

Change Without Change


Change Without Change, and How to Observe it in General Relativity*

Richard Healey 

Philosophy Department,

University of Arizona,

213 Social Sciences,

Tucson, AZ 85721,

USA.

Tel: (520)-621-3120

Fax: (520)-621-9559

Email: rhealey@email.Arizona.edu

Abstract

All change involves temporal variation of properties. There is change in the physical world only if genuine physical magnitudes take on different values at different times. I defend the possibility of change in a general relativistic world against two skeptical arguments recently presented by John Earman. Each argument imposes severe restrictions on what may count as a genuine physical magnitude in general relativity. These restrictions seem justified only as long as one ignores the fact that genuine change in a relativistic world is frame-dependent. I argue on the contrary that there are genuine physical magnitudes whose values typically vary with the time of some frame, and that these include most familiar measurable quantities. Frame-dependent temporal variation in these magnitudes nevertheless supervenes on the unchanging values of more basic physical magnitudes in a general relativistic world. Basic magnitudes include those that realize an observer’s occupation of a frame. Change is a significant and observable feature of a general relativistic world only because our situation in such a world naturally picks out a relevant class of frames, even if we lack the descriptive resources to say how they are realized by the values of basic underlying physical magnitudes.

Introduction

Metaphysics began with Parmenides' denial of change. It is tempting today to dismiss his argument as either fallacious or else a reductio ad absurdum of its premises. Surely we observe change all around us. Moreover, physical science seems to have provided us with an increasingly deep understanding of the basis of all this change by locating it ultimately in changes in fundamental physical magnitudes. One thing that has not changed is philosophers' practice of arguing among themselves about the best abstract analysis of change
. But contemporary metaphysical discussions are almost uniformly descriptive rather than revisionary. As with Parmenides, McTaggart's argument for the unreality of time and change is typically regarded as a simple reductio, resting on either fallacious reasoning or an incorrect analysis of change
. Unlike their illustrious predecessors, today's philosophers complacently take for granted the existence of change, while leaving the investigation of concrete observable changes to science, and ultimately to physics. Such philosophers may be shocked to hear of appeals to contemporary physics itself in support of the Parmenidean conclusion that all the apparent changes we think we observe are merely illusions--that no genuine physical magnitude ever changes--and that the lesson the general theory of relativity has to teach us is that all observable quantities in fact remain constant and unchanging.
 This shock may be just what is needed to highlight the fact that foundational physics is revisionary metaphysics under the guise of empirical science. 

After recovering from the shock, the next step must be to try to reconcile the overwhelming appearance of change in the world around us with the absence of any physical change at the level of fundamental theory. That is the goal of the present paper. I seek to achieve it in two stages. The first stage is to show how real physical change in a general relativistic world can supervene on an unchanging physical basis, so that (to echo Wheeler) there is change without change. The second stage is to explain how we are able to observe physical change while remaining curiously unaware of its unchanging physical basis.

The argument that the deep structure of general relativity excludes change in genuine physical magnitudes hinges on technical features not shared by other space-time theories. But it will nevertheless prove useful to begin by discussing the nature of change in a more familiar context of Newtonian physics and special relativity. This will make it easier to see how an observer can experience real, observable changes in certain familiar physical magnitudes even though these supervene on unchanging values of more fundamental physical magnitudes. 

The nature of this supervenience is best explained using the notion of a frame. Applied to a special relativistic world, this notion shows how a four-dimensional “block universe” may admit both change and its absence. Local frames are definable in any general relativistic world. Their definition permits one to describe a multiplicity of frame-dependent changes in such a world. A frame-dependent change is genuine: its occurrence is determined by the unchanging values of basic physical magnitudes, including those that realize the frame. We observe this change most directly by occupying that frame–something we do in ignorance of the basic physical magnitudes whose unchanging values realize our occupation of it.

Here's how the sections to follow lay out the argument of the paper. Section 1 offers a preliminary account of change intended to fit the idea of change in physical magnitudes in the context of contemporary metaphysical analyses of change. Section 2 uses physical examples to show how special relativity already forces us to get clearer on the notions of properties and times typically invoked by such analyses. Section 3 extends the analysis to general relativity and shows how a traditional approach to that theory represents change. Section 4 introduces alternative approaches to general relativity as a gauge theory, and uses these to present two related arguments for the conclusion that, in a general relativistic world, no fundamental physical magnitude ever changes. Section 5 responds to the arguments by showing how to use fundamental magnitudes to define change in other, equally genuine, physical magnitudes, and explaining how we can observe their changing values.

1.
Change


A physical theory should tell us what kinds of things there are in the world, the properties they possess, and the relations they bear one another. The goal is to specify a set of basic entities, properties and relations. By permitting unrestrained recombination of these the theory describes what might be called a set of metaphysically possible worlds: the basic entities provide the building blocks, the basic properties characterize them intrinsically, and the relations specify their arrangement. Any formally appropriate assignment of properties to basic individuals and specification of the external relations among them is allowed here. The physical laws distinguish those worlds that lie within the realm of physical possibility.

As a quantitative science, physics typically deals with magnitudes rather than properties. A physical magnitude is nothing more than a jointly exhaustive, mutually exclusive family of physical properties, with each property corresponding to an assignment of a value of the appropriate sort (scalar, vector, tensor, Borel set of real numbers, etc.) to that magnitude.  Change in the value of a physical magnitude is change from one to another incompatible property in the associated family. Since each qualitative property simply corresponds to a 2-valued magnitude whose values are 1 (for “present”) and 0 (for “absent”), I will move freely back and forth between talk of properties and talk of magnitudes.

List the basic entities that exist, give their intrinsic properties, and specify their external relations, and you will have characterized a world completely; everything else, from relational properties to internal relations, will be included more or less implicitly in the description. While a theory that yields such a complete characterization of our world remains a distant goal of physics, it is interesting to ask what is and what is not implicit in the description provided by the theories we have. Specifically, what notion of change, if any, is implicit in the general theory of relativity?

Change implies temporal variation of intrinsic properties. Intrinsic properties I characterize by the platitude that they say what an object is like in itself, independently of everything else in the world. External relations are relations that don’t supervene on the intrinsic properties of their relata.
 Color provides a traditional example of an intrinsic property, and distance is the paradigmatic external relation: though, as we will see, our physical theories challenge the status of both. I distinguish three kinds of questions. There are questions about the content of our physical theories, including questions about whether the distinction between intrinsic and extrinsic properties is a part of the content of a theory and how it is represented; there are questions about what constrains physical theorizing; and finally there are questions about the role that our theories play in determining our beliefs about which properties are intrinsic and which are extrinsic. Our claims are (i) that a distinction between intrinsic and extrinsic properties is a part of the content of a fully interpreted theory, in the sense that you haven’t really said what a given system is like according to a theory until you’ve said which of the magnitudes pertaining to it represent intrinsic properties, and which represent extrinsic ones; and (ii) that pre-theoretic intuitions about which properties are intrinsic don’t place real constraints on theorizing.  Of course, in some cases we have quite strong pre‑theoretic intuitions about which properties are intrinsic, and we tend to prefer theories that preserve those intuitions; but preserving unscientific ideas about what is and is not intrinsic is not a condition that a theory has to meet to be acceptable by scientific standards. I do not address questions about the role of theories in determining belief.

One important clarification: there are philosophical analyses of change that appeal to notions that aren't a part of the physicist’s repertoire (e.g. natural properties, or causal relations among events that can't be cashed out directly in physical terms). The burden will fall on philosophers whose analyses of change appeal to such notions to say how these analyses apply in the context of physical theory.  I will appeal only to structure that is provided by the theories themselves, structure that is part of the fabric of the physical universe as described by those theories.

As for possible worlds, I mean that in the most benign sense; applying a principle of recombination to the basic degrees of metaphysical freedom—the fundamental entities, properties, and relations—as a way of expressing the metaphysical content of a theory.  To say that a and b are distinct, non‑overlapping entities, or that A and B are distinct magnitudes, is to say, respectively, that a can exist without b, and that A and B, though they may covary with one another as a matter of nomological necessity, are logically independent; they vary independently of one another in the wider realm of metaphysical possibility. There is no commitment to a set of concrete particulars; descriptions of worlds can be viewed as fictions, or eliminated in terms of talk of possibility. Talk of possibility I take as essential to the expression of the content of a theory, again leaving aside metatheoretical questions about whether this gives grounds for admitting it into one’s ontology. 

To say that intrinsic properties of an object are those that it has independently of what the rest of the world is like is to say that an object retains its intrinsic properties under annihilation or creation of, and permutation of the intrinsic properties of, distinct individuals.  This suggests a test for whether a theory treats a given property (e.g., shape, charge, orientation) as intrinsic to its bearers.  To test whether P is an intrinsic property of o, according to T, check whether 

(i) there are worlds in which P(o) and there are fewer, more, or different distinct, non-overlapping objects

(ii) if w is a world with objects distinct from, and not overlapping, o, in which P(o); and w( is any other world containing, besides o, just these objects with (some) different intrinsic properties; then there is a world w(( just like w( except that P(o) in one of these two worlds while ~P(o) in the other.

