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Abstract

There is a recurring line of argument in the literature to the effect that Bohm’s theory fails to solve the measurement problem. I show that this argument fails in all its variants. Hence Bohm’s theory, whatever its drawbacks, at least succeeds in solving the measurement problem. I briefly discuss a similar argument that has been raised against the GRW theory

1. Introduction

The orthodox account of the import of the measurement problem in quantum mechanics goes something like this: The measurement problem shows that the standard theory of quantum mechanics is inadequate. Several strategies have been proposed to solve the measurement problem, and these yield various alternative theories of quantum mechanics, including hidden variable theories like Bohm’s theory, spontaneous collapse theories like the GRW theory, and many-worlds theories like Everett’s theory. These theories embody very different pictures of the world, so at most one of them can be true. The job of philosophy of physics, then is to assess the virtues and vices of the various solutions to the measurement problem, to determine which of them is the best solution (Albert 1992, ix).


Against this orthodoxy, however, there is also a recurring heresy, according to which there has only ever been one adequate line of response to the measurement problem, and that is the many-worlds strategy. The other strategies—including the hidden variable strategy and the spontaneous collapse strategy—either fail to solve the measurement problem, or reduce to the many-worlds strategy, depending on how you look at them. According to this account, there is no work to be done in comparing the various solutions to the measurement problem, because there is only one solution (Deutsch 1996, 225–226).


My goal in this paper is to defend orthodoxy against this heresy. Hidden variable theories and spontaneous collapse theories, I shall argue, do constitute genuine solutions to the measurement problem, and hence the many-worlds approach is not the only option. Most of the literature is directed against Bohmian theories, and so I focus on these arguments. But analogous arguments have been raised against the GRW theory, and I address these briefly.

2. Three Theories

This paper compares the three most popular ways of addressing the measurement problem, so let me begin by outlining each of them briefly. The material is familiar, but it will be useful to introduce a uniform terminology for describing the three theories, and to make explicit various assumptions I make for the sake of argument. For example, a realist attitude towards quantum mechanics is a presupposition of this paper. That is, the quantum state |(( is to be regarded as a description of the objective state of the world, in terms of the distribution of wavefunction-stuff over configuration space. The wavefunction itself can be regarded as something like an objective field. This position is not without its problems—most notably because the wavefunction for an n-particle system occupies a 3n-dimensional space—but these problems will be set aside here.
 I also presuppose that the state can be written down as a sum of discrete terms, where each term represents a more-or-less distinct branch of the wavefunction. This raises tricky issues concerning decoherence and the existence of a preferred basis, which again I set aside.


The measurement problem, recall, arises because quantum mechanics allows superpositions of arbitrary states. So for example, for a system containing a cat, if |alive(c is a state of the system in which the cat is alive and |dead(c is a state of the system in which the cat is dead, then the superposition state 2–1/2(|alive(c + |dead(c) is also an allowed state of the system. It seems relatively straightforward to prepare a cat in such a state, for example using the apparatus of Schrödinger’s famous thought-experiment (Schrödinger 1935). But we never encounter a cat in a superposition state; cats, in our experience, are always either determinately alive or determinately dead. Von Neumann sought to explain our experience by proposing that the superposition collapses on measurement to one or the other determinate state (von Neumann 1932, 186). However, this strategy introduces the term “measurement” into the dynamical laws of fundamental physics, and this is widely regarded as unacceptable, both because “measurement” is a vague term, and because measurement interactions are physical interactions like any other, and hence cannot follow new dynamical laws (Bell 1987, 117–8).


In order to solve the measurement problem, then, we need an account of the determinacy of our experience which does not refer to “measurement” as an unanalyzed primitive. There are several major approaches to this problem. The spontaneous collapse approach is exemplified by the GRW theory (Ghirardi, Rimini and Weber 1986). According to the GRW theory, each fundamental particle has a small probability per unit time of undergoing a collapse process in which the wavefunction is multiplied by a narrow Gaussian in the coordinates of that particle. The Gaussian is centered on a random point whose probability distribution is a function of the wavefunction amplitude.
 This process has little effect on the evolution of systems of a few particles, because the probability of a collapse for such systems is small. But for a macroscopic system like a cat, the probability of a collapse becomes overwhelmingly large, even over very small timescales. This has the effect that a symmetric superposition state like 2–1/2(|alive(c + |dead(c) rapidly evolves to a highly asymmetric state a|alive(c + b|dead(c, where either |a|2 >> |b|2 or |b|2 >> |a|2. That is, one branch of the wavefunction becomes very large, and the other becomes very small; it is the large branch that accounts for our determinate experience.

