

In a second type of computational description, the states of a system S are represented directly by the discrete states of an ordinary computing system C (such as a Turing Machine or a cellular automaton), and C’s state transitions represent S’s state transitions over time. If S is analyzed as a system with inputs and outputs, then C’s inputs and outputs represent S’s inputs and outputs, and given any inputs and outputs of C (representing any inputs and outputs of S), C goes into internal states and generates outputs that represent the states that S goes into and the outputs that S generates. Prima facie, this second type of computational description is not trivial—not everything is describable as a computing system in this sense. For most things do not seem to have (discrete) inputs, internal states, and outputs like ordinary computing systems do, so it is not obvious how to compare their behavior to the behavior of a computing system to determine whether they are the same.

A natural suggestion might be that, for any system S, there is a computing system whose state transitions map onto S’s state transitions under its ordinary dynamical description. This will not work. In modern science, dynamical descriptions are usually given not by means of computing systems but by systems of differential equations, which determine a continuous state space, which assigns an uncountable number of possible states and state space trajectories.
 But ordinary computing systems, such as Turing Machines (TM), can only take a finite number of states. Even if we combine the internal states of a TM with the content of the machine’s tape to increase the number of possible states, the total number of states that a TM can be in is only countably infinite. Moreover, TMs can only follow a countable number of state space trajectories. The same point applies to any ordinary computing system of the kinds used in scientific modeling. So ordinary computational descriptions do not have a cardinality of states and state space trajectories that is sufficient for them to map onto ordinary mathematical descriptions of natural systems. So, from the point of view of strict mathematical description, the thesis that everything is a computing system in this second sense cannot be supported.

This second sense in which things can be described as computing systems may be loosened by allowing the computational description C of a system S to approximate, rather than strictly map onto, the states and behavior of S. As with any model, the computational model of a system S only represents what is known about S. More importantly, discrete computational models require the that S be discretized, namely, they require the partitioning of S’s states into discrete states, of S’s state transitions into discrete state transitions, and (in the case of cellular automata models) of S’s spatial regions into discrete spatial regions. This can be done in an indefinite number of ways (using an indefinite variety of formalisms), some of which may be more accurate than others for some modeling purposes.
 Finally, computational accuracy still requires computational resources, which are always finite.

This kind of approximation is behind the increasingly popular use of cellular automata as a modeling tool (Rohrlich 1990, Hughes 1999). Once approximation is allowed, the caveat discussed in the previous section applies. If we don’t care how good our approximations are, then the thesis that everything can be described as a computing system becomes trivially true in the present sense. Otherwise, whether something can be described as a computing system in the present sense depends on whether it can be computationally approximated to the degree of accuracy that is desired in any given case.

This second type of computational description is still irrelevant to CTM, because it applies to anything depending merely on how discrete it is at the relevant level of description, i.e. on whether it has discrete inputs, outputs, internal states, and state transitions, and perhaps on one’s criteria for acceptable approximations. For example, few people would count hard bodies as such as computing systems. Yet, at a high level of abstraction hard bodies can be in either of two states, whole or broken, depending on how much pressure is applied to their extremities. A simple two-input, two-state TM, or a simple cellular automaton, can approximate the transition of a hard body from one state to the other; nevertheless, there seems to be no useful sense in which this turns every hard body into a computing system. If you hit an ordinary desktop computer sufficiently hard, you will break it. The resulting state transition of the computer, far from constituting a computation, will prevent the computer from performing computations in the future. So, sense two says nothing about whether something computes. It cannot be the sense appealed to by CTM.

It may be replied that at the appropriate level of description, even a computer that breaks is performing a computation, albeit an uninteresting one. According to this line of thought, the same system can perform different computations at different levels of description, and the breaking of a computer is just one computation at one level of description among many. Some authors like to call any activity of any system a computation (e.g., Wolfram 2002). Ascribing computations in this way, though, does not make this kind of computational description relevant to the philosophy of mind. There are two reasons for this.

First, computation in this sense plays no explanatory role. What explains the breaking of a hard body is the physical properties of the body, the amount of pressure applied to it, and the relevant physical laws. Different bodies of different shapes and hardness break under different pressures applied in different ways—the indefinitely many computational descriptions that are common to them are post hoc and give no information about when something will break. Unlike this example, cellular automata and other formalisms can have a nontrivial modeling role, but the important point still applies. The explanation for the system’s behavior is given by properties and initial conditions of the system and relevant physical (or biological, or whathaveyou) laws and principles, not by the models’ computations. Sense two cannot play an explanatory role in a theory of mind (or of computing systems, for that matter), so it’s not what CTM should appeal to.