Notice that the second part of the criterion can't be applied piecemeal; it will only tell us which properties are intrinsic to one object relative to assumptions about the intrinsic properties of others; a theory might treat widowhood as not intrinsic to Xanthippe, for example, but only relative to the assumption that it treats being dead as intrinsic to Socrates.

With this in hand, one can make two distinctions: one can distinguish positional from non‑positional magnitudes, and one can distinguish gerrymandered from non‑gerrymandered ones.  Gerrymandered magnitudes are more or less complicated logical constructions out of basic magnitudes. The significance of the distinction between gerrymandered and non‑gerrymandered magnitudes will depend on the significance of the distinction between basic and non‑basic magnitudes; magnitudes that are gerrymandered with respect to one choice of basic magnitudes will be non‑gerrymandered with respect to another. One can, but needn't, regard it as having more than pragmatic significance; all that is required for our purposes is that basic magnitudes are logically independent of one another, and jointly provide a supervenience base for all others. Positional magnitudes are really relations; they are magnitudes that can’t be defined from the basic magnitudes of a theory without making reference to particulars (times, places, objects). Gerrymandered magnitudes, as defined, are intrinsic–their values represent intrinsic properties; positional magnitudes are not.

How is change represented physically?  How do we distinguish a theory that represents a changing world from one that does not?  I will restrict attention to space‑time theories to make these ideas precise, and will suppose that a theory gives us a complete, intrinsic description of the geometrical structure and physical contents of a set of space‑times, each of which constitutes a world that is physically possible according to the theory, and which collectively exhaust the physical possibilities. I won’t worry, for the moment, about how the description is given, though this will become important later. A common, indirect way is to specify a class of models, together with the stipulation that only magnitudes that are invariant under transformations in a certain class are real. The transformations function, in this way, as a kind of filter for physically insignificant structure in the models. Of course, we are rarely working with a fully interpreted theory, and rarely in a position to give an intrinsic description of a physically possible world, for both technical reasons and conceptual ones, but for present purposes one can idealize.

What, then, is change? Here is a first pass; there is change just in case some magnitude has different values at different times. This presupposes either that the changing magnitude Q pertains to one or more persisting objects o (e.g. the charge of a particle, or the distance between two particles), or that it is localized in a certain region R of space (e.g. the electric field one centimeter away from a particle). In either case one can take an instantaneous assignment of a value to Q to be an event, so that change consists in successive events involving the assignment of different values of the same magnitude to object(s) o or region R. Such events occur in regions of space-time that are part of the “world-tube” of o or R. Whether or not one considers o (or R) to be constituted by its world-tube, or by the events that occur within it, one can maintain that there is a change involving o (or R) if and only if its world tube contains such events.

That won't do, however, without a restriction on properties, on pain of triviality.  Whatever things are like, there will always be magnitudes that characterize them whose values vary with time in any way you please, as well as sets of magnitudes, definable in terms of these, and positional with respect to them, whose values are constant. Suppose one defines a mapping f from the set of colors of the rainbow onto itself that maps violet onto blue, blue onto green...and red onto violet; and define the gruller of an object to be its color prior to midnight on January 1st 2000, but f of its color thereafter. Then the grullers of color‑constant objects change at the stroke of midnight on January 1st, 2000; but so do the colors of gruller‑constant objects. Whether there is change in a thing will depend on whether the intrinsic magnitudes pertaining to it have different values at different times.

There is nothing illegitimate, or unreal, about differences in the values of positional magnitudes; these are just changes in respects that are extrinsic to the objects they characterize.  When Xanthippe went from being married to being a widow on Socrates’ death, and when a sister went from being the youngest member of the family to being the second youngest on her sibling’s birth, it was not Xanthippe or the sister who changed, but the big wide world around them. A change in o means a difference in its intrinsic properties.

So far, so good; we have a well‑defined notion of change that applies to theories with an ontology of events or space‑time points as well as those with an ontology of persisting objects, and appeals only to the distinction (which I take as indispensable to the content of a fully interpreted theory) between intrinsic and relational, or positional, magnitudes. But there’s another problem; if change is analyzed as a relationship between the intrinsic magnitudes assigned at temporal parts of world-tubes, one has to recognize that there may not be enough structure in the space‑time manifolds to carve world-tubes invariantly into temporal parts. This will go for the space‑time as a whole, if it doesn't foliate uniquely into global space‑like hypersurfaces, as well as for the world‑tubes of more localized objects and regions of space.

All is not, however, lost; if there is a notion of a frame which is such that space‑time foliates into space‑like hypersurfaces relative to a frame, one can use that frame as a point of reference to pick out the invariant objects concerned when we talk about temporal parts, and the invariant magnitudes we measure by carrying out an instrumental procedure, e.g., by laying a rod across an object to measure its length.

We need enough of a local frame to slice the relevant space‑time region into the required temporal parts, but this typically can be done without global time‑slices. And if we're interested in changes involving motion, or the spatial geometry of these temporal parts, then we may need to be able to trace spatial parts of the temporal parts through time. If we have all of this, however, we have enough structure to ask, for example, whether the electric field at a particular point in space has changed at all within some space‑time region.

The general lesson here is that we have to reconceive talk about change in a universe that doesn't come nicely foliated into time‑slices; whereas before we could just speak of change as corresponding to different assignments of values of genuine magnitudes at successive temporal parts of a world-tube, now, the notion of change has to be relativized to a frame. Different frames carve a world-tube into different temporal parts, and so although a persisting object or spatial region and the relations between its temporal parts, or those of its world-tube, can be completely characterized in a frame‑independent manner, the choice of a frame is needed to tell us which parts we need to compare to tell whether there is change, and which magnitudes this may involve.

Does that mean that change is, in some sense, unreal? No, it simply reveals a hidden parameter in the extrinsic descriptions by which we pick out the temporal parts of world-tubes where different events constitute change. Does it mean that the magnitudes we measure, for example length‑in‑frame‑F, are relational or extrinsic magnitudes? No, again, it just reveals a hidden parameter in the extrinsic description by which we pick out perfectly intrinsic magnitudes at those parts. Change involves a relation between temporal parts relative to the foliation defined by a frame, and that is an extrinsic description of parts that could be described in perfectly intrinsic terms, if we had the descriptive resources at our disposal, and we knew how they applied. Length is length‑in‑a‑frame, and that is an extrinsic description of something that could be described in intrinsic terms, if we were in a position to characterize the frame in an intrinsic manner. Compare; my niece's favorite color; there need be nothing relational or extrinsic about the property described.  It could be described without reference to myself or to my niece, in perfectly intrinsic terms, if I had the descriptive resources and knew how to apply them. The fact that the space‑time trajectories of observers pick out a local frame, at least approximately, means that an observer is in a position to specify his local frame indexically while lacking the knowledge to describe it in terms appropriate to the relevant physical theory. 

In the days before Einstein, we were accustomed to thinking of time as flowing uniformly past us as we traced our individual paths through a space filled with persisting objects. Whether there was change depended on whether things were different from one moment to the next; there was nothing path‑dependent, or frame-relative about it.  When we started thinking in space‑time terms, we began thinking of our own histories as paths through a static landscape of events, and the old notion of difference over time was replaced with a more basic notion of difference in magnitudes instantiated at points or regions separated by this or that spatio‑temporal interval. To reconstruct talk of change, in this context, we need a way of tracing systems over time, slicing their histories into temporal parts, and ascertaining the intrinsic properties of those parts. Change will be as path-dependent as these ways of slicing, what changes we detect by carrying out a given instrumental procedure may depend on which frame we occupy, and neither of these need be facts we are in a position to describe intrinsically and without using indexicals even when we correctly recognize them.

2.
Change in Non-dynamic Space-times
If change consists in something's having incompatible properties at different times, then what is to count as a time? In the common sense and/or Newtonian context, this question has a ready answer. For in this case one can assume the existence of a fixed or absolute background temporal structure within which any two momentary events either occur simultaneously, or one occurs earlier than the other. Technically, point-events bear one another spatio-temporal relations representable within a fixed four-dimensional affine space, with a privileged foliation by a family of flat, three-dimensional, Euclidean hyperplanes. The family may be labeled by the values of some continuous real-valued time-function, whose value t serves as an affine parameter along any time-like curve--i.e. one that cuts through each hyperplane it meets. There is a privileged temporal orientation, such that point-events occurring on hyperplanes with higher values of t occur later: and a privileged temporal metric, such that the difference in t-values of two point-events corresponds to the elapsed time between them. Tangent vectors to (smooth) curves confined to a hyperplane of constant t are space-like: tangent vectors to other curves where they cut through a hyperplane are time-like. The space-like hypersurfaces are then just the hyperplanes of constant t.  It follows that no two point-events on any space-like hypersurface are connected by a smooth time-like curve: in that sense, every space-like hypersurface is achronal. Each hyperplane is a (global) time-slice –every time-like curve connecting one point-event to its past to another to its future cuts through the hyperplane. A time-slice parameterized by t thus divides all point-events into three disjoint classes: those occurring at t, those occurring earlier than t, and those occurring later than t.