The hidden variable approach to the measurement problem is exemplified by Bohm’s theory (Bohm 1952). Bohm’s theory contains no collapse process; instead, it denies that the quantum state constitutes a complete description of a system. That is, in addition to the wavefunction distribution over configuration space, one must also specify a point in configuration space, which can be regarded as encoding the positions of a set of particles. In other words, the ontology of Bohm’s theory includes both a wavefunction and a set of particles. The particles move according to a new dynamical law, such that one branch of the wavefunction is always associated with all the particles. So for a superposition like 2–1/2(|alive(c + |dead(c), one branch will be occupied by particles and the other branch will be empty; it is the configuration of particles that accounts for our determinate experience.


The many-worlds approach to the measurement problem was founded by Everett (1957). This approach postulates neither a collapse process nor additional ontology; hence the state 2(1/2(|alive(c + |dead(c) is stable and constitutes a complete description of the system. The adherents of this approach point out that the two branches of the wavefunction evolve almost completely independently of each other, and hence postulate that they can be regarded as parallel streams of reality, which they call worlds. Furthermore, they note that if a person were to observe the cat, the person’s state would become entangled in the superposition, resulting in a final state 2(1/2(|alive(c|sees-alive(p + |dead(c|sees-dead(p), where |sees-alive(p and |sees-dead(p are states of the person in which she sees a live cat and a dead cat respectively. In the idiom just introduced, we can say that in one world the person sees a dead cat, and in the other she sees a live cat. In other words, the person has now split into two copies, one in each world. Given that branches can be identified as worlds, and that a person’s experiences can be specified relative to a world, the many-worlds theory explains why we always experience cats as either determinately alive or determinately dead.

There is no consensus concerning which of these theories (if any) constitutes an acceptable solution to the measurement problem, since each faces considerable difficulties that may eliminate it as a tenable physical theory. Still, it is usually conceded that each of them is a solution to the measurement problem, in the sense that it provides an account of the determinacy of our experience, even if this account may ultimately prove untenable. However, this concession has been challenged. In the following section, I present a recurring argument that Bohm’s theory in fact fails to solve the measurement problem, together with a related line of argument aimed at the GRW theory.

3. The Basic Argument

The form of the argument against Bohm’s theory is straightforward. Bohm’s theory does not involve any collapse of the wavefunction, so even after the cat is observed, the state of the cat contains an “alive” term and a “dead” term. But the many-worlds theory, it is claimed, shows that these two terms constitute parallel branches of reality, containing a live cat and a dead cat respectively. Hence even if the “alive” branch is occupied by the particles and the dead branch is empty, there is still a dead cat, and Bohm’s theory fails to ensure that our observation of the cat has a unique outcome. More generally:  

(1) Empty branches are worlds, in the sense of the many-worlds theory.

(2) So empty branches contain measurement results.

(3) So Bohm’s theory cannot ensure that measurements have unique outcomes.

(4) So Bohm’s theory fails to solve the measurement problem.

If this argument is correct, then the particles in Bohm’s theory are entirely redundant, since branches contain measurement results whether they are occupied or empty. The only sense in which Bohm’s (“pilot-wave”) theory solves the measurement problem is that it reduces to the many-worlds (“parallel-universes”) theory; hence Deutsch concludes that “pilot-wave theories are parallel-universes theories in a state of chronic denial” (1996, 225). The key premise is clearly the first one, and there are several different arguments in the literature that attempt to establish that empty branches are worlds. I address these arguments in the following two sections.

