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Abstract

It is shown that there is one purely deterministic outcome when
measurement is made on the state function chosen by EPR to describe the
combined two-particle system – the distance between the two particles is
preserved the same. Further, it is shown that, surprisingly, the Ψ -function
designed according to QM leads to the following paradox – despite the
fact that the two particles move in opposite directions, in time the distance
between them becomes shorter and shorter.

As is known, Einstein, Podolsky and Rosen (EPR) [1] observe two particles
which have interacted in the past (for 0 Tt< < ) but the interaction between
them has ceased for times Tt > . Nevertheless, both particles, even at times

Tt >  EPR consider to be described by one common state-function, namely

1 2( , )x xΨ . The authors have chosen to explore one particular form of that
state-function, namely

( ) 1 2 0
1 2

( )
,

i x x x p
dpex x

− −
Ψ = ∫ . (1)

This function may be rewritten as

( ) 2 0 1
1 2

( )
,

i ix x p x p
dpe ex x

− +
Ψ = ∫ (2)

and then 
1

i x p
e  can be considered as the orthonormal basis of an observable

A pertaining to particle 1 (position of particle 1) while the exponents
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2 0( )i x x p
e
− +

 are the expansion coefficients. In other words, we may observe
the above integral as the expansion of the Ψ -function along the continuous

basis 
1

i x p
e .
When a measurement of the position of particle 1 at time t is carried out

the Ψ -function collapses to the following function

( ) ( ) ( )1 2 1 2 0,f x x x x x x xδ δ= − − − (3)

and one immediately sees from eq.(3) that

1 2 0x x x= + . (4)

It can easily be seen also that if we carry out measurement of the momentum
of the first particle at time t the Ψ -function collapses in such a way as to give
eigenvalues p and –p of the first and the second particle, respectively.
Now, we may wish to explore what the reproducibility would be of the
mentioned measurement (collapse of the same function 1 2( , )x xΨ ) at the
same time t when carrying out repetitive measurements on it. Obviously, each
time the operator A is applied on the function 1 2( , )x xΨ  an eigenvalue of
that operator will be produced. It should be noted, however, that, although the
probability (expectation value) of obtainment of a given eigenvalue (from the
set of the eigenvalues of the operator A ) is easily written as |< i A| >j , the
outcome from the process of a concrete measurement is completely
unpredictable. In other words, as a result of a given measurement the
obtainment of a given eigenvalue is completely random.

Interestingly, however, despite the fact that as a result of repetitious
measurements (always done at time t) we will obtain different values of 1x
(resp. 2x ), the separation between these two particles at each measurement
will be one and the same – 0x . This will not be so noteworthy if there was
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not another fact concerning this system of two particles. As mentioned, if we
happen to measure the momentum A of particle 1 we will each time (after
each successive measurement) obtain a different value p of that momentum
and, which is even more remarkable, as mentioned, this momentum will be
exactly equal in size but opposite in sign to the momentum of particle 2. In
other words, despite the fact that the two particles will tend to move, at time t,
in opposite directions and after each measurement these equal but opposing
velocities will be of different magnitude (absolute value of the velocity will
differ at each measurement), the separation between the two particles will
invariably be equal to a constant – 0x . Thus, although we cannot predict the
outcome of the position or momentum measurement at time t we can with
certainty predict that after each measurement the two particles will always be
found at the same separation 0x .

Paradoxically, since the time t is arbitrary, the separation between the
two particles will be one and the same, namely 0x , no matter at what point of
time we make the experiment.

The above may appear like an interesting observation but it does not
seem to lack physical meaning. Collapsed function is not a function of time
and one may argue that nothing prevents it from having the above property.

We want now to explore this observation a little further. We want now
to see what the time-propagation of the collapsed function

( ) ( ) ( )1 2 1 2 0,f x x x x x x xδ δ= − − − (5)

is. For this reason we may write the delta-functions explicitly

( ) 1 2 0 '( ) ( )
1 2 ',

i ix x p x x x p
dpe dp ef x x

− − −
== ∫ ∫

A 'B 'ABdp dp dp dp=∫ ∫ ∫ ∫ (6)
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To see the development in time of above function we apply the propagator
0iH te− ∆  where the Hamiltonian corresponds to a free particle (i.e. interaction

between particles is zero, as required by EPR), i.e.

2 2 2

0 22 2
p

H
m m x

∂
= = −

∂
. (7)

Propagator including the positions of the two individual particles, instead of
center-of-mass propagator yields the same result.