Given this (spatio)-temporal structure, one can say that change consists in some intrinsic magnitude's having different values on different time-slices. The magnitude in question may pertain to some persisting object(s), or it may be a field (e.g. the electric field) in some region of space. In the latter case, it will be necessary to specify what counts as the same spatial region at different times, either (following Newton) by assuming the existence of persisting points of absolute space, or by taking a set of events to occur in the same place just in case they lie on the same one of a (more or less) arbitrarily chosen family of time-like curves that partitions the space-time. This gives us our first example of a frame. It consists of a foliation of a region of space-time by a family of space-like hypersurfaces that results from a one-parameter family of embeddings of a 3-dimensional space into that region, where the parameter labels each embedded hypersurface with its corresponding time, and points of distinct hypersurfaces are located at the same place just in case they are the images of the same point of the embedded space. Successive images of a point of the embedded space trace out a smooth time-like curve representing the history of a point of the space defined by the frame. In this example, the frame is global, since the foliation covers the whole space-time.  If there are persisting points of absolute space, they coincide with the spatial points of a privileged frame. Otherwise, there is a privileged class of inertial frames, in each of which a time-like affine line represents the history of a spatial point. The global hypersurfaces are flat in any frame because each embedding is taken to be an isometry of a Euclidean space.

Let us move now to the context of Minkowski space-time, the spatio-temporal structure used by the special theory of relativity to represent what happens in the world. Minkowski space-time is still a four-dimensional affine space, but this no longer admits a privileged notion of simultaneity. The fundamental structure is the space-time interval between any two points of this space, or between two point-events represented as occurring at them. This may be positive, negative or zero: it is zero if, but not only if, the points are coincident. How one chooses to represent the absolute sign of the interval is unimportant, but whatever the choice there is an important distinction between intervals of opposite signs. I choose to make positive intervals time-like, and negative intervals space-like: the null intervals are light-like. The principles of relativity give this distinction great physical significance. A time-like geodesic is an affine line, distinct points of which are time-like separated: space-like and null geodesics are defined analogously. The image of a curve that represents the kinematic history of a particle is its world-line. The world-lines of massive particles not acted on by any forces are assumed to be time-like geodesics, while the world-lines of any particles with zero mass (such as photons) are null geodesics. The tangent vectors to smooth curves in the manifold are also divided into time-like, space-like and null. A time-like vector, for example, is tangent to a curve where it touches a time-like geodesic. A smooth curve is time-like if and only if its tangent vector is everywhere time-like. The world-line of any massive particle is taken to be time-like, even if forces are acting on it. Another fundamental principle of the theory is that an ideal clock measures the proper time along its (time-like) world-line: this basically corresponds to the total integrated space-time distance along the curve.

What is to count as a time in Minkowski space-time? Since the fundamental structure is spatio-temporal, answering this question will involve abstracting some appropriate temporal structure. As we shall see, there are many different ways in which this may plausibly be done: each corresponds to a choice of frame.

A local temporal structure is already defined by the principle that an ideal clock measures (proper) time long its world-line. Suppose we start with a single maximally extended time-like geodesic, representing the kinematic history of one such ideal clock. Then the structure of Minkowski space-time already provides us with one particularly natural way of arriving at a global temporal structure. For there exists a unique foliation of the manifold by a parallel family of (flat) space-like hyperplanes, each orthogonal to our initial time-like geodesic. Each of these hyperplanes inherits its Euclidean geometry from the basic Minkowski metric, and each member of the family may be parameterized by the proper time of its point of intersection with the initial time-like geodesic. We can take each point-event, no matter where it happens, to occur at the time thus assigned to the hyperplane on which it lies. This will give a linear time-ordering of all point-events in Minkowski space-time. A global distinction between earlier and later follows from the local distinction on the initial time-like geodesic, and a global temporal metric follows from the proper-time metric along that world-line.

What we have arrived at is simply the time of an inertial frame in which our ideal clock is at rest. If we wished, we could choose to understand change as simply something's having incompatible properties at different values of this time. But of course that would be to single out this frame from all other inertial frames as the arbiter of genuine change. Minkowski space-time satisfies the special principle of relativity precisely because it provides no basis for privileging a particular frame in this way. 

One reaction would be to try to restore democracy by requiring that a change is genuine if and only if it occurs in all inertial frames. This might work for point-changes--i.e. changes that consist in the occurrence of point-events. Given a sufficiently robust and frame-independent notion of property, one could say that a point-change at space-time point p occurs just in case there are incompatible properties ,  such that something located at p has  before and  after p in every frame. But many examples of apparent change occur in things that are not so spatio-temporally localized–consider a changing traffic signal, or the changing shape of an inflated balloon. A change in a spatially extended object cannot occur at a time in more than one frame.

Now if the basic issue is not the precise space-time location of change, but rather its existence, then these concerns seem misdirected. Surely if there is change in one frame, then there will be a related change (if not that change) in every frame? And if that's right, then if there is any frame in which no intrinsic magnitude has different values at different times, then there is no change, period. Consider, for example, a rigid rod at rest in an inertial frame. Even though its length will be different in different frames (because of "Lorentz contraction"), in no inertial frame will it have different lengths at different times. Surely that's enough to warrant the conclusion that there is no change in the length of the rod?

On the view of change defended in section 1, both questions in the previous paragraph turn out to have negative answers, as we can begin to see by considering an example of Bell
. Consider the motion of two rockets, initially at rest, side by side, a distance l apart in an inertial frame F.  Suppose that their speeds begin to increase along the direction that separates them, each according to the same program. Does the distance between the two rockets change as their speed increases? The similarity in programs ensures that they remain a distance l apart in frame F. But the distance between them will change in other inertial frames: in an inertial frame Fv whose origin is traveling, in the same direction as the rockets, at speed v with respect to F, the distance between the rockets will increase as long as their speeds increase; while in a frame F-v this distance will initially decrease. If the distance between the rockets were a well-defined magnitude, then the value of this magnitude would change in some frames but not in others. If, as I believe, the only well-defined distance or length magnitudes in Minkowski space-time are frame-dependent magnitudes like length-in-frame-F*, then one cannot even raise the question of whether such a magnitude changes in any frame other than F*. But the example shows that distance-in-F may stay the same even though distance-in-Fv changes.

Bell supposes that the rockets in his example are connected by a light, inelastic thread. He raises the question as to whether this thread will break as the rockets accelerate, and answers it affirmatively–no matter how strong the thread, it must break if the rockets speed up in such a way that their distance apart continues to be l in F. Bell’s intuitive explanation is that this happens because the thread is subjected to a progressively increasing Lorentz-contraction as the speed of the rockets increases, which it can counteract by stretching only up to some critical limit, beyond which it must break.

Suppose instead we describe what happens from the perspective of one of the rockets.  If a passenger in rocket r extends a long, rigid ruler out toward the other rocket so that it just touches it at the start, and tries to keep it in contact as far as possible, what happens as the rockets accelerate? It is now convenient to adopt an accelerated frame Fr in which r remains at rest.  Since r’s world-line is time-like, it will serve as the spatial origin of Fr. At each point, this will intersect a three-dimensional space-like hyperplane orthogonally. Provided that the rockets’ acceleration is small enough, these hyperplanes will not intersect each other in the space-time region with which we are concerned. They may be considered (local) time-slices in Fr, and each may be assigned a time corresponding to the proper time of the point where it intersects r’s world-line. Each hyperplane has Euclidean spatial geometry, with the spatial metric it inherits from the Minkowski space-time metric. Fr is essentially formed by “stitching together” a small patch of every local inertial frame in which r is instantaneously at rest.

It is Fr that provides us (or at least r’s passengers) with the appropriate way of representing the rod sticking out from r toward the other rocket. Specifically, that rod’s length-in-Fr does not change as the rockets speed up. The reason it fails to maintain contact with the other rocket is just that the distance-in-Fr between the rockets is increasing. Notice that this provides a vivid illustration of the use of notions of length, and change of length, relativized not to an inertial frame, but to a frame adapted to an accelerated world-line (such as yours or mine). I could give other examples of the pragmatic importance of non-inertial frames. A particularly revealing example concerns notions of length, time, and change of length appropriate to a frame adapted to a uniformly rotating disk.
 

These examples serve to make the general point that it was arbitrary in abstracting the temporal structure of Minkowski space-time to start from a single maximally extended time-like geodesic, representing the kinematic history of an ideal clock. Equally interesting and applicable abstractions of the temporal structure at least of portions of Minkowski space-time may be based on segments of time-like curves other than geodesics. Many of these yield non-inertial frames with corresponding frame-dependent notions of length. The structure of Minkowski space-time does not single out any of these frame-dependent lengths as more real or intrinsic than any other. It is a pragmatic matter, which turn out to be more useful in describing models of special relativity and applying them to concrete situations.

We may now apply this conclusion to the simple case of an unaccelerated rod–one that moves inertially, without rotation: assume that no external forces act on it, and that it is in equilibrium under the action of any internal forces. Does its length change? While for no inertial frame Fi is there any change in its length-in-Fi, this is not enough to establish that there is no change in its length. For there are countless noninertial frames Fni such that its length-in-Fni does change. Moreover, these include changes just as real as the change in distance between Bell’s rockets that broke their connecting thread. A change in the length-in-Fni of an unaccelerated rod is no (mere) Cambridge change.