A similar argument has been leveled against the GRW theory. Even though the GRW theory does involve wavefunction collapse, both terms in the cat’s state remain after the cat is observed, although one is much smaller than the other. Still, the many-worlds theory, it is claimed, shows that the two terms constitute parallel branches of reality whatever their respective amplitudes. Hence the above argument can be adapted to attack the GRW theory by substituting “low-amplitude branches” for “empty branches”. Again, if the argument is correct, then the GRW collapse mechanism is redundant, since branches contain measurement outcomes whatever their amplitudes. The only sense in which the GRW theory solves the measurement problem, on this view, is that it reduces to a form of the many-worlds theory; there is “a Many-Worlds ontology at the heart of theories like … GRW” (Cordero 1999, S67). Again, the key premise is the first one—that low-amplitude branches are worlds in the sense of the many-worlds theory. I briefly examine an argument for this premise in section 6.

An obvious strategy for defeating the above argument in the Bohmian case is to claim that wavefunction-stuff is just not the kind of stuff from which objects like cats could be made, even in principle. One might even claim that the wavefunction is not any kind of “stuff” at all, but is merely a mathematical device for calculating the motions of the Bohmian particles. If either of these claims could be substantiated, then one would have a principled reason to deny that empty branches could contain cats, either dead or alive, or any other measurement outcomes for that matter. 

Against this strategy, however, Deutsch writes of the empty branches (or “unoccupied grooves”) that “it is no good saying that they are merely a theoretical construct and do not exist physically, for they continually jostle both each other and the ‘occupied’ groove, affecting its trajectory” (1996, 225). Since empty branches interact with each other and with the occupied branch, and empty branches are nothing but aspects of the wavefunction, the wavefunction must be real a physical entity and not just a mathematical construct. Brown and Wallace add that it is impossible to rule out a priori the possibility that ordinary physical objects could be made out of such an entity, even if it is fundamentally field-like (2005, 530). Furthermore, it is worth noting that such a strategy is not fully general, since it is not applicable to the GRW version of the argument.
 For present purposes, then, I do not question the underlying assumption that the wavefunction is a real physical entity, from which objects like cats might, in principle, be made.

4. Branches and Worlds

Even granting the reality of the wavefunction, though, it does not immediately follow that the empty branches in Bohm’s theory are worlds in the sense of the many-worlds theory. That is, the first premise of the basic argument still needs justification. Several such justifications have been presented in the literature, but my contention here is that none of them succeeds. I examine three of these arguments in this section, and one in the next.

Deutsch argues that empty branches “obey the same laws of physics as the ‘occupied groove’ that is supposed to be ‘the’ universe. But that is just another way of saying that they are universes too” (1996, 225). There is certainly a sense in which the laws of physics are the same in empty and occupied branches; the wavefunction dynamics do not depend on the presence or absence of particles, and the particle dynamics do not fail in empty branches, although there is nothing for them to apply to. However, this is beside the point. Consider the state 2(1/2(|alive(c + |dead(c), where one branch is occupied and the other is empty. In order for the empty branch to contain a dead cat, it must not only obey the same physical laws as the occupied branch, but it must also have the relevant physical state—the state that the occupied branch would have if it contained a dead cat. But the physical state of the empty branch is not the same as the state the occupied branch would have if it contained a dead cat. The wavefunction states of the two branches are the same, but according to Bohm’s theory, the physical state of a system consists of its wavefunction state and its particle state. An occupied branch and an empty branch plainly do not have the same particle state, and hence Deutsch fails to establish that empty branches contain measurement outcomes.

Zeh’s argument is similar: “Bohm’s theory contains the same “many worlds” of dynamically separate branches as the Everett interpretation (now regarded as empty wave components), since it is based on precisely the same … global wave function” (1999, 200). It is true that the wavefunction structure is the same in Bohm’s theory as in the many-worlds theory, but it does not follow that the empty branches in Bohm’s theory are worlds. In the context of Bohm’s theory, objects are (prima facie, at least) made out of Bohmian particles, so the fact that two branches have the same wavefunction structure does not establish that they contain the same objects. But if an empty branch does not contain the same objects as an occupied branch, it is hard to see in what sense it is the same world. Since Zeh provides no reason to think that the wavefunction alone determines the contents of a branch, his argument begs the question against Bohm’s theory.