The second reason is that computations ascribed in the present sense (as well as in the previous one), unlike computations properly so called, cannot go wrong. When a computer or person who is computing function f gives the wrong output for a given input, we say that a mistake was made (e.g., because of distraction in the case of a person, or component failure in the case of a machine), and the resulting event may be called miscomputation. This possibility of specifying the function to be computed independently of the performance during execution, so that one can point to mistakes in the computation, is an important reason why computation appeals to philosophers of mind. But there is no sense in which something that breaks under pressure can fail to generate the appropriate output: it is simply a law of physics that it will break under the appropriate pressure—the system can’t do anything different. Even if we weaken or strengthen a system so that it won’t break under the previous amount of pressure, there is no useful sense in which the modified system is doing something wrong. To the extent that the philosophy of mind requires a notion of computation such that mistakes can be made during computations, sense two is irrelevant to the philosophy of mind. Again, sense two is not what people who are interested in CTM should care about.

4. Computations, Representations, and Functions

To obtain a more robust notion of computational description, with some explanatory purchase to be employed in a CTM, philosophers have explored two routes: representation and function. This section briefly discusses their pros and cons, paving the way for an improved understanding of computational explanation.

If we assume that some things are representations (in the sense that they have content essentially) and some aren’t, and if we define genuine computations as manipulations of representations, perhaps we obtain the notion of computation that we need for CTM. According to this line of thought, which I call the semantic view of computation, only processes defined over representations count as genuine computations, so that only systems that manipulate representations count as genuine computing systems.
 There is consensus that most systems, including most systems that are paradigmatic examples of non-computing systems—such as the weather, stomachs, and planetary systems—do not manipulate representations. So, according to the semantic view of computation, most systems do not count as genuine computing systems. This strategy has the great virtue of tailoring a robust notion of computation to the common assumption that mental states are representations. If minds manipulate representations, then they qualify for being members of the class of genuine computing systems. If they are computing systems in this sense, then their behavior is explained by the computations they perform.
 I have argued at length elsewhere that in spite of its virtues, the semantic view of computation should be replaced by a purely functional account of computation. Here, I only have room for sketching the main considerations that militate against the semantic view.

For starters, the semantic view of computation trades one difficult problem for another. There is no consensus on what content is, or how to find genuine representations in the world, or even whether the notions of content and representation are sufficiently clear to make these questions answerable.
 Nevertheless, many believe that these problems can be solved by a naturalistic theory of content, and I will leave concerns over content aside. There remains the problem of specifying which representations, among the general class of representations, can support genuine computations, and which processes, among those defined over representations, count as genuine computations. Few would maintain that all representations, including paintings and facial expressions, are equally suited to have computations defined over them. By the same token, many processes defined over representations, such as drawing a diagram or playing a record, do not appear to be computations. But supporters of the semantic view of computation have not specified how to pick the relevant class of representations and processes that define the class of genuine computations. Until they attempt to do so, it is legitimate to doubt that they will succeed. These difficulties are serious, but perhaps not overwhelming. If we find a robust notion of computation that does not rely on the notion of content and the difficulties that come with it, we would be better off; if we can’t find an alternative, we may keep the semantic view. But the semantic view of computation faces two more problems, either one of which is enough to reject it.

The first problem is that some supporters of CTM believe mental states have no content, or that content plays no explanatory role, or at least no individuative role, within CTM (Stich 1983, Egan 2003). If this is so much as coherent, then mental computations must be construed without appeal to content, and the semantic view of computation must be abandoned because it begs the question of whether the states over which mental computations are defined are individuated by their content. To avoid this, supporters of the semantic view of computation are forced to maintain that construing computation without appeal to content is incoherent. But this is far from being the case. On the contrary, the relevant experts—computability theorists and computer designers—normally individuate computations without appeal to content. For instance, computability theorists individuate strings of symbols by their formal properties (i.e., regardless of their content), and then define computations as manipulations of strings based on the strings’ formal properties. This is the final problem faced by the semantic view of computation: it conflicts with the standard way of individuating computations by the relevant community of experts. Because of this, the semantic view is untenable.

The second route explored by philosophers in search of a robust notion of computation is function. Roughly speaking, a functional analysis of a system is a partition of a system into components and an assignment of functions to those components.
 A standard example is the circulatory system of organisms, which may be partitioned into the heart, the arteries, and the veins, each of which are assigned specific functions. A function is an activity that a component contributes to some activity of its containing system under normal conditions. Given a functional analysis of a system, the system’s capacities are explained by the functions performed by its components. In our example, the heart is assigned the function to pump blood from the veins into the arteries, and the capacity of the circulatory system to circulate the blood under normal conditions is explained by the functions performed by the heart, the arteries, and the veins. So, functional analysis has nontrivial ontological implications for the system being described: it gives functional significance to the behavior of the system and its components; namely, it attributes to the system and its components the function of acting in certain ways under certain conditions. This can be used to give functional explanations of the behavior of the system. In fact, only artifacts and biological systems are usually said to have functions, which may be invoked in explaining their behavior.