A Newtonian space-time with no privileged rest frame already demonstrates that there can be change in one frame while nothing changes in another. Consider a uniformly rotating object in such an empty Newtonian world, like the two spheres joined by a thread that Newton himself considers in his famous Scholium to the Principia. This object changes in any inertial frame, since its parts are accelerated. But if, unlike Newton, we reject any persisting absolute space, then there is no change in a frame rotating with the object.

While the structure of both Newtonian and Minkowski space-times is fixed independently of their material contents, there is a significant difference in the way each is able to represent time and change. Newtonian absolute time provides a fixed, global, background structure against which change may be represented. Minkowski space-time possesses no corresponding global temporal structure
. The basic intrinsic physical magnitude in Minkowski space-time is the space-time metric. By itself, this defines a temporal order and metric only locally, along time-like curves, thus permitting the representation of change only along such a curve. It does not suffice even to capture the idea of a change in the distance between two particles whose world-lines are non-parallel time-like geodesics, let alone the idea of a change in a spatially extended object or a field occupying a region of space.

To make sense of these ideas one has to allow for the possibility of change in frame-dependent magnitudes in Minkowski space-time. We have strong reasons to want to do this even in the case of locally-defined magnitudes that can be associated with time-like world-lines, such as the energy and momentum of a particle entering a bubble chamber, or the magnetic field it experiences there. The alternative attitude, that the only real change in Minkowski space-time is change in frame-independent magnitudes, seems misguided. Any practical application of a theory formulated in Minkowski space-time will be made either in, or with respect to, some frame. The focus of interest will then be what happens to physical magnitudes in that frame, and in particular, how they change with respect to a time appropriate to that frame.

It is important to realize that a frame-dependent magnitude is Lorentz invariant, provided that Lorentz transformations are taken also to transform the frame specifying the magnitude. An automobile has the same rest-length whatever its uniform speed or direction of travel, and no matter what inertial coordinate system is used to represent these. Such a magnitude is frame-dependent since it is readily identified by reference to a specific frame, not because it takes different values in different frames. The reference to a frame is just a convenient but inessential way of picking out exactly what magnitude one is talking about: that magnitude’s having one value rather than another is still an intrinsic (though changeable) property. A frame-dependent magnitude may be observed from any frame, though it is most readily manifested to observers occupying the frame figuring in its identifying description, since such observers have no need independently to observe what that frame is.

 There is real change in Minkowski space-time–including change in frame-dependent as well as frame-independent magnitudes. But all real change in Minkowski space-time is change with respect to the time of some frame.



3.
Change in General Relativity?
By contrast with Newtonian and Minkowski space-times, the space-times of the general theory of relativity are generally described as dynamic. Taken at face value, this description already appears to imply the existence of change in such space-times. It is frequently backed up by such metaphors as Wheeler’s “matter tells space how to curve: space tells matter how to move”, and the pervasive metaphor that, in general relativity, space and time don’t just constitute the stage on which the drama of the world is played out, but enter the drama as actors themselves. It would be surprising if these ideas turned out to be so wide of the mark as to falsely imply that there is change in a general relativistic world–surprising, but nevertheless true, if arguments to be presented in the next section are sound. It will be easier to show that they are not if I first provide a preliminary analysis of change in general relativity that seems to warrant its description as a dynamic theory and to give substance to the accompanying metaphors.

Perhaps I should begin by clearing up a possible confusion by pointing out one sense in which general relativity is not a dynamic theory. Moving matter around in a general relativistic world (as in a binary pulsar) may alter the structure of space, but it does not alter the structure of space-time. It is not merely false but incoherent to suppose that space-time changes. If there is change in a general relativistic world it must be located within a fixed space-time structure, since there is no time external to that structure. General relativity portrays a world that is just as much a “block universe” as that portrayed by special relativity, or indeed Newtonian theory. The only difference is that in a general relativistic world, space-time might have had a different structure if matter had been differently distributed. If there is change in a general relativistic world, it must consist in variation of genuine physical magnitudes with respect to the time of some frame internal to space-time.

General relativity itself postulates no global temporal metric or order structure. There are 4-dimensional differentiable manifolds with a semi-Riemannian metric of Lorentz signature that satisfy its field equations (with or without matter) but have topology other than that of R4; others contain closed or almost closed time-like curves, and so possess no cosmic time-function (a smooth real-valued function everywhere defined on the manifold whose gradient is everywhere time-like); one due to Gödel has standard R4 topology but possesses not a single (global) time-slice (a space-like hypersurface without edges) and has a closed time-like curve connecting every pair of points. We may choose to define the theory in such a way as to exclude all temporally non-orientable manifolds from the class of its models, on the grounds that each has a temporally-orientable manifold as a covering space. But, as we saw already in the case of Minkowski space-time, a global temporal orientation does not by itself provide enough structure to define a class of times with respect to which change may be assessed.

The bewildering variety of space-time structures countenanced by general relativity presents us with a choice. We may seek an analysis of change applicable in every general relativistic space-time, or we may be satisfied by an analysis of change in our world, to the extent that general relativity is true of it. There are also many intermediate options, yielding kinds of change applicable in some models of general relativity but not others. I begin by offering an analysis of change applicable in all models.

Since the manifold M of a model of general relativity has no boundary, each point m of M has an open neighborhood in which there exists a time-like curve through m. Take this as the spatial origin of a normal frame around m
. Such a normal frame specifies a family of space-like hypersurfaces orthogonal to the initial time-like curve, each labeled by the proper time of its point of intersection with that curve: and it says what events on different hypersurfaces occur at the same place. The family may only be defined locally–the spatial geodesics that define its hypersurfaces may end at a singularity, or intersect one another, far enough away from the initial curve. And the geometry of each hypersurface will not, in general, be Euclidean. Still, we do have a well-defined frame in the neighborhood of m, with respect to which we can now define change. 

Suppose, for example, that there is an electromagnetic field, represented by the field tensor Fab. We can use our normal frame to decompose this uniquely in the neighborhood of m into (frame-dependent) electric and magnetic fields: and we can then say that the electric (or magnetic) field changes in that neighborhood, in that frame, if and only if it has different values at the same place on hypersurfaces assigned different times in that frame.

There are many normal frames around m even given a choice of time-like curve through m, each intuitively corresponding to a different rotation about that spatial origin. And there are many frames that are not normal, defined by other ways of foliating an open set containing m by a family of space-like hypersurfaces of constant frame-time, and specifying what is to count as the same point of frame-space by means of a congruence of time-like curves on that set. So the question as to whether the electric field is changing in the neighborhood of m will not receive a univocal answer. But one should not expect a frame-independent answer to a frame-dependent question. Now it may be that in some particular model of general relativity some local frames seem more natural and less gerrymandered than others–consider, for example, what frame it would be most natural to adopt to represent an electric field inside a small rocket hovering at constant (r,θ,φ) coordinates in a Schwarzschild model of general relativity. But this does not affect our two main points here. In any neighborhood of any point one can always define some local frame with respect to which it makes perfectly good sense to say either that a frame-independent magnitude like the curvature scalar R, or a frame-dependent magnitude like the electric field, changes: and the choice of one frame rather than another is dictated not by general relativity itself, but by a combination of aesthetic and pragmatic considerations that reflect both the structure of a particular model of the theory and an actual or potential observer’s situation in a world represented by that model.

Let us test this analysis against an example. Does it explain how general relativity describes complex changes even in a universe empty of matter and energy-carrying fields (i.e. a space-time in which the stress-energy tensor is everywhere zero) “where ripples of gravitational radiation can travel around, interfere, attract each other, and amplify. They can hold themselves together in a gravitational geon. Part of the gravitational radiation can leak out, part of it may collapse and form a black hole”? (Kuchar (1999), p.173)

Terms like ‘travel’, ‘hold together’, ‘leak out’, and ‘collapse’ presuppose the intelligibility, if not the existence, of change. Following our analysis, this implies variation in some (possibly frame-dependent) magnitude with respect to the time of some (corresponding) frame. Suppose the discussion is set in the context of an “empty” space-time model of general relativity that has the asymptotic structure of Minkowski space-time. Then it is natural to adopt a frame that is asymptotically inertial, thus giving a well-defined notion of time throughout the region far away from the gravitational waves. Depending on the details, some ways of extending this frame into the region where the gravitational waves are present may seem more natural than others. Given some such choice of frame, how can we understand talk of change? In this case it is the frame-dependent spatial geometry that is changing, from one frame-time to another: that is how a gravitational wave is represented. There are various ways of characterizing this spatial geometry and its changes, including the intrinsic metric and three-dimensional curvature of successive time-slices, and their rates of change with respect to the frame’s time, as well as the (related) extrinsic curvature of the slices. In the chosen frame we can follow the way fluctuations in the spatial geometry of hypersurfaces vary between different hypersurfaces–these fluctuations constitute change in that frame. Some are appropriately regarded as travel of gravitational waves, others as their interference and amplification, etc. Collapse into a black hole is interesting, since this implies the formation of a space-time singularity. What does it mean to say that such a singularity forms?  This might be understood as saying that, after a certain time in the chosen frame, its time-slices include spatial geodesics that cannot be extended indefinitely, and come to include a region from which no future-directed time-like curve is indefinitely extendible. Those are surely significant changes, frame-dependent as they are.

