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A major problem facing no-collapse interpretations of quantum mechanics in the tradition of Everett (1957) is how to understand the probabilistic axiom of quantum mechanics (the Born rule) in the context of a deterministic theory in which every outcome of a measurement occurs. Deutsch (1999) claims to derive a decision-theoretic analogue of the Born rule from the non-probabilistic part of quantum mechanics and some non-probabilistic axioms of classical decision theory, and hence concludes that no probabilistic axiom is needed. Similar strategies have been tried before (e.g. Everett 1957; DeWitt 1970), but in each case the derivation has been shown to beg the question (e.g. Albert and Loewer 1988; Price 1996, 220–221; Barrett 1999, 163–173). My contention here is that Deutsch’s derivation suffers from the same defect.


Suppose, then, that the quantum mechanical state |(( provides a complete description of any system, and that |(( always evolves according to the deterministic unitary dynamics. Consider an observable 
[image: image1.wmf]X

ˆ

 with non-degenerate eigenstates |xi( and corresponding eigenvalues xi. Suppose that an agent is to receive payoff xi based on the outcome of an 
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-measurement performed on a system in state |((. The analogue of the Born rule that Deutsch aims to derive is the following: The value V ascribed by a rational agent to the above game is given by 
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In other words, the agent behaves exactly as if she were calculating an expectation value over a set of outcomes whose probabilities are given by the Born rule. But there are no probabilities in the theory we are considering; Deutsch claims that (1) follows from the non-probabilistic theory alone, together with a few innocuous axioms of classical decision theory.


The decision-theoretic axioms Deutsch appeals to are additivity, substitutibility and the zero-sum rule. Additivity says that an agent is indifferent between receiving two separate payoffs of x1 and x2 and receiving a single payoff of x1 + x2. Substitutibility says that the value of a composite game is unchanged if any of its sub-games is replaced by a game of equal value. The zero-sum rule says that if a game with payoffs xi has value V, then an identical game with payoffs (xi has value (V. I confine my comments here to Deutsch’s uses of additivity in a couple of essential steps of his proof.


I will refer to two possible ways an agent might assign values to games. The standard rule is expressed in (1) above. The sum rule ignores the amplitudes, and simply takes the sum of the payoffs xi as the value of the game. Deutsch claims to prove that the standard rule is the only way of assigning values to games consistent with the above axioms, which entails that alternative rules like the sum rule must violate the axioms. But this is puzzling, because the sum rule seems entirely consistent with additivity, substitutibility and the zero-sum rule. So let us turn to some of the details of Deutsch’s argument.


Deutsch starts by considering the symmetric superposition |(( = 
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(|x1( + |x2(), and arguing that an agent who is rational in the sense defined by the above axioms must assign V(|(() = 
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(x1 + x2). This agrees with the standard rule, but contradicts the sum rule, which assigns V(|(() = x1 + x2. The crucial step in the argument is the claim that
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for arbitrary amplitudes (i and arbitrary constant k. Deutsch claims that this follows from additivity. The game on the right has payoffs xi + k, and by additivity a rational agent is indifferent between receiving such a payoff and receiving a payoff of xi followed by a payoff of k. But this is precisely the situation described on the left, in which the player plays the same game as on the right but with payoffs xi, and also receives an unconditional payoff of k.


An agent who adopts the sum rule clearly will not accept (2); if there are n eigenstates, then the total value of the game on the right is nk + (ixi, whereas the total value on the left is k + (ixi. But as noted above, the sum rule is perfectly consistent with additivity; since the sum rule simply adds all the payoffs, an adherent of the sum rule will necessarily be indifferent between two payoffs of x1 and x2 and a single payoff of x1 + x2. This suggests that the assumption at work in Deutsch’s argument here is stronger than additivity. That this is in fact the case can best be seen by examining the structure of the games on the left and right of (2)

Let us return to the state |(( = 
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(|x1( + |x2(). In this case, the games on the left and right of (2) can be represented schematically as in figure 1, where the branches are labeled with their corresponding amplitudes. There is nothing in any of the decision-theoretic axioms appealed to by Deutsch that forces an agent to value these two games equally. Additivity constrains an agent to be indifferent between (k followed by x1) and (x1 + k), and between (k followed by x2) and (x2 + k), but additivity says nothing about how the value of a game should be affected by distributing payoff k over two branches. Hence Deutsch’s argument relies on an additional substantive assumption about how agents should value games with different branching structures.