Some philosophers have proposed to formulate theories of mind directly in terms of the notion of function employed in functional analysis, without appeal to the notion of computation (Millikan 1984, p. 139; Sober 1990; Shapiro 1994). They argue that just as a functional analysis explains the behavior of a system by appealing to functions, CTM attempts to explain mental phenomena by appealing to functions. But, they continue, the notion of function employed by CTM, namely the mathematical notion of function (defined over strings or natural numbers), is not suited for a theory of mind. In formulating a theory of mind, these authors propose to replace the mathematical notion of function with the notion of function employed in functional analysis. Their proposal has remained unsuccessful. This is not surprising because, as it stands, their proposal is based on a false opposition between two notions of function. Within a description of a system, the mathematical notion of function and the notion of function employed in functional analysis need not be in competition.

For instance, both notions of function play legitimate roles within computational models of biological systems and artifacts, because functional analysis can be fruitfully combined with computational modeling. This can be done with either of the two kinds of computational models discussed above. In the first kind of computational modeling, the mathematical description of a system’s dynamical evolution may embody assumptions about the system’s functional analysis. For instance, standard equations for the action potentials of neurons, such as the classical Hodgkin-Huxley equation, include terms corresponding to several electric currents. The different currents are assumed to be the effects of different components and properties of a neuron’s membrane (such as various ion channels) under normal conditions, so the different terms in the equations embody these assumptions about the functional analysis of the neuron. When computer programs are built to compute representations of action potentials based on the relevant equations, they implicitly rely on the functional analysis embodied in the equations. Mutatis mutandis, the same point applies to the use of discrete computational models such as cellular automata. The only difference is that now the functional analysis of a system is embodied directly in the topological and dynamical structure of the model. Typically, different regions of a finite automaton represent different regions of the modeled system, and the transition rules between states of the finite automaton represent the dynamical properties of the regions of the system. If the system is functionally analyzed, then different regions of a finite automaton may correspond to different components of the modeled system, and the transition rules between states of the finite automaton may represent the functions performed by those components under normal conditions. In all these cases, functional analysis and the computation of mathematical functions coexist within the same description of a system. There is no reason to see one as the replacement for the other. This, however, does not yet give us the more robust notion of computation that we are looking for.

Computational models that embody functional analyses offer functional explanations of the systems they model. But the functional explanation is given by the functional analysis, not by the computations performed by the model on the grounds of the functional analysis. In the case of standard computational models, the functional analysis is embodied in the dynamical equations that describe the dynamical evolution of the system or in the assumptions behind the topology and transition rules of a cellular automaton. The situation is analogous to other computational models, where the purpose of the computation is to generate successive representations of the state of a system on the basis of independent assumptions about the system’s properties. What does the explanatory job is the set of assumptions about the system’s properties—in this case, the functional analysis that is the basis for the model.

The same point may be made by comparing the normativity inherent in functional analysis and the normativity inherent in computation. In the case of computational models that embody a functional analysis, the two kinds of normativity are independent, in the sense that the two sets of norms can be broken independently. On one hand, the system may fail to perform its functions (e.g., a heart may cease to pump) in a variety of ways under a variety of circumstances. This may or may not be represented by a computational model of the system; to the extent that the model is accurate, it should represent malfunctions and functional failures of the modeled system under the relevant circumstances. This has nothing to do with miscomputation. The computations that generate representations of the modeled system within a computational model may also go wrong in a variety of ways under a variety of circumstances. For instance, the system may run out of memory, or a component of the hardware may break down. But if the computation goes wrong, the result is not a representation of a malfunction in the modeled system. Rather, it is simply a misrepresentation of the behavior of the modeled system, or more likely, the failure to generate a representation of the modeled system.

This shows that in this kind of modeling, the normativity of the functional analysis is independent of the normativity of the computation. The system is supposed to do what its functional analysis says; the model is supposed to compute what the equations (or other relevant assumptions) say. So in this case, still, computation is not explaining the behavior of the system.

At this point, a tempting way to assign explanatory force to computation is to simply assert that functional analyses are themselves computational descriptions, so that functional explanation turns into computational explanation. This move was implicitly made by the two original philosophical proponents of CTM (Fodor 1968b, Putnam 1967).
 Since then, the mongrel of functional analysis and computation has become entrenched in the philosophy of psychology and neuroscience literature, where it can be found in many places (e.g., Cummins 1975, 1983, Dennett 1978, Haugeland 1978, Marr 1982, Churchland and Sejnowski 1992, Eliasmith 2003).
 According to this view, the functions performed by a system according to its functional analysis are also functions computed by that system. Hence, one can explain the behavior of the system by appealing to the computations it performs. The virtue of this move is that it assigns computation (and hence CTM) explanatory force. The vice is that it assigns explanatory force by definitional fiat.