Wallace attempts to justify the claim that empty branches contain the same objects as occupied branches by appealing to a condition he calls Dennett’s criterion: “A macro-object is a pattern, and the existence of a pattern as a real thing depends on the usefulness … of theories which admit that pattern in their ontology” (2003, 93). Wallace uses this criterion to argue that in the superposition state 2–1/2(|alive(c + |dead(c), each branch contains a real cat: “In each of the branches there is a ‘cat’ pattern, whose salience as a real thing is secured by its crucial explanatory and predictive role” (2003, 97). This is the case even if one branch is occupied by particles and the other is empty, since “cats and all other macro-objects can be identified in the structure of the wave-function just as in the structure of the corpuscles”, and “the patterns which define them are present even in those parts of the wave-function which are very remote from the corpuscles” (2003, 99). That is, a branch instantiates the same pattern whether it is occupied or not; the only difference is that in the occupied branch the pattern is instantiated in the evolution of both the wavefunction and the particles, whereas in the empty branch it is instantiated in the evolution of the wavefunction alone. So since objects in general are patterns, and the pattern is independent of the presence of particles, Wallace concludes that branches contain the same objects whether they occupied or not. Hence empty branches count as worlds in the many-worlds sense.

Wallace’s argument is clearly an improvement on the previous two, since it gives a reason to think that the presence of particles is irrelevant to the contents of a branch. The appeal to patterns (plausibly, at least) provides a level of description that is neutral between occupied and empty branches. Of course, the relevant sense of “pattern” has to be carefully defined—there are many ways in which the particles and the wavefunction instantiate different patterns—but there is no reason to think this cannot be done. Assuming, then, that Dennett’s criterion is sufficient to establish that branches are worlds, the remaining question is whether this means that Bohm’s theory fails to solve the measurement problem.

I think that it does not, because there is another possibility that must be taken seriously, namely that to entertain Bohm’s theory is to entertain the falsity of Dennett’s criterion. The many-worlds theory is consistent with Dennett’s criterion, in that a pattern in any kind of micro-physical stuff could in principle constitute a macro-object—although in fact there is only wavefunction-stuff. Bohm’s theory violates Dennett’s criterion in that it presupposes that macro-objects are tied to a particular kind of micro-physical stuff; a pattern in Bohmian particles can constitute an object, but the analogous pattern  in wavefunction-stuff cannot.
 But then given that the Bohmian solution to the measurement problem presupposes the falsity of Dennett’s criterion, Dennett’s criterion cannot be taken for granted in arguing that Bohm’s theory fails to solve the measurement problem.

 Note that I am not arguing that Dennett’s criterion is false. Dennett’s criterion is part of a well-entrenched functionalist tradition in philosophy, and is arguably as securely established as any philosophical position. Rather, my point is that every proposed solution to the measurement problem succeeds at solving the problem only if it is allowed to violate some well-entrenched position or apparently obvious truth. The many-worlds theory is no exception in this regard. If it is to solve the measurement problem, it must explain how observers obtain determinate results to their measurements, distributed according to the usual quantum mechanical statistics. In order to do this, it must deny some well-entrenched assumptions concerning persons and probabilities, for example, that a person at a time has at most one future successor, or that probability requires uncertainty.
 Indeed, Wallace himself argues that the many-worlds theory requires us to give up the apparently obvious a priori truth that uncertainty presupposes some fact about which we are uncertain (Wallace 2005). If we refuse to give up any of these assumptions, then the many-worlds theory fails to solve the measurement problem.