The nature of this additional assumption becomes clearer if we consider another appeal to additivity from later in Deutsch’s argument. Deutsch generalizes from symmetric superpositions like the one just considered to asymmetric superpositions. To simplify the argument, consider the particular asymmetric superposition |(( = 
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|x1( + 
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|x2(. Deutsch argues that a rational agent must assign V(|(() = 
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x1 + 
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x2, agreeing with the standard rule, but contradicting the sum rule, which again assigns V(|(() = x1 + x2.

Deutsch’s argument for the standard rule proceeds as follows.  Suppose the system in state |(( becomes correlated with another system, such that the state of the combined system is 
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(|x1(|y1( + |x2(|y2( + |x2(|y3(), where y1 = 0 and y2 + y3 = 0. Suppose a measurement of 
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 is followed by a measurement of 
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. If the 
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-measurement yields x1, then the 
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-measurement yields y1 = 0 with certainty. If the 
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-measurement yields x2, then the value of the 
[image: image18.wmf]Y

ˆ

-measurement is 
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(|y2( + |y3(), which is also zero, by the result for symmetric states considered above.
 Hence a rational agent is indifferent between a simple game consisting of an 
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-measurement on the original system, and a composite game consisting of an 
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-measurement followed by a 
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-measurement on the combined system. But by additivity, the composite game has the same value as a game in which a single measurement is made of the observable 
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. In the eigenstates of this observable, the state of the combined system is the symmetric superposition 
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(|x1 + y1( + |x2 + y2( + |x2 + y3(). Appealing to an earlier result for symmetric superpositions, Deutsch concludes that the value of this last game is 
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(x1 + y1 + x2 + y2 + x2 + y3), or 
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x1 + 
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x2. But since a rational agent is indifferent between this last game, the composite game, and the original simple 
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-measurement, the value of the original game must also be 
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x1 + 
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x2, as required by the standard rule.

This argument turns on the claim that a rational agent should be indifferent between the three games, which are schematically represented in figure 2. The justification for the indifference claim, at least for games 2 and 3, is additivity. But again note that the sum rule is perfectly consistent with additivity, and yet an adherent of the sum rule would not regard games 2 and 3 as of equal value. Additivity requires an agent to be indifferent between (x2 followed by y2) and (x2 + y2), and between (x2 followed by y3) and (x2 + y3), but says nothing about how the value of a game should be affected by distributing payoff x2 over two branches.

Hence the same distributivity assumption is at work in both parts of Deutsch’s argument. The assumption could be made precise, and one response to my criticism is to suggest that I have simply uncovered an additional game-theoretic axiom that should be made explicit from the outset. However, such a distributivity axiom is not as innocuous as additivity. When x2 is distributed over y2 and y3 in the previous example, the amplitudes for the y2 and y3 branches must be multiplied by the amplitude of the x2 branch if the value of the game is to be unchanged.
 This looks like a requirement that the branch amplitudes (or rather, their squares) behave like probabilities. Indeed, at least one decision theory textbook claims that distributivity is grounded in the requirement that decisions conform to the probability calculus (Resnik 1987, 92). It is possible, of course, that distributivity can be derived in some other way, from clearly non-probabilistic premises. But until this is achieved, the attempt to derive a decision-theoretic analogue of the Born rule without making any probabilistic assumptions fails.
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� Barnum et al. (2000) also claim that Deutsch’s argument begs the question, but they implicate a different aspect of Deutsch’s proof. Wallace (2003) defends Deutsch against this accusation.


� In his reconstruction of Deutsch’s proof, Wallace (2003, 425) attempts to motivate this additional assumption by claiming that the two processes represented in figure 1 are physically equivalent. But since the branching structures differ, and the Everettian takes all branches to be physically real, they are not physically equivalent in any ordinary sense.


� Although I criticized this result above, and showed that it does not hold in general for the sum rule, it happens to hold for the particular values of y2 and y3 in this example.


� At this stage in his reconstruction of Deutsch’s proof, Wallace (2003, 429) appeals to what he calls measurement equivalence, which is in turn based on the claim that there is no physical difference between games like 2 and 3 (2003, 422–3). But again, since the branching structures differ, there is certainly a prima facie physical difference here.


� The same is true of the distribution of k over x1 and x2 considered earlier; the multiplication here is disguised by the fact that the amplitude of the k branch is 1.
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