Aside from the desire to assign explanatory force to computation, there is no independent motivation for calling all functional analyses computational descriptions, and all activities described by functional analyses computations. Functional analysis applies to many kinds of systems engaged in many kinds of activities, ranging from pumping blood to generating electricity to digesting food. As we’ll see in the next section, functional analysis applies to what are ordinarily called computing systems too, for ordinary computing systems engage in a certain type of activity—computation—in virtue of the functions performed by their components under normal conditions.
 For instance, Turing Machines perform their computations in virtue of the activities performed by their active device (whose function is to write and erase symbols in appropriate ways) on their tape (whose function is to store symbols). But if we take computation in anything like the sense in which it is used in computability theory and computer science, we must conclude that most functional analyses do not ascribe computations to the systems they analyze.

If we like, we may start calling every function of every system a computation. As a result, computation will acquire explanatory force by piggybacking on the explanatory force of functional analysis. But this also turns every system that is subject to functional analysis into a computing system. Functional analysis applies to artifacts, organisms, and their components, including stomachs and other paradigmatic examples of non-computing systems. This way of ascribing computations is too liberal to be directly relevant to the philosophy of mind in the sense of using genuine computation (as opposed to a system’s function) to explain behavior. The sense that is relevant to the philosophy of mind must be restricted further.

The proponents of the view that functional analyses are computational descriptions have gotten the relation between functional analysis and computation backwards. I will now argue that rather than functional analysis being a form of computational description, computational explanation is a special form of functional explanation, which applies only to systems with special functional properties.

5. Computational Explanation

Some systems manipulate inputs and outputs of a special sort, which may be called strings of symbols. A symbol is a discrete state of a particular, discrete in the sense that it belongs to one (and only one) of a finite number of types. Types of symbols, in turn, are individuated by their different effects on the system, to the effect that the system performs different operations in response to different types of symbols. A string of symbols is a concatenation of symbols, namely a structure that is individuated by the types of symbols that compose it, their number, and their ordering (i.e., which symbol token is first, which is its successor, and so on). A string of symbols may or may not be interpreted, that is, assigned content. If it is interpreted, it may be called a representation. But interpreting strings is not part of their individuation; in other words, strings of symbols do not have their content essentially. Strings of symbols in this sense are, to a first approximation, a physical realization of the mathematical notion of string.

Among systems that manipulate strings of symbols in this sense, some of them do so in a special way. Under normal conditions, these systems perform sequences of operations that depend on which strings of symbols are present within the system and on the internal state of the system, so that by performing those operations, the system may generate different output strings of symbols in response to different input strings of symbols and different internal states.

Suppose that one can specify a general rule R, which applies to any string entering a system and depends on the inputs (and perhaps internal state) of a system for its application. And suppose that R specifies what strings the system outputs under normal conditions (for example, R might say that the outputs should contain all the symbols present in the input arranged in alphabetical order). Then, there is a robust sense in which R specifies the computation that the system has the function to perform. This rule carries explanatory force. When the system generates an output given a certain input under normal conditions, and the output bears the relevant relation to the input (e.g., it contains all the symbols in the input arranged in alphabetical order), R may be invoked to explain this fact. The system has generated that output given that input because (i) that output contains all the symbols in the input arranged in alphabetical order and (ii) the function of the system is to arrange the input symbols in alphabetical order.

The mathematical theory of how to generate output strings from input strings in accordance with general rules that apply to all input strings and depend on the inputs (and sometimes internal states) for their application is called computability theory. Within computability theory, the activity of manipulating strings of symbols in this way is called computation. Any system that performs this kind of activity is a computing system properly so called. Of course, there remains the task of explaining how it is that a system is capable of performing a certain computation. This will be done by a functional analysis of the system, which explains how the system performs its computations by pointing at the functions performed by its components under normal conditions. For instance, in the case of a Turing Machine the functional analysis will include a partition of the system into its two main components (i.e., the tape and the active device), the assignment of functions to those components, and the specification of the machine table that expresses the algorithm the machine ought to follow under normal conditions.

In conclusion, in order to have a genuine computational explanation, we need to combine a certain functional analysis of a system—in terms of strings and components that manipulate strings—with a certain kind of description of the process by which the strings are manipulated—in terms of rules that apply to all input strings and depend on the inputs for their application. We finally have a robust notion of computation, which captures an important sense in which a system may be said to follow rules rather than merely being rule-governed. A computing system ought to follow the rule that specifies the relevant relation between its input and output strings. If it doesn’t, a miscomputation occurs. So this notion of computation captures the relevant sense in which computing systems may miscompute. Computing systems are functional systems, and as such they can malfunction. Since their function is to perform a certain computation, their malfunction results in a miscomputation. For instance, if the tape of a (physically implemented) Turing Machine breaks, the machine may fail to complete its computation correctly. Miscomputation, then, is the specific kind of malfunction exhibited by computing systems.