Suppose the tables were turned; a Bohmian who took for granted all our intuitive views about probability and identity argued and argued on that basis that the many-worlds theory fails to solve the measurement problem would rightly be accused of begging the question against the many-worlds theory. This is because the many-worlds solution is predicated on the rejection of some or other of our intuitive views. But then by the same token, the fact that Bohm’s theory fails as a solution to the measurement problem given Dennett’s criterion should not be held against it, since Bohm’s theory is predicated on the rejection of Dennett’s criterion. Hence the many-worlds theory is in exactly the same boat as Bohm’s theory; each theory solves the measurement problem only at the expense of at least one well-entrenched assumption. But a problematic solution to the measurement problem is still a solution, and much of the recent debate in the philosophy of physics concerns whether these problematic theories can be accommodated within philosophy and physics. Wallace clearly recognizes this in the case of the many-worlds theory, since he acknowledges the philosophical problems generated by the theory, and much of his work involves various attempts to address them (e.g. Wallace 2002; 2003; 2005). But then surely the same status should be accorded to Bohm’s theory; it is problematic, to be sure, but it is as much a solution to the measurement problem as the many-worlds theory.

Of course, the problems facing the two theories are very different. Bohm’s theory requires us to hold, contra Dennett’s criterion, that macro-objects are essentially tied to a particular micro-physical structure; they are patterns in Bohmian particles, and not in wavefunction-stuff. The many-worlds theory, depending on how it is formulated, requires us to adopt various heterodox views concerning personal identity and probability. Perhaps one kind of problem is more serious than the other, and perhaps their respective problems render one or both theories untenable; this is a matter of ongoing philosophical debate. Nevertheless, they both solve the measurement problem, in the sense that given their problematic assumptions, each provides an explanation of the determinacy of measurement outcomes.

5. Theory and Interpretation

Deutsch, Zeh and Wallace each offer a fairly direct argument that the empty branches of Bohm’s theory are worlds in the sense of the many-worlds theory. If the foregoing is correct, though, none of these arguments succeed. Brown and Wallace (2005) offer a more indirect argument for the same conclusion, to which I now turn.

The argument takes aim at what Brown and Wallace call “Bohm’s Result Assumption”, which states that the branch containing the particles determines the outcome of a measurement (2005, 523).
 They ask us to consider a measurement with only one possible outcome—one for which the wavefunction has a single branch. For example, suppose that the cat’s state at the end of an experiment is given by the single term |alive(c. They then note that nobody doubts that the existence of this state is sufficient to account for the result of the experiment. But in that case, they claim, Bohm’s Result Assumption is in trouble, since “in the general case, each of the non-overlapping packets in the final joint-system configuration space wavefunction has the same credentials for representing a definite measurement outcome as the single packet does in the predictable case” (2005, 524). In other words, since each branch of the wavefunction, were it to be the only branch, would determine a definite measurement result, and since adding branches cannot take this capacity away, then all the branches in a superposition determine definite measurement outcomes, whether or not they contain particles. But then each branch is a world; the particles in Bohm’s theory play no role in solving the measurement problem, and the only sense in which Bohm’s theory solves the measurement problem is that it reduces to the many-worlds theory.


But consider an analogy here. In the early days of subatomic physics, J. J. Thomson postulated that atoms were like little plum puddings—negatively charged electrons stuck in an undifferentiated positively-charged mass. This model could explain various phenomena, such as the operation of his cathode ray tube, and hence Thomson assumed that the operation of his cathode ray tube was partially determined by the behavior of plum pudding atoms. But Thomson’s model could not account for the results of Rutherford’s scattering experiments; instead, Rutherford postulated a planetary model, with the electrons orbiting a small positively charged nucleus. This new model was also taken to explain the phenomena that could be explained by the earlier plum-pudding model. So while the plum-pudding model provided a perfectly adequate explanation for the operation of the cathode ray tube, the existence of scattering phenomena showed that it was not, in fact, the correct explanation. Rather, the operation of the cathode ray tube was now taken to be partially determined by the behavior of planetary atoms.