Let us now expand the propagator

0
2 2

20 2
1(1 )iH t

m x
i te iH t− ∆ ∂

∂

 
+ ∆ 

 
≈ − ∆ = . (8)

And now we are ready to apply the propagator (in its expanded form) on the
function 1 2( , ) 'ABf x x dp dp= ∫ ∫  (notice the definition of A and B

above):

0 'AB(1 ) dp dpiH t− ∆ ∫ ∫ . (9)

It can easily be shown that it is equal to:

2 2( ')2 .AB'
i t p pmdp dp e

− ∆ +

∫ ∫
(Details)

Above expression is the propagated function 1 2( , , )f x x t  which has the
explicit form
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21 0( ') '( )' i x x x i p pi x x i p pdp dpe e αα − − +− − 
  ∫ ∫ . (10)

(Details)

Last integral, however, immediately yields the following delta-functions

( )1x x i pδ α− − (11)

and

( )2 0 'x x x i pδ α− − + . (12)

From these delta-functions it follows that

1x x pα= + (13)

and

2 0 'x x x pα= + − (14)

from where we have

1 2 0 'x p x x pα α+ = + − (15)

and, respectively, because 'p p= − ,

1 2 0x x x= + . (16)

As is seen from the above definition of α , namely this α  is the parameter
that is time-dependent – it turns out that the time-dependent parameter is
eliminated when applying the propagator. This means that in time the
collapsed function (at any moment of time) will be only coordinate-
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dependent. In other words, the collapsed function (at any moment of time)
will look exactly as the function which we were observing to collapse at a
given time t – that is, even before applying the propagator.

Thus, it appears that in time the distance between the two particles will
be always one and the same despite the fact that the two particles move in
opposite directions.

One may argue that when collapsed state function is propagated the
condition 'p p= −  may not be valid anymore. Instead, a more general
condition would apply, namely 'p np= − , where n const= . In such a
case we will have

1 2 0x i p x x i npα α+ = + + (17)

and therefore

1 2 0 1( )x x x i n pα− = + − (18)

or

2

1 2 0 2
( 1)ii t

m
x x x n p∆− = + − (19)

which is

2

1 2 0 2
( 1)t

m
x x x n p− ∆− = − (20)

Thus, it appears that as the time progresses and the particles move in opposite
directions from one another, the distance between them gets shorter and
shorter.

The state function chosen by EPR to describe the combined two-particle
system is specially designed by them to show that the Ψ -functions used in
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QM do not describe completely the state of the system. From the above
argument it follows further that such specially designed function (and EPR
have all the right to design any function they need to prove their point)
appears to lead to conclusions that seem to even lack physical meaning.

One possible way of looking at it, in trying to resolve this probable
problem, is to consider that after collapse the two particles fall on a sphere
where their velocities can be of opposite directions while still maintaining the
same distance. Further, in time this may be a shrinking sphere whereby these
particles still can maintain somehow their opposite velocities while the
distance between them gets closer and closer. This picture, however, does not
seem to be supported by experimental evidence.

One last point – despite the generally probabilistic character of the
outcome of measurement in QM, there appears to be an unsuspected
deterministic outcome in this particular set up. No matter how uncertain, in
general, the outcome regarding the state of the system may be after the
experiment, there is something which we know for sure – the distance
between particles will remain the same as a result of experiments of the type
described. This seems to be an interesting deterministic feature of QM which
probably is worth exploring further.
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I. As a helpful step, let us first of all observe what the second derivative of AB will look like:

2

2

A BAB B A
x x x x

 ∂ ∂ ∂ ∂ = + =  ∂ ∂ ∂ ∂

2 2

2 2

A A B BB 2 A
x x x x

∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂

.

Now we are ready to do the derivation properly

( )2 2' ( AB 2 'AB ' ABdp dp p pp p− + + =∫ ∫

( )( )2' ' ABdp dp p p− +∫ ∫ .

Then, the whole expression will be

( )
2

2' 1 ' AB
2

dp dp t p p
m

  − ∆ +    ∫ ∫ .

Now, once we have the whole expression we can restore the exponent

2 2( ')2 AB' i t p pmdp dp e− ∆ +∫ ∫ .
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II. Denote 
2

( )
2
i t t
m

α α∆ = = , then we have

2( ') AB' p pdp dp e α− +∫ ∫
and substituting A and B we have

2
01 2( ) '( )( ')' p x x p x x xp p i ie edp dp e α − − −− +∫ ∫

which may also be written as

2 2
01 2( ) '( )' 2 '' p x x p x x xp p pp i ie edp dp e e eα α α − − −− − −∫ ∫   

or as

2 2
01 2( ) '( )2 ' '' ip x x ip x x xp pp pdp dpe e e e eα α α− − −− − − 

 
  ∫ ∫

respectively

)2 2
01 22 ' ( '( ) '' p pp ip x x ip x x x pdp dpe eα α α− − + − − − − 

 
  ∫ ∫ .

Now, because 'p p= −  (and therefore 2 2 2 22 ' 2p pp p p pα α α α α− − = − + = ) we may write the above expression as

2 2
1 02'( ) '' ip x x p ip x x x pdp dpe eα α

   +  
− − − − 

 
 
  

∫ ∫
which is also

21
22

0' ' ' '' ip x ip x ip x pipx ipx pdp dpe e αα − − −− + 
  =
  ∫ ∫

21
2 22 2

0' ' ' '' ip x ip x ip x i pipx ipx i pdp dpe e αα − − +− − 
 
  ∫ ∫