A final observation pertains to the relation between computational modeling and computational explanation. The functional analysis of a computing system can be embedded in a computational model, just as the functional analysis of any other functionally analyzable system. If this is done, a computing system is being used to model the behavior of another computing system. Since the activity of the modeled system is a computation, in this case the model is computing representations of a computation. Since the modeled system can miscompute, and this miscomputation may be captured by the functional analysis of the system that is embodied in the model, under appropriate conditions the model may be computing the miscomputation performed by the modeled system. The modeling of computing systems by other computing systems is a standard practice in the discipline of computer design, where it is used to test the properties (and crucially, the possible miscomputations) of a computing system before building concrete machines. The model itself, of course, may malfunction too. In such a case, the result is not a representation of a miscomputation by the modeled system, but rather a misrepresentation of (or a failure to represent) the behavior of the modeled system.

It should go without saying that when we employ computational explanation in the present sense, pancomputationalism is false. To begin with, most systems, such as planetary systems and the weather, are not functionally analyzable systems—they are not subject to functional analysis. Computational explanation does not apply to any of those, because computational explanation applies only to a subclass of functionally analyzable systems. Within the class of functionally analyzable systems, most systems, such as stomachs, do not manipulate entities of the relevant class, i.e. strings. A sequence of food bites is not a string of symbols, if for nothing else, because the ordering of the bites makes no difference to the process of digestion. Finally, even within the class of systems that do manipulate strings, many do so without following a rule of the appropriate kind. For instance, genuine random number generators do generate output strings from input strings, but there is no specifiable rule that tells which outputs ought to be produced from which inputs (otherwise, the outputs would not be genuinely random). Whether the brain is a computing system in the present sense remains open; it depends on whether it manipulates strings of symbols in accordance with appropriate rules. But we know that in this sense, most systems are not computing systems.

6. The Computational Theory of Mind without Pancomputationalism

There are many ways to describe a system computationally. Different computational descriptions carry different ontological implications about whether the system itself performs computations—whether it is a genuinely rule-governed system. And the assertion that everything is describable as a computing system takes a different significance depending on which kind of computational description is at stake.

Most computational descriptions are forms of computational modeling, in which the computations are performed by the model in order to generate representations of the modeled system at subsequent times. Computational models need not ascribe computations to the systems they model, and a fortiori need not explain their behavior by postulating computations internal to the systems they model. Even so, the claim that everything is describable by a computational model is only true in the most trivial sense. For computational models are approximate. If we care how good our approximations are—and if our models are to serve our scientific purposes we’d better care—, then whether something has a computational description depends on whether it can be computationally approximated to the degree of accuracy that is desired in a given case.

Some computational descriptions, however, are forms of functional analysis. These functional analyses individuate systems with special sorts of inputs and outputs called strings, and assign them the function of generating output strings from input strings in accordance with a general rule that applies to all strings and depends on the inputs (and perhaps internal states) for its application. These kinds of descriptions ascribe computations to the systems themselves and are explanatory. They describe systems as rule-following, rather than merely rule-governed, because they explain the behavior of the systems by appealing to the rule they normally follow in generating their outputs from their inputs and their internal states. This kind of computational description is suited to formulating genuinely explanatory theories of rule-following systems, as CTM is designed to do, and it applies only to very select systems, which manipulate special sorts of inputs and outputs in special sorts of ways. It is far from true that everything is a computing system in this sense.

Given all this, different sources of evidence need to be used to support different versions of the claim that something is a computing system, and the version that is relevant to CTM turns out to be empirical in nature. This is an important consequence of the present analysis, because naturalistically inclined philosophers should prefer to settle CTM empirically rather than a priori. Whether something is a computing system properly so called turns out to depend on whether it has certain functional properties, so determining whether the mind is a computing system is a matter of determining whether it has the relevant functional properties. This is consistent with the original formulation of CTM by McCulloch and others, who discussed it as a hypothesis about the functional properties of the mind (McCulloch and Pitts 1943, Wiener 1948, von Neumann 1958, Fodor 1975, Newell and Simon 1976, Pylyshyn 1984).

As to the thesis that everything is a computing system, it turns out to be motivated by a superficial understanding of the role of computation in modeling. Once the thesis is made more precise, it loses both plausibility and philosophical interest. In the sense that cuts some ice in the philosophy of mind, it is far from true that everything is a computing system.