Some idealized models of general relativity have special symmetries that privilege particular frames. In a model of a stationary space-time, a time-like Killing vector field privileges a frame in which the history of each point of space lies along one of its integral curves. If the model is also static, then it is natural to define simultaneity in such a frame by means of a foliation by a family of hypersurfaces that are orthogonal to these curves. This will, for example, privilege the class of inertial frames in Minkowski space-time, viewed as a vacuum model of general relativity. Such models admit restricted notions of change. One could choose to maintain, for example, that there is genuine change in a stationary space-time unless all physical magnitudes have constant values along the integral curves of a Killing field: or, alternatively, that there is genuine change even in that case unless the space-time is also static. Such a choice would conform to the intuition that there is no genuine change in empty Minkowski space-time, despite the fact that the local spatial geometry will vary with the time of an accelerated frame.

But such choices are not even available in a world like ours that does not possess such special symmetries, except approximately. Moreover, on the view of change defended earlier (in section 1), the main reason why the notion of change matters to creatures like us is that we view the world through the lens of some frame or other. One might say that when it comes to evaluating change in a general relativistic world, all frames are equal—though some frames are more equal than others!

4.
No Change in General Relativity?
Contemporary worries about change in general relativity may be raised by reflecting on the diffeomorphism invariance of various structures within that theory. A diffeomorphism h from a differentiable manifold M onto another M is a smooth (infinitely differentiable) map whose inverse is a smooth map from M onto M: M = M in many cases of interest here. If O is a geometric object field (e.g. a scalar or tensor field) on M, then h: M  M induces a mapping of O onto a similar field h*(O) called the drag along of O whose action at h(m) mimics the action of O at m (e.g. if O is a function f on M, then h*(f)[h(m)]=f[m], while if v is a vector field on M, then h*v(h*(f))[h(m)]=v(f)[m]).  

As a theory, general relativity may be specified by means of a class of mathematical structures of the form <M,g,T>, where M is a 4-dimensional differentiable manifold representing space-time, g is a metric tensor field on M (a symmetric, non-degenerate second-rank tensor with Lorentz signature), and T is also a symmetric, second rank tensor field representing the stress-energy content of a space-time. Structures of this form are models of the theory only if they satisfy Einstein's field equations, with or without a cosmological constant term. Further restrictions may be placed on the topology of M, and T may be required to satisfy additional conditions intended to ensure that the stress-energy content results from physically reasonable matter and energy sources. Whatever the details, the class of models will be diffeomorphism invariant: <M,g,T> is a model if and only if <M,d*g,d*T> is, for an arbitrary diffeomorphism d.

One thing one wants to be able to do with a theory is to use it to predict what will happen. Suppose the model <M,g,T> of general relativity correctly represents everything that happens up to and including a time-slice Σ (which I assume to be a Cauchy surface, so that every time-like curve without endpoint intersects it exactly once), and let d be any diffeomorphism that is the identity on and to the past of Σ, but differs from the identity on the rest of M. Then <M,d*g,d*T> and <M,g,T> are both models of the theory compatible with everything up to and including Σ, but with distinct metric and stress-energy tensors to its future. There is an apparent failure of determinism, since the theory and data on and to the past of Σ do not determine whether the metric and stress-energy will subsequently be represented by d*g and d*T rather than by g and T. 

One way of reacting to this little extension of Einstein's famous "hole" argument
 is to argue that there is no worrisome failure of determinism here, since neither the metric tensor nor the stress-energy tensor is observable. Bergmann (1960) effectively proposed to restrict the class of observables in general relativity to diffeomorphism-invariant magnitudes, where a geometric object field φ on M is diffeomorphically invariant if and only if φ=d*φ for every diffeomorphism d. The thrust of technical work on the initial value problem in general relativity is that when a space-time has a Cauchy surface, data on that surface determines all geometric object fields from then on up to diffeomorphism. This implies that determinism holds for the values of all Bergmannian observables. But it also implies that neither g, nor T are observables, and raises the question as to just what observables there might be in general relativity.

Bergmann's term 'observable' is tendentious. It carries the twofold suggestion that observing the value of an observable is unproblematic, while other magnitudes such as the metric may have values that simply can't be observed. Bergmann himself says he borrowed the term from the standard quantum terminology in the expectation that the quantum observables in a covariant quantum field theory would be of this kind. But he introduces the concept in a more realist vein, saying that he takes an observable to be "a physical quantity that represents more nearly the stuff of which physical reality is made" (op.cit., p511) (i.e. more nearly than an ordinary field variable such as a scalar field constructible from the theory--more of such variables later). I choose to adopt the neutral term ‘diffeomorphically invariant quantity’ (or DIQ) instead.

For our purposes, what is interesting about DIQ’s constructed from geometric object fields is that they don’t change. To be more precise, consider the value of any local field quantity
 (such as the curvature scalar R) defined at manifold point m. For any diffeomorphism h, we have h*R(h[m]) = R(m). If R is a DIQ, then h*R=R. It follows that R(h[m]) = R(m), and since there is a diffeomorphism h that takes m into any other point of M, the value of R must be constant on M, and so R does not change. Or consider any quasi-local quantity constructed by integrating a local field quantity over a subregion U of M (where U may be a time-slice, or an open set with compact closure). Such a quantity is a DIQ if and only if its value is the same on every region diffeomorphically related to U, and so no quasi-local DIQ ever changes.

Now not all DIQ’s are constructed from geometric object fields on M. An important class of DIQ’s in a model with no special symmetries may be defined instead by using the values of several fields constructible from objects present in that model to uniquely ‘label’ each manifold point. Komar (1955) showed that in a manifold with no symmetry group of isometries there are four functionally independent scalar fields constructible as curvature scalar magnitudes from the curvature tensor, the metric and its covariant derivative. The values of these scalar fields φi (i =1,2,3,4) at a manifold point uniquely specify that point. If ψ is a scalar field on M, then the value of ψ at manifold point m where the Komar fields take on values φi(m) is a DIQ. Similarly, by using the φi to define coordinates around m, one can construct similarly “relativized” DIQ’s like the values of the components of g and the Riemann tensor in these coordinates at the manifold point where the Komar fields take on values φi(m). Earman calls such DIQ’s Komar events: they may be considered generalizations of the point-coincidences Einstein (1916) introduced as the invariant basis of all our space-time verifications. As such, one naturally expects that Komar events will be observable, or at least detectable; but this has been doubted. I review and respond to grounds for doubt in the next section. I simply note here that no Komar event itself changes; and that, at least at first sight, the occurrence of distinct Komar events seems quite inadequate itself to constitute change. For a Komar event is not localized at any particular manifold point, and it is quite unclear how it corresponds to a single magnitude’s taking on one value rather than another.

Briefly, the argument is that if the only genuine physical magnitudes in a general relativistic world are DIQ’s–if these are, indeed the only physical magnitudes that represent “the stuff of which 

physical reality is made”–then there is no genuine change in a general relativistic world.

A second, and closely related, argument proceeds within the framework of an alternative formulation of general relativity as a constrained Hamiltonian theory, in the style pioneered by Dirac (1967). One begins with a derivation of the field equations from an action principle applied to the Einstein-Hilbert action, switches from a Lagrangian to a Hamiltonian formulation, and notes the presence of a family of constraints represented by relations satisfied by the canonical variables.
 These constraints are taken to indicate the presence of gauge freedom in the theory. They define a hypersurface of the canonical phase space on which they are all satisfied: and there is a sense in which they generate motions within this hypersurface. Dirac proposed that such motions be considered gauge transformations, so that points of the phase space that lie on a single gauge orbit in the constraint hypersurface are taken to represent the same physical state. Accordingly, an observable is defined to be a function on the phase space that is constant along the gauge orbits. In this formulation, so-called momentum constraints can be seen to correspond to (and in a sense to generate) infinitesimal three-dimensional diffeomorphisms on an initial-value time-slice, while the Hamiltonian constraints correspond to (and generate) infinitesimal one-dimensional diffeomorphisms orthogonal to that time-slice, to a nearby slice to its future.

Dirac's "observables" are different from, but just as tendentious as, Bergmann's. I will refer instead to orbit-constant quantities (or OCQ's). If we were to adopt Dirac's proposal, then motion along an orbit would lead simply to a different representation of exactly the same physical state. It would follow that no quantity that varies along an orbit can represent anything physically real, and so all genuine physical magnitudes are OCQ's.

If we formulate classical electromagnetism on Minkowski space-time as a constrained Hamiltonian theory, then the electric and magnetic fields, but not their potentials, turn out to be OCQ's.
 In this case, motion along a gauge orbit corresponds to a change in the gauge of the magnetic vector potential, with no corresponding change in the electric or magnetic fields. The dynamics of the field correspond to motion from one gauge orbit to another. These are superficially indeterministic, since initial values of the electric field and the vector potential (corresponding to a particular point on the initial gauge orbit) determine the values of the electric and magnetic fields but not the vector potential on subsequent orbits. But the values of all OCQ's do evolve deterministically, and the indeterministic behavior of the vector potential is naturally interpreted as an unimportant feature of this formulation, since the potential is determined up to a gauge transformation, which coincides with the limitations on its observability.

