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Abstract

Philosophical discourse traditionally distinguishes between ontology
and epistemology and generally enforces this distinction by keeping
the two subject areas separated. However, the relationship between
the two areas is of central importance to physics and philosophy of
physics. For instance, many measurement-related problems force us to
consider both our knowledge of the states and observables of a system
(epistemic perspective) and its states and observables independent of
such knowledge (ontic perspective). This applies to quantum systems
in particular.

This contribution presents an example showing the importance of
distinguishing between ontic and epistemic levels of description even
for classical systems. Corresponding conceptions of ontic and epis-
temic states and their evolution are introduced and discussed with re-
spect to aspects of stability and information flow. These aspects show
why the ontic/epistemic distinction is particularly important for sys-
tems exhibiting deterministic chaos. Moreover, this distinction provides
some understanding of the relationships between determinism, causa-
tion, predictability, randomness, and stochasticity.

1 Introduction

Can nature be observed and described as it is in itself independent of those
who observe and describe – that is to say, nature as it is “when nobody
looks”? This question has been debated throughout the history of philosophy
with no clearly decided answer one way or the other. Each perspective has
strengths and weaknesses, and each epoch has had its critics and proponents
with repect to these perspectives. In contemporary terminology, the two
perspectives can be distinguished as topics of