Perhaps this is not the best analogy, but the point should be clear enough. If one confines one’s attention to a restricted class of phenomena—to single-branch wavefunctions—then the wavefunction alone provides a perfectly adequate explanation of the outcomes of measurements. This is just to say that measurement in quantum mechanics does not become problematic until one considers superpositions of macroscopically distinct states. But given the phenomenon of superposition, the explanation of measurement outcomes requires additional theoretical resources, and these resources are provided in different ways by the various proposed solutions to the measurement problem. Bohm’s theory, for example, postulates that the outcomes of measurements are determined by the positions of the particles, not by the wavefunction. If one accepts Bohm’s theory, one thereby accepts that the outcome is determined by the positions of the particles even in the case of single-branch wavefunctions. While the wavefunction alone is perfectly capable of explaining the outcome in the single-branch case, the phenomenon of superposition shows that it is not, in fact, the correct explanation.


So the fact that the wavefunction can determine measurement outcomes for single-term states doesn’t entail that it does determine them. Of course, it might turn out that the many-worlds theory is the best solution to the measurement problem, in which case the wavefunction alone is retained as a complete explanation of measurement outcomes, both for single-term states and for superpositions. But this just shows that the correct explanation for measurement outcomes depends on which theory of quantum mechanics turns out to be true. If Bohm’s theory proves inadequate for some reason, and if the many-worlds theory turns out to be the best account of quantum mechanical phenomena, then at that point we must accept an account of measurement outcomes in terms of the wavefunction alone, and hence reject Bohm’s Result Assumption. But nothing in the argument so far shows that Bohm’s theory is inadequate in any way, or that it fails to solve the measurement problem.


However, the attack on Bohm’s Result Assumption is just the preamble to what Brown and Wallace identify as their “main argument” (2005, 525). They point out that until the 1980s, the followers of Everett constructed their many-worlds theories by adding mathematical structure to the theory; just as Bohmians supplemented the wavefunction with particles, so Everettians supplemented it with worlds. But since the Bohmian particles can be interpreted as picking out a world, this form of many-worlds theory looks ontologically excessive; why add many worlds when we can make do with one? Recently, however, Everettians have begun to argue that worlds are “emergent from the bare wavefunction”, via the phenomenon of decoherence, and hence do not have to be added to it (2005, 526). Brown and Wallace draw two conclusions from this. First, the new perspective makes the many-worlds theory look more parsimonious than Bohm’s theory: “The Everettian ontology is now robustly monistic—the wave-function constitutes the whole of reality—and it is the Bohm theory which is ontologically excessive” (2005, 526). Second, the new perspective makes the Bohmian particles look redundant: They are “in danger of being relegated to the role of a mere epiphenomenal “pointer”, irrelevantly picking out one of the many branches defined by decoherence, while the real story—dynamically and ontologically—is being told by the unfolding evolution of those branches” (2005, 527).


The issue of the relative parsimony of Bohm’s theory and the many-worlds theory can be set aside for present purposes; while the question of which theory solves the measurement problem using fewer kinds of things may be relevant to which theory is the better solution to the measurement problem, it is not relevant to whether either theory solves the measurement problem at all. However, the question of whether the worlds of the many-worlds theory are emergent from the wavefunction or must be added to it is relevant to whether the Bohm’s theory provides a solution to the measurement problem that is distinct from the many-worlds solution. Brown and Wallace’s argument is that since the worlds of the many-worlds theory are emergent from the wavefunction, and Bohm’s theory has the same wavefunction evolution as the many-worlds theory, then the worlds of the many-worlds theory are equally present in Bohm’s theory. But then it looks like nothing is achieved by the addition of the Bohmian particles; the worlds already provide a solution to the measurement problem, and Bohm’s theory simply collapses to the many-worlds theory.

However, it is important to distinguish worlds from branches in this context. What decoherence achieves is the resolution of the wavefunction into relatively autonomous branches, but that doesn’t by itself resolve the question of whether those branches should be regarded as worlds. In particular, it doesn’t resolve the question of whether empty wavefunction branches contain measurement results. Brown and Wallace’s argument that empty wavefunction branches contain measurement results is precisely their attack on Bohm’s Result Assumption; indeed, they note that this argument is “repeatedly exploited” in the rest of their paper (2005, 525). But as we have seen, this argument fails to achieve its conclusion, since what determines whether a branch contains a measurement outcome varies between Bohm’s theory and the many-worlds theory. So while an appeal to decoherence may underwrite the (uncontroversial) claim that the branching structure of the wavefunction is equally present in the many-worlds theory and in Bohm’s theory, it cannot show that the worlds of the many-worlds theory are present in Bohm’s theory.