References

Allen, C., M. Bekoff, et al., Eds. (1998). Nature's Purposes: Analysis of Function and Design in Biology. Cambridge, MA, MIT Press.

Ariew, A., R. Cummins, et al., Eds. (2002). Functions: New Essays in the Philosophy of Psychology and Biology. Oxford, Oxford University Press.

Buller, D. J., Ed. (1999). Function, Selection, and Design. Albany, State University of New York Press.

Block, N. and J. A. Fodor (1972). "What Psychological States Are Not." Philosophical Review 81(2): 159-181.

Bontly, T. (1998). "Individualism and the Nature of Syntactic States." British Journal for the Philosophy of Science 49: 557-574.

Chalmers, D. J. (1996a). The Conscious Mind: In Search of a Fundamental Theory. Oxford, Oxford University Press.

Chalmers, D. J. (1996b). "Does a Rock Implement Every Finite-State Automaton?" Synthese 108: 310-333.

Christensen, W. D. and M. H. Bickhard (2002). "The Process Dynamics of Normative Function." The Monist 85(1): 3-28.

Churchland, P. M. and P. S. Churchland (1990). "Could a Machine Think?" Scientific American CCLXII: 26-31.

Churchland, P. S. and T. J. Sejnowski (1992). The Computational Brain. Cambridge, MA, MIT Press.

Copeland, B. J. (1996). "What is Computation?" Synthese 108: 224-359.

Copeland, B. J. (2000). "Narrow Versus Wide Mechanism: Including a Re-Examination of Turing's Views on the Mind-Machine Issue." The Journal of Philosophy XCVI(1): 5-32.

Copeland, B. J. (2002). The Church-Turing Thesis. The Stanford Encyclopedia of Philosophy (Fall 2002 Edition). E. N. Zalta. URL = <http://plato.stanford.edu/archives/fall2002/entries/church-turing/>.

Corcoran, J., W. Frank, and M. Maloney (1974). "String Theory." The Journal of Symbolic Logic 39(4): 625-637.

Craver, C. (2001). "Role Functions, Mechanisms, and Hierarchy." Philosophy of Science 68(March 2001): 53-74.

Cummins, R. (1975). "Functional Analysis." Journal of Philosophy 72(20): 741-765.

Cummins, R. (1983). The Nature of Psychological Explanation. Cambridge, MA, MIT Press.

Dayan, P. and L. F. Abbott (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA, MIT Press.

Dennett 1978

Dretske, F. I. (1986). "Misrepresentation." Belief: Form, Content, and Function. R. Bogdan, Ed. New York, Oxford University Press: 17-36.

Dreyfus, H. L. (1972). What Computers Can't Do. New York, Harper & Row.

Egan, F. (1999). "In Defence of Narrow Mindedness." Mind and Language 14(2): 177-194.

Egan, F. (2003). Naturalistic Inquiry: Where does Mental Representation Fit in? Chomsky and His Critics. L. M. Antony and N. Hornstein. Malden, MA, Blackwell: 89-104.

Eliasmith, C. (2003). "Moving Beyond Metaphors: Understanding the Mind for What It Is." Jounal of Philosophy C(10): 493-520.

Fodor, J. A. (1968a). "The Appeal to Tacit Knowledge in Psychological Explanation." Journal of Philosophy 65: 627-640.

Fodor, J. A. (1968b). Psychological Explanation. New York, Random House.

Fodor, J. A. (1975). The Language of Thought. Cambridge, MA, Harvard University Press.

Fodor, J. A. (1981). Representations. Cambridge, MA, MIT Press.

Fodor, J. A. (1998). Concepts. Oxford, Clarendon Press.

Gauker, C. (2003). Words without Meaning. Cambridge, MA, MIT Press.

Haugeland, J. (1978). "The Nature and Plausibility of Cognitivism." Behavioral and Brain Sciences 2: 215-260.

Hughes, R. I. G. (1999). The Ising Model, Computer Simulation, and Universal Physics. Models as Mediators. M. S. Morgan and M. Morrison. Cambridge, Cambridge University Press: 97-145.

Humphreys, P. (1990). "Computer Simulations." PSA 1990 2: 497-506.

Ludlow, P. (2003). Externalism, Logical Form, and Linguistic Intentions. Epistemology of Language. A. Barber. Oxford, Oxford University Press.

Marr, D. (1982). Vision. New York, Freeman.

McCulloch, W. S. (1965). Embodiments of Mind. Cambridge, MA, MIT Press.

McCulloch, W. S. and W. H. Pitts (1943). "A Logical Calculus of the Ideas Immanent in Nervous Nets." Bulletin of Mathematical Biophysics 7: 115-133.

Newell, A. (1980). "Physical Symbol Systems." Cognitive Science 4: 135-183.