But if we formulate general relativity as a constrained Hamiltonian theory, then each point of the constraint surface specifies a value for the metric tensor on a three-dimensional time-slice of M; and the dynamics that is supposed to correspond to the time-development of this spatial geometry in fact generates motion along an orbit in the constraint surface. So although the spatial geometry differs from one point to another along this orbit, this variation does not imply that there is any change in a genuine physical magnitude, in so far as the spatial metric is not an OCQ. Worse still, the fact that the Hamiltonian constraints generate motion along a gauge orbit implies that no OCQ ever changes. If every genuine physical magnitude in general relativity is an OCQ, then no genuine physical magnitude ever changes in a general relativistic world! 
5.
Observable Change Without Change in “Observables”
In the previous section I presented two related arguments to the effect that, according to general relativity, no genuine physical magnitude ever changes. But exactly how are these arguments related? The first assumed that the only genuine physical magnitudes in a general relativistic world are DIQ’s, while the second took it that only OCQ’s are genuine physical magnitudes. These assumptions look similar, especially if we formulate them both by equivocating on the term ’observable’, but they are actually technically inconsistent. No DIQ is an OCQ. All the DIQ’s we have met so far were defined as objects on the manifold M of a model of general relativity, while OCQ’s are functions on the phase space of the constrained Hamiltonian formulation of that theory. I shall scrutinize both assumptions, and argue that while neither (what I will call) basic DIQ’s nor OCQ’s themselves change; there is observable change in genuine physical magnitudes derived from them.

Bergmann was motivated to restrict the genuine physical magnitudes in general relativity to DIQ's by the perceived need to restore the determinism of the theory in light of the existence of distinct but diffeomorphically equivalent models compatible with all data on and to the past of a Cauchy surface. Such models are distinct in so far as they "paint" different geometric object fields (including the metric field) on the same points of the manifold M. But this appears as a threat to determinism only if one assumes that models that differ in this way represent distinct possible worlds. That will be true only if a point of M represents the same space-time point or (actual or possible) point-event in each of these models.

But an obvious alternative is to assume that distinct but diffeomorphically equivalent models always represent exactly the same possible world, while disagreeing on how to attach "labels" to the space-time points or (actual or possible) point-events of that world by mapping them onto points of M. It is important here to recall that a differentiable manifold like M is an abstract mathematical object, not a physical entity. Space-time, or the collection of (actual or possible) events, is not identical to but represented by any manifold M with the right structure, no matter what objects are chosen to serve as the base points m of M. To say that <M,g,T> is a model of general relativity is merely to say that the space-time relations among actual and possible events and the physical stress-energy distribution are faithfully represented by the mathematical object <M,g,T>. But if that is true, then automatically those same relations and distribution may also be faithfully represented by the mathematical object <M,d*g,d*T>, where d is any diffeomorphism of M onto itself. 

Hence, the threat to determinism is apparent rather than real. Distinct but diffeomorphically related models that agree on what is happening in a region R of space-time that each represents by identical assignments of fields to points of M on and to the past of a Cauchy surface in M also agree on what is happening elsewhere in space-time--they merely represent it differently because they label space-time points or (actual or possible) point-events to the future of R by different points of M.

Though important, this response is by itself unlikely to reassure those who see diffeomorphism invariance as a threat to determinism. For it presupposes that we can say ahead of time, as it were, what space-time point or event each manifold point represents; and do it in such a way as to ensure that distinct but diffeomorphically equivalent models always end up representing the same things happening at the same space-time points. But how can we pick out future space-time points independent of what happens at them--which is just what we are trying to use the theory to predict?

Note that this is not just an epistemological problem. It is a problem about identificatory reference. One cannot now ostend a future space-time point or event in order to make a prediction about what will happen at it. And any reference to such a point that proceeds via description must be parasitic on some property or relation involving that point. Now we see that the problem is not just to secure the possibility of deterministic prediction--the problem is really to understand how any prediction is possible at all. A prediction will be of the form such-and-such will happen at a certain time and place, and so the possibility of prediction requires the ability to specify that time and place.

The problem of deterministic prediction may be attacked on both abstract and concrete levels. Abstractly, what one needs to pick out a future space-time point to which a prediction pertains is a frame in terms of which to give the time and place of its occurrence. For a particular model <M,g,T>, what this amounts to is a foliation F: Σ  Θ  U of the relevant part U–an open set of the manifold M, where Σ is a 3-manifold, Θ is an open interval of R, F is a diffeomorphism, Ft: Σ U is a one parameter family of embeddings of Σ as a space-like hypersurface in M. The inverse mapping F-1: U  Σ  Θ defines functions σF: U  Σ, τF: U  R by F-1(m) = (σF(m), τF(m)) which can be understood to give the locations in F’s space and time (respectively) of the space-time point or point-event p represented by manifold point m. Moreover, τF (m) = t iff mFt(Σ) is a time-function on U.

Adding such a frame to a model <M,g,T> enables one uniquely to pick out points in the region of M over which it is defined by their values of σF,τF. One can formulate a prediction as to what will happen at the future space-time point represented by the point of M at which these functions take on specific values. One can later find out what point that is by noting the values of these functions, and then check the prediction. The same prediction would also result from use of the model <M,d*g,d*T>, since the point m of M with σF(m) = s,  τF(m) = t will be mapped by d into the point d(m) with d*σF(d(m)) = s, d*τF(d(m)) = t. The very same frame is consequently represented on <M,d*g,d*T>  by the foliation Fd: Σ  Θ  U , where Fd = d( F. I postpone until later a discussion of the concrete problem of how a frame may be realized by physical fields, and how we are consequently able to make and check predictions against our observations.

The upshot is that the threat to determinism may be warded off without restricting genuine physical magnitudes to DIQ’s of the kinds we have met so far. There is another class of local space-time magnitudes represented by models of general relativity, whose values are also determined by prior data according to that theory. These values are not determined at particular points of an arbitrary manifold M representing space-time or (actual and possible) point-events, but rather at space-time points or point-events themselves, however these may be represented by points of some manifold M. Each local field quantity Q defined on the manifold M of a model <M,g,T> of general relativity represents a local space-time magnitude, whose value at space-time point p is equal to the value of Q at whatever manifold point m represents p in that model. Scalar curvature R gives rise to one such local space-time magnitude. Even though R(m) is not a DIQ, varying from model <M,g,T> to model <M,d*g,d*T>, the magnitude  R(p), represented by  R(m) in <M,g,T> but by R(d(m)) in  <M,d*g,d*T>, does not so vary. Accordingly, I consider R(p) to be a genuine physical magnitude, and indeed a basic DIQ. More generally, Q is a basic DIQ just in case its value Q(p) at space-time point p equals the value Q(m) of a corresponding local field quantity Q in a model of general relativity at the manifold point m that represents p in that model.  Moreover, we shall see that while a basic DIQ like R(p) is not itself capable of change, it underlies other equally genuine physical magnitudes that do change, even though all such change is frame-relative.

Suppose that Q is a local space-time magnitude and γ is a path in space-time represented by a time-like curve on the range U of a frame F in a model. I define a frame-independent changeable quantity (ICQ) Qγ by giving its values at each point on γ: the value of Qγ at point p of γ equals Q(p). Consequently, Qγ has a value at each time t in F i.e. on each space-like hypersurface represented in the model by the set of points {mU: τF(m)=t}. Any variation of the value of Qγ with t constitutes change relative to F. Note that Qγ is independent of F; and while any event involving a change in Qγ is change relative to a frame, that same event will constitute a change in Qγ relative to every frame whose range includes U.

ICQ’s are not the only genuine physical magnitudes that are capable of change in general relativity. One may define a changeable quantity (CQ), on the space-time region represented in a model by the range U of a frame F, as a physical magnitude with value(s) at frame-time tF determined by the value(s) of local space-time magnitudes on the (local) time-slice defined by tF: a CQ changes if these values vary with tF. While all ICQ’s are CQ’s, there are also frame-dependent changeable quantities (FCQ’s) whose values in a region depend on how it is taken to be foliated by the local time-slices of a frame. Some FCQ’s are local–these are defined on only a single point of each time-slice. An example is the 3-momentum of a particle whose world-line passes through the region. Other FCQ’s take values on many points of each time-slice. Examples are the spatial metric and the electric field on a tF-slice. A change in an FCQ is always a change relative to the frame on which it depends. There are also FCQ’s that take values at a persisting (frame-dependent) spatial location, such as the scalar curvature R(s) or the electric field E(s) at a place s, represented in a model of a general relativistic space-time by the time-like curve σF(m) = s, where m is a point in the range of the frame F in that model. Note that even frame-dependent changeable quantities are DIQ’s, since the transformations induced by a diffeomorphism connecting two equivalent models of general relativity also transform the frame on which their specification depends. This is the analog in general relativity of the Lorentz invariance of frame-dependent magnitudes in special relativity.