Brown and Wallace’s argument brings to the fore most explicitly what I suspect is the motivating assumption behind most, if not all, of the arguments considered here. That assumption is the often-repeated but rather puzzling claim by supporters of the many-worlds theory that quantum mechanics yields its own interpretation (DeWitt 1970). If this means that it is evident from the mathematical structure of the theory itself how that mathematical structure is related to the objects of experience, then the claim is certainly false. Everett’s insight that each term in a superposition can be interpreted as a separate state of affairs is not something that the formalism forces on us. For example, one could insist that the proper unit of interpretation is not the term, but the entire quantum state—that is, that a system only has a determinate value for a given property if the entire state is an eigenstate of the corresponding operator. If one combines this interpretation with unmodified wave mechanics—no collapses and no hidden variables—one obtains Albert’s bare theory (Albert 1992, 116).

If there is a sense in which Everett’s interpretation is forced on us, it is that if one eschews all additions and modifications to wave mechanics, then the interpretation of wavefunction terms as separate states of affairs is the only interpretation we know of that is even arguably an adequate theory.
 The bare theory, for example, clearly fails in this regard (Albert 1992, 124). On the other hand, if one is prepared to countenance Bohmian hidden variables, then other interpretations of the mathematical structures of the resulting theories become available. The fact that the interpretation of branches as worlds is forced on us in the context of unmodified wave mechanics does not force us to adopt this interpretation in the Bohmian case. Of course, one could choose to interpret branches as worlds in the Bohmian context, in which case Bohm’s theory essentially reduces to the many-worlds theory, as Brown and Wallace contend. But if one chooses instead to combine the Bohmian formalism with an interpretation according to which empty branches are not worlds, then the result is a theory which is a genuine competitor to the many-worlds theory of quantum mechanics.

6. Size Matters

In closing, let me indicate briefly how the strategies developed above can be used to defend the GRW theory against the charge that it fails to solve the measurement problem. The basic argument in the GRW case, recall, depends on the premise that low-amplitude branches are worlds in the sense of the many-worlds theory. Cordero argues in favor of this premise on the grounds that the internal structure of the wave terms is “invariant to the collapse process” (1999, S65). Consider, for example, a cat in the superposition state 2–1/2(|alive(c + |dead(c). On observation, the GRW collapse process ensures that one term in this superposition becomes much smaller than the other. But nevertheless, except for its amplitude, the small term evolves exactly as it would if it were the large term. Cordero infers from this that small wave terms are “the loci of much physical activity” (1999, S65), and that “the continuing dynamical evolution of the two initial branches must, therefore, be taken seriously by supporters of the theory’s ontology” (1999, S66). In other words, both terms in the superposition contain cats, irrespective of their relative amplitudes, and so the GRW collapse mechanism fails to ensure that the cat is determinately alive or determinately dead.


If the argument here is that low-amplitude branches must be worlds because they obey the same physical laws as high-amplitude branches, then the response to Deutsch (section 4) applies here too. In order for a low-amplitude branch to contain a dead cat, for example, it must not only obey the same physical laws as the high-amplitude branch, but it must also have the relevant physical state—the state that the high-amplitude branch would have if it contained a dead cat. But the physical state of the low-amplitude branches is not the same as the state the high-amplitude branch would have if it contained a dead cat, precisely because it has low amplitude.

Perhaps, though, the argument contains an implicit appeal to something like Dennett’s criterion—i.e. that the low-amplitude branch contains a cat-like pattern, and this is sufficient for it to contain a cat. In that case, the response to Wallace (section 4) applies. The GRW theory, like Bohm’s theory, requires rejecting Dennett’s criterion, since macro-objects are essentially tied to a particular kind of micro-physical structure, namely high-amplitude structure. Furthermore, the rejection of Dennett’s criterion looks even more problematic in the GRW case, since the distinction between high-amplitude structure and low-amplitude structure is one of degree rather than kind. But since the many-worlds theory also violates apparently obvious principles, the violation of Dennett’s criterion is not in itself a reason to exclude the GRW theory from the set of solutions to the measurement problem.