Newell, A. and H. A. Simon (1976). "Computer Science as an Empirical Enquiry: Symbols and Search." Communications of the ACM 19: 113-126.

Penrose, R. (1994). Shadows of the Mind. Oxford, Oxford U Press.

Piccinini, G. (2003). Computations and Computers in the Sciences of Mind and Brain. Ph.D. Dissertation, Pittsburgh, PA, University of Pittsburgh. URL = <http://etd.library.pitt.edu/ETD/available/etd-08132003-155121/>

Piccinini, G. (forthcoming a). "The First Computational Theory of Mind and Brain: A Close Look at McCulloch and Pitts's 'Logical Calculus of Ideas Immanent in Nervous Activity'." Synthese.

Piccinini, G. (forthcoming b). "Functionalism, Computationalism, and Mental States." Studies in the History and Philosophy of Science.

Piccinini, G. (forthcoming c). "Functionalism, Computationalism, and Mental Contents." Canadian Journal of Philosophy.

Preston, B. (1998). "Why is a Wing Like a Spoon? A Pluralist Theory of Function." The Journal of Philosophy XCV(5): 215-254.

Putnam, H. (1960). "Minds and Machines." Dimensions of Mind: A Symposium. S. Hook, Ed. New York, Collier: 138-164.

Putnam, H. (1964). "Robots: Machines or Artificially Created Life?" Journal of Philosophy LXI(November 1964): 668-691.

Putnam, H. (1967). "Psychological Predicates." Art, Philosophy, and Religion. Pittsburgh, PA, University of Pittsburgh Press.

Putnam, H. (1988). Representation and Reality. Cambridge, MA, MIT Press.

Pylyshyn, Z. W. (1984). Computation and Cognition. Cambridge, MA, MIT Press.

Rohrlich, F. (1990). "Computer Simulation in the Physical Sciences." PSA 1990 2: 507-518.

Rumelhart, D. E. and J. M. McClelland (1986). Parallel Distributed Processing. Cambridge, MA, MIT Press.

Scheutz, M. (2001). "Causal versus Computational Complexity." Minds and Machines 11: 534-566.

Schlosser, G. (1998). "Self-re-Production and Functionality: A Systems-Theoretical Approach to Teleological Explanation." Synthese 116(3): 303-354.

Searle, J. R. (1980). "Minds, Brains, and Programs." The Behavioral and Brain Sciences 3: 417-457.

Searle, J. R. (1992). The Rediscovery of the Mind. Cambridge, MA, MIT Press.

Shapiro, L. A. (1994). "Behavior, ISO Functionalism, and Psychology." Studies in the History and Philosophy of Science 25(2): 191-209.

Sober, E. (1990). "Putting the Function Back into Functionalism." Mind and Cognition. W. Lycan, Ed. Malden, MA, Blackwell: 63-70.

Toffoli, T. (1984). "Cellular Automata as an Alternative to (rather than an Approximation of) Differential Equations in Modeling Physics." Physica 10D(117-127).

Vichniac, G. Y. (1984). "Simulating Physics with Cellular Automata." Physica 10D: 96-116.

von Neumann, J. (1951). "The General and Logical Theory of Automata." Cerebral Mechanisms in Behavior. L. A. Jeffress, Ed. New York, Wiley: 1-41.

von Neumann, J. (1958). The Computer and the Brain. New Haven, Yale University Press.

Wiener, N. (1948). Cybernetics or Control and Communication in the Animal and the Machine. Cambridge, MA, MIT Press.

Wolfram, S. (2002). A New Kind of Science. Champaign, IL, Wolfram Media.

� This paper was prompted by a remark by Diego Marconi, which convinced me that the issue of whether everything is a Turing Machine needed to be sorted out. A version of this paper was presented at the 2002 APA Eastern Division in Philadelphia. I am grateful to the audience, commentator Julie Yoo, and chair Louise Antony, for their feedback. I also thank John Norton, Sam Scott, Oron Shagrir, Brandon Towl, the referees, and especially Peter Machamer for comments on previous versions of this paper.

� Cf. also: “A [physical symbol] system always contains the potential for being any other system if so instructed” (Newell 1980, p. 161); “For any object there is some description of that object such that under that description the object is a digital computer” (Searle 1992, p. 208). Similar views are expressed by Block and Fodor 1972, p. 250; Churchland and Sejnowski 1992; Chalmers 1996b, p. 331; Scheutz 1999, p. 191. Pancomputationalism should not be confused with the stronger claim that everything implements every computation (Putnam 1988, Searle 1992, Ludlow 2003). For a rebuttal to this stronger claim, see Copeland 1996, Chalmers 1996b, Bontly 1998, and Scheutz 2001.