Now for the second argument against change in general relativity–that based on the constrained Hamiltonian formulation of that theory. This proceeded on the assumption that genuine physical magnitudes are restricted to OCQ’s, and then showed that no OCQ ever changes. 

Recall that an OCQ is a function on the constraint surface N of the canonical phase space Γ of general relativity.
 The canonical coordinates of the phase space are a pair (q,p), where q is a Riemannian metric on a three-dimensional manifold Σ and p, a symmetric second rank tensor density on Σ, is its conjugate momentum. q is a candidate for the spatial geometry of a hypersurface embedded in a four-dimensional Lorentzian manifold representing space-time, and p is related to the extrinsic curvature K of such a hypersurface when so embedded: more precisely, we have pab  (detq)½(Kab( Kqab). For a point to represent a space-like hypersurface embedded in the manifold M of a model of general relativity, q and p must satisfy four constraint equations at each point of Σ–three (vector) momentum constraints, and one (scalar) Hamiltonian constraint. These constraints are all satisfied simultaneously on the so-called constraint surface N of Γ. General relativity may now be presented as the gauge theory <N,σ,H0>, where σ (a so-called pre-symplectic form) partitions N into sub-manifolds called gauge orbits, and the Hamiltonian H that generates the dynamical trajectories in N is identically zero.
 An OCQ is constant along a gauge orbit, and since the Hamiltonian that supposedly generates the dynamics via Hamilton’s equations generates motion along a gauge orbit, no OCQ ever changes.

The assumption that genuine physical magnitudes are restricted to OCQ’s was supposed to be justified by the idea that “motion” along a gauge orbit is just a gauge symmetry, so every point on a gauge orbit represents exactly the same physical situation. But is this idea correct? There is a prior question: What determines how and what a point in a gauge orbit represents? It is important to realize that it is for us, as users of the constrained Hamiltonian formulation of general relativity, to decide what we will take to be represented by each such point. Alternative decisions are possible in light of the available structures.


To simplify, suppose a particular model <M,g> of general relativity represents an empty, globally hyperbolic, general relativistic world w. That model will contain an infinite number of (global) time-slices, each inheriting its 3D Riemannian metric and extrinsic curvature from the Lorentz metric g on M. Suppose that for a particular point ( (q,p) of X there is a 3-dimensional diffeomorphism f:(S to a time-slice S of M with metric g3ab and extrinsic curvature Kab such that qab=f*g3ab and pab=f*{(detg3)½(Kab( Kg3ab )}. Then we may take ( (q,p) to represent the instant I in w corresponding to S. In general, there will be more than one time-slice S satisfying these conditions, so a further decision will be required as to which of the corresponding instants ( (q,p) should be taken to represent. Similarly, a different point (( (q(,p() on the same gauge orbit may be taken to represent the instant I( corresponding to a distinct time-slice S( in M. In this way, taking <M,g> as stand-in for w, ( (q,p) and (( (q( ,p( ) come to represent different instants I, I(  in w.


Adopting this mode of representation for points in a gauge orbit has two implications. It implies that it is false that every point along a gauge orbit represents exactly the same physical situation. And it implies further that( (q,p) and (( (q( ,p( ) represent different instants I, I(  even if they are connected by a path generated solely by momentum constraints so that there is a 3-dimensional diffeomorphism h on ( with q( = h(q), p( = h(p). But this mode of representation is not yet sufficiently rich in structure to permit one even to raise the question as to whether or not motion along a gauge orbit corresponds to change. That question becomes significant only after the introduction of a frame. A (global) frame on w is represented in <M,g> by a diffeomorphism 

F: (×RM. (Given general covariance, we could have taken <M,d*g> instead of <M,g> as stand-in for w. The same frame on w would then have been represented in <M,d*g> by d(F instead of F.)


If S, S( are distinct, non-intersecting time-slices of M, then there will be more than one frame such that S = Ft1(() ,S( = Ft2((). Each such frame defines a path in the gauge-orbit from 

( (q,p) to (( (q(,p(), where qab=Ft1* g3ab(S) and pab=Ft1*{(detg3(S))½(Kab(S)( K(S)g3ab(S))}, and q(,p( are similarly related by Ft2* to the Riemannian metric and extrinsic curvature of S( .  If S, S(  differ in their induced Riemannian metrics or extrinsic curvatures, then motion along the gauge orbit represents a genuine change in spatial geometry from the instant labeled by t1 to that labeled by t2, relative to the frame that defines such a path. If S, S( have the same induced Riemannian metrics and extrinsic curvatures, then there may be a path in the gauge-orbit corresponding to <M,g>, generated solely by momentum constraints, that links the points ( (q,p) and (( (q(,p() which we take to represent the instants in w corresponding to these time-slices. If so, there will exist a frame represented on <M,g> by a diffeomorphism F such that each time-slice S=Ft(() (t1<t<t2) has the same 3-dimensional Riemannian metric and extrinsic curvature. Motion along this path on the gauge orbit from ( (q,p) to (( (q(,p( ) will therefore represent no change in w relative to that frame. But S, S( will also be time-slices in other frames that include intermediate time-slices, which differ from them in Riemannian metric and/or extrinsic curvature. Such a frame defines a path in the gauge-orbit from ( (q,p) to (((q( ,p( ) that does represent change in w relative to this frame. Not all motion along this path can be generated by momentum constraints–the Hamiltonian constraints must also play a role. 


The preceding three paragraphs drew out some consequences of adopting a particular mode of representation for points on the constraint surface X. These provide limited support for Kuchar’s
 view that the Hamiltonian constraints, but not the momentum constraints, generate real change. But note that the momentum constraints here generated a transformation, not between equivalent representations of the same instantaneous state, but rather among distinct but qualitatively identical instantaneous states that are successive in some frame. One could try instead to develop an alternative mode of representation according to which the momentum constraints, but not Hamiltonian constraints, generate a transformation between equivalent representations of the same instantaneous state. But it is not clear how this could allow for frame-dependent change as well as its absence.


The idea that motion along a gauge orbit is just a gauge symmetry can be salvaged by adopting an alternative mode of representation for points on X that implies that any two points on the same gauge orbit represent the same instantaneous state of affairs.  Let ( (q,p) be any point on the gauge-orbit in X corresponding to a model <M,g> of an empty, globally hyperbolic general relativistic world w. Then there exists a 3-dimensional diffeomorphism f taking ( into a time-slice S with induced 3-D Riemannian metric and extrinsic curvature that match q,p, so that ( (q,p) represents the instant I in w corresponding to S. On X, the momentum constraints are infinitesimal generators of 3-dimensional diffeomorphisms of ( (and hence also S) onto itself, while the Hamiltonian constraints are infinitesimal generators of 3-dimensional diffeomorphisms of S onto a time-slice displaced normal to S in M. Each of these 3-dimensional diffeomorphisms may be regarded as the restriction to S of some 4-dimensional diffeomorphism of M onto itself. 


Consider an arbitrary point (((q(,p() on the same gauge orbit as ( (q,p). If we follow the same mode of representation for (((q(,p(), we will take it to represent an instant I( in w corresponding to a time-slice S(  of M with Riemannian metric and extrinsic curvature matching q(,p( via a 3-dimensional diffeomorphism f( : ( S( . S( can be reached from S by a sequence of diffeomorphisms generated by the momentum and Hamiltonian constraints, with the result that S=d(S( ) for a single diffeomorphism d of M onto itself. By general covariance, <M,d*g> is also a model of general relativity that offers an equivalent representation of w, in which S still represents I even though its Riemannian metric and extrinsic curvature are now induced by d*g instead of g.

We may now adopt an alternative mode of representation for points on the gauge orbit in accordance with which (((q(,p() represents not I( but I in w, by virtue of the 3-dimensional diffeomorphism   d(S( ( f( : ( S that matches q(  to the 3D Riemannian metric induced on S by d*g. Since (((q(,p( ) was an arbitrary point on the same gauge orbit as ( (q,p), it will then follow that any two points on the same gauge orbit represent the same instantaneous state of affairs.  Hence, if we adopt this alternative mode of representation, then all points on a gauge-orbit represent the same physical situation, and motion along a gauge orbit is just a gauge symmetry. But this mode of representation does not help one to understand change in general relativity.
What, then, can an OCQ represent? An OCQ represents a frame-invariant quantity–a magnitude that has the same value in every frame of a model of general relativity. Such magnitudes would be analogous to Lorentz invariant magnitudes in special relativity. No OCQ ever changes. If it did, it would have different values in different frames related to one another by an appropriate reparameterization of time. It follows that (what I earlier called) changeable quantities cannot be represented by OCQ’s; and that goes for ICQ’s as well as FCQ’s. But there is a close connection between OCQ’s and Bergmann’s observables: An OCQ can represent a local or quasi-local field quantity only if that quantity is a DIQ.

An OCQ can represent only those features of a general relativistic space-time that are common to all of its time-slices, since a suitably chosen frame will ascribe whatever feature it represents to any time-slice. Consequently, few, if any, basic DIQ’s can be represented by OCQ’s. Because there are no privileged frames in a generic general relativistic space-time, the condition that an OCQ be frame-invariant is very strong. The intuition that OCQ’s represent global features of a space-time is borne out by results reported in Torre (1993).  He shows that in an empty, spatially compact, general relativistic space-time no OCQ’s correspond to local functionals of the canonical variables (q, p). There are plenty of other OCQ’s even here. Indeed each gauge orbit may be parameterized by the values of an infinite number of them
. But their global character makes it quite unclear how these so-called “observables” could be observed from within the space-time.