Cordero also appeals to decoherence to support his argument. He notes that decoherence entails that “the physical history followed by each of the low-amplitude branches quickly develops into an autonomous line …, becoming effectively independent of the history of either the “dominant” GRW branch or any other branch” (1999, S66). As far as branches go, this is unobjectionable, but if the implication is that decoherence between the branches means that they are worlds in the many-worlds sense, then the response to Brown and Wallace (section 5) is appropriate here too. The interpretation of decoherent branches as worlds is forced on us in the context of unmodified wave mechanics, but the addition of a collapse mechanism broadens our interpretive options. In particular, the combination of the GRW formalism with an interpretation according to which low-amplitude branches are not worlds yields a theory which is a genuine competitor to the many-worlds theory of quantum mechanics.

7. Conclusion

Bohm’s theory and the GRW theory each face serious difficulties, most notably regarding compatibility with special relativity, and each may turn out to be inadequate as a quantum mechanical theory (Bell 1987, 206). Perhaps one should add to these difficulties that neither theory is compatible with strict functionalism about macroscopic objects (Dennett’s criterion). But if the foregoing is correct, then neither can be ruled out on the grounds that it fails to do what it was designed to do, namely to solve the measurement problem. And neither can be ruled out on the grounds that the solution it provides reduces to that provided by the many-worlds theory. Of course, the many-worlds theory also provides a solution to the measurement problem, and it too faces serious difficulties, most notably regarding personal identity and probability, but perhaps also regarding compatibility with relativity (Barrett 1999). So the business of comparing the various strategies for solving the measurement problem goes on, and the many-worlds theory cannot claim to be the winner by default. 
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� See Albert (1996), Monton (2002) and Lewis (2004) for discussion of the dimensionality of the wavefunction. Note also that realism about quantum mechanics may not entail wavefunction realism (Dürr, Goldstein and Zanghì 1997), but nevertheless it is wavefunction realism that I assume here for the sake of argument.


� See Barrett (1999), Chapter 8 and Wallace (2002) for discussion of these issues.


� Precisely, the probability distribution is given by the integral of the absolute square of the function that results from the multiplication of the initial wavefunction by the Gaussian. The resulting wavefunction is renormalized by dividing by the square root of this quantity.


� Stone (1994) gives a different argument that Bohm’s theory fails to solve the measurement problem, which has been addressed by Maudlin (1995). Albert and Loewer (1990) give a different argument that the GRW theory fails to solve the measurement problem, which they respond to themselves (Albert and Loewer 1996).


� At least, if the GRW theory is best interpreted as a wavefunction-only theory, then the strategy does not apply. However, it remains controversial whether the GRW theory is best interpreted this way (Ghirardi, Grassi and Benatti 1995; Monton 2004; Lewis 2006).


� Recall that I am assuming wavefunction realism for the sake of argument. If the wavefunction in Bohm’s theory can be regarded as a law, then Bohm’s theory is consistent with Dennett’s criterion. See Dürr, Goldstein and Zanghì (1997) for a defense of this position.


� Not every version of the many-worlds theory requires giving up precisely these assumptions; the examples here are taken from the version endorsed by Greaves (2004).


� This assumption is almost certainly not Bohm’s. Brown and Wallace cite Bohm (1952, 182) in support of the position that it is the branch (rather than the particles) that determines the measurement outcome, but as Brown and Wallace themselves note (2005, 523), this early source should probably not be taken literally, as it contradicts later assertions that it is always the particle configuration that determines the outcome (e.g. Bohm and Hiley 1993, 105).


� One might also argue that Everett’s interpretation is forced on us by the formalism if one adopts Dennett’s criterion. (The bare theory arguably violates Dennett’s criterion, since a pattern in a branch is not accorded the same status as the same pattern in the entire wavefunction.) But as argued in section 4, Dennett’s criterion cannot simply be assumed in this context, since Bohm’s theory presupposes its falsity.
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