� Sometimes the thesis that everything is a Turing Machine is said to be equivalent to, or to follow from, the Church-Turing thesis, i.e. the thesis that everything effectively calculable is computable by Turing Machines. But as Copeland has pointed out, this is based on a misunderstanding of the Church-Turing thesis (Copeland 2000, 2002). See also Piccinini 2003, Chap. 7.

� See the essays collected in McCulloch 1965. For a detailed study of McCulloch’s CTM, and a defense of the statement that McCulloch was the principal founder of modern CTM, see Piccinini forthcoming a.

� As Fodor puts is, “suggesting … that every causal process is a kind of computation [trivializes the] nice idea that thought is (Fodor 1998, p. 12).

� See also Fodor 1968, p. 632; Dreyfus 1972, pp. 68, 101-102; Searle 1980, pp. 37-38; Searle 1992, p. 208.

� Here is another example: “we wanted to know how the brain works, specifically how it produces mental phenomena. And it would not answer that question to be told that the brain is a digital computer in the sense that stomach, liver, heart, solar system, and the state of Kansas are all digital computers” (Searle 1992, p. 208; emphasis added).

� For more on computational models in science, see Humphreys 1990 and Rohrlich 1990.

� For early claims to this effect, see von Neumann 1951 and Putnam 1964. Some recent examples are the following: “a standard digital computer … can display any pattern of responses to the environment whatsoever” (Churchland and Churchland 1990); “the laws of physics, at least as currently understood, are computable, and … human behavior is a consequence of physical laws. If so, then it follows that a computational system can simulate human behavior” (Chalmers 1996a, p. 329).

� Some authors have argued that some physical systems have dynamical evolutions whose state transitions are not computable by ordinary computing systems, such as digital computers (e.g., Penrose 1994). If one is strict about approximation and there are systems whose dynamical evolution involves state transitions that are not computable by ordinary computing systems, then the thesis that everything is an (ordinary) computing system in the present sense becomes strictly false.

� There are uncountably many real numbers. Any real number specifies a different initial condition of a dynamical system. For any initial condition, there is a separate state space trajectory. Therefore, there are uncountably many state space trajectories. This is true not only in physics but also biology, including neuroscience (for an introduction to theoretical neuroscience, see Dayan and Abbott 2001).

� The same argument applies, of course, to the kind of computational modeling described in the first section, where we reached the same conclusion by a different route.

� Some radical proponents of this kind of modeling have suggested that the universe may be fundamentally discrete in the relevant senses (e.g., Vichniac 1984, Toffoli 1994, Wolfram 2002). Even if true, however, this would make these models exact only when the most fundamental physical variables are represented at the most fundamental orders of magnitude. All other computational modeling would remain approximate. As far as I can tell, this includes all modeling done to date. For no one knows what the most fundamental physical level is, and furthermore there is no independent evidence that the universe is fundamentally discrete. The view that the universe is fundamentally discrete appears to be motivated by the desire for exact discrete computational models rather than by empirical evidence or independent theoretical considerations.

� The semantic view of computation has been defended most prominently by Jerry Fodor (e.g., Fodor 1981, 1998).

� Since representations can misrepresent (Dretske 1986), it may also appear that the semantic view of computation offers us a way to explicate the notion of miscomputation—namely, the making of mistakes in computing—in terms of misrepresentation. But miscomputation is orthogonal to misrepresentation: a computation may be correct or incorrect regardless of whether its inputs, outputs, and internal states represent correctly or incorrectly, or even whether they represent anything at all (see below); similarly, a representation may represent correctly or incorrectly regardless of whether it is the input, output, or internal state of a correct or incorrect computation, or even whether it is the input, output, or internal state of a computation at all.

� For an extended critique of the semantic view of computation, see Piccinini forthcoming c. See also Piccinini 2003, Chap. 9, and Egan 1999, 2003.

� For someone who despairs about answering those questions, see Gauker 2003, p. 27.

� The philosophical analysis of function ascription is a controversial matter. For the main competing accounts, see Allen, Bekoff, and Lauder 1998; Preston 1998; Schlosser 1998; Buller 1999; Ariew, Cummins, and Perlman 2002, Christensen and Bickhard 2002.

� For a study of how this came about and a more detailed criticism of this move, see Piccinini forthcoming b.

� For a notion of functional analysis that avoids the conflation with computation, see Craver 2001.

� For a detailed account of computing systems along these lines, see Piccinini 2003, Chap. 10.

� To solve this problem, Bontly proposes to conjoin the functional approach to computational explanation with the semantic view of computation (1998, p. 570). His proposal is ingenious but suffers from the problems with the semantic view, which I outlined above.

� For the mathematical notion of string, see Corcoran, Frank, and Maloney 1974.

PAGE
33