Fortunately, as we have seen, there are many genuine physical magnitudes that cannot be represented by OCQ’s–namely, basic DIQ’s and all the changeable physical quantities whose values they determine. These include the Komar events discussed earlier. For a Komar event just is a basic DIQ, under a different description. Consider, for example, the Komar event of the metric-components-gμv-having-such-and-such-values-in-the-coordinate-system-{φμ}-at-the-location-where-the-φμ-take-on-values-so-and-so, where the φμ are Komar fields whose values uniquely pick out point  p of a general relativistic space-time. This is just the basic DIQ gab(p) of the metric’s having the corresponding value at p, under a different description.

While acknowledging that there is no change in basic DIQ’s or OCQ’s, and that these lay claim to constitute the fundamental physical magnitudes of a general relativistic world, I have nevertheless undertaken to defend the possibility of change in other, perhaps less fundamental, but still quite genuine, physical magnitudes. But we have yet to face the issue of how it is possible to observe such change. Given the relations between DIQ’s and OCQ’s, I propose to pose the question only for the former magnitudes: If the only fundamental physical magnitudes in a general relativistic world are unchanging basic DIQ’s, how can we observe change in any genuine physical magnitudes?

I have argued that change in a general relativistic world is a frame-dependent notion, but that once a frame has been specified, it makes perfect sense to assert or deny that some genuine physical magnitude that is a CQ undergoes change in that frame. Genuine physical magnitudes that are capable of undergoing such change include, but are not restricted to, frame-dependent magnitudes. But I gave only an abstract characterization of a frame in terms of a foliation F and the structures it induced on the manifold M of a model of general relativity. There was no claim that these induced structures constitute physical fields on M. But if nothing physical corresponds to a frame, while all change is relative to a frame, then how can we observe or detect change?

This question needs to be answered from two perspectives, which may be called (perhaps misleadingly) internal and external. From the internal perspective, it is the observer himself who defines a frame by his own world-line, or rather world-tube, and his direct awareness of successive events in its neighborhood. An observer is essentially situated in the space-time whose happenings he observes, and that enables him to occupy and use a frame even if he is unable either to observe physical magnitudes sufficient to give an identifying description of it or even to say what those magnitudes could be. All he needs to do is to be able to ostend enough point-events (at least approximately) to (roughly) pin down a frame well enough to be able to recognize, and perhaps observe, change relative to it. Such an observer may indeed supplement his observational powers by instruments. That is just what physicists working on the LIGO gravitational wave detector are currently trying to do in their attempts to detect the subtle changes in the frame-dependent magnitudes that would signal the passage of gravitational waves. But even instrumental revelations inform in the first instance about how things are in the observer’s own frame.

Actual observers and their frames are also physically instantiated, however, and must consequently have an objective physical description. In a general relativistic world, that description is to be given ultimately in the framework of some model of general relativity. There must be some enormously complex specification of the values of all the physical fields that ultimately constitute the observer and the instruments he uses both to define his frame and to detect changes of changeable quantities with respect to it. It is these physical fields that make the observer’s frame concrete, and so itself detectable, both to the observer himself and, in principle, to others. But the observer need not 

know this enormously complex specification of the values of all the physical fields that ultimately constitute him and his instruments in order to observe change relative to the frame they define. 

Moreover, the specification in question could, in principle, be given purely in terms of basic DIQ’s. In that sense, not only the changes in genuine physical magnitudes observed by our observer, but also his observation of these changes, all supervene on the unchanging values of basic DIQ’s. Our observer remains blissfully unaware of this of course.  In a deep sense he knows not what he observes, even when he knows that he is observing change. This makes vivid the fundamental status of basic DIQ’s in general relativity. But it does nothing to undermine the claim that there is observable change in genuine physical magnitudes in a general relativistic world.

It is well to point out that this paper’s defense of change in general relativity does not purport to solve what Kuchar (1999) calls the problem of time in quantum geometrodynamics: And if a solution to that problem requires a reconceptualization of the nature of time in classical general relativity, then the account of change presented here is unlikely to help. An analysis of change that presupposes the existence of frames makes it harder, not easier, to see how to reconcile quantum gravity with the existence of change. But the philosophical problem of change in general relativity and the physical problem of finding a notion of time appropriate for formulating the dynamics of a new physical theory should not be identified, and it is to the former problem to which the present paper has been addressed.

*  Many of the key ideas of this paper were developed in close collaboration with Jenann Ismael, who shares whatever credit is due: I reserve to myself the blame for not making adequate use of her contributions. I thank also Shaughan Lavine, audiences in Oxford and the London School of Economics, and the referees for this journal for their patience and constructive criticisms.





�.	See, for example, Lewis (1986), Mellor (1998), Le Poidevin (1991).


�.	See Mellor (1998), Horwich (1987), Savitt (2001): but contrast Dummett (1978).


�.	Earman (2002) argues that general relativity, appropriately interpreted, entails that genuine physical magnitudes do not change in any way recognized by contemporary philosophical analyses of change. Though I disagree with his conclusion, I am deeply indebted to Earman for provoking the reflections that led to this paper.


I take this as a definition of ‘external’ in terms of ‘intrinsic’, following Lewis (1986), p.62, while not endorsing his characterization of intrinsicality there in terms of a notion of natural properties as those that “carve nature at its joints”.


Compare Langton and Lewis (1998).


6.	To look ahead, I will assume that general relativity specifies a class of mathematical models, each based on a differentiable manifold, and that the real magnitudes are those that remain invariant under transformations corresponding to diffeomorphisms of this manifold.


�.	Bell (1987).


�.	The frame Fr is defined only locally.  It may be specified by a foliation F: Σ  Θ  U of a region U of the manifold that represents the world-lines of the two rockets and the region between them, by a parameterized family of flat, space-like hyperplanes Ft(Σ), where the parameter t (tΘ, for Θ some open interval of R) is given by the proper time along the world-line σr of the rocket r, to which each Ft(Σ) is orthogonal, and the world-line of a point of space is coplanar with σr and equidistant from it in each hyperplane. Friedman (1983, 132-135) calls a natural coordinate system for a frame like Fr a “semi-Euclidean frame”.


�.	The example is interesting because the “natural” spatial geometry of the frame is a non-Euclidean geometry on a family of space-like hypersurfaces that are neither achronal nor orthogonal to time-like geodesics.


�.	Its temporal orientation may be taken to be a fundamental physical property of Minkowski space-time that constitutes such a global temporal structure. But this does not suffice to pick out a family of times between which changes may or may not occur in Minkowski space-time.


Another example may reinforce this conclusion. Consider the electric field due to an unaccelerated charge q in Minkowski space-time. In the charge’s rest frame, this does not change. In any other inertial frame, there is a changing electric field that produces a magnetic field. Electric and magnetic fields are frame-dependent magnitudes: either may change in one frame while remaining constant in another.


Technically, a normal frame may be defined by means of a foliation F: Σ Θ  U of a neighborhood U of m: a diffeomorphism that induces a one-parameter family of embeddings Ft (where tΘ, for Θ some open interval of R) of a three-dimensional Riemannian manifold Σ as a smooth family of 3-dimensional space-like hypersurfaces Ft(Σ) that partition U. The tangent to the initial time-like curve through m is normal to each hypersurface at their point of intersection, and the value of t marks the time in F at which an event on Ft(Σ) occurs. For a fixed point ( of Σ, the map F((,():Θ U defines a time-like curve in U which is required to be smooth, and to intersect each hypersurface Ft(Σ) a constant distance along the space-like geodesic within that surface linking it to the initial time-like curve through m. The set of such time-like curves is required to form a congruence on U. Events in U occur at the same place in F if they both lie on the same time-like curve. For details of normal coordinate systems adapted to such normal frames, see Friedman (1983), pp.181-183; Misner, Thorne and Wheeler (1973), pp.327-30.


�.	See Norton (1987).


By a local field quantity I mean any algebraic combination of the geometric object fields in a model and of their finite covariant derivatives (cf. Earman (2002), p.10).


�.	Each constraint sets a certain function of the canonical variables equal to zero: all such functions are zero together on the constraint surface. Technically, the constraints in question are all first-class, meaning that the Poisson brackets of these functions with one another all equal zero on the constraint surface.


The correspondence can obtain only if the space-time admits the necessary diffeomorphisms. I follow others in taking this to be a presupposition of the applicability of the constrained Hamiltonian formalism of general relativity.


�.	For details, see Belot (1998).


I follow Earman (2002) and Belot and Earman (2001) in simplifying the discussion by restricting attention to empty general relativistic space-times with a global frame whose time-slices are Cauchy surfaces.


For details, see Belot and Earman (2001), Isham (1993).


Kuchar (1993,1999).





I am indebted to a referee for clearing up the confusion on this point displayed in an earlier draft of this paper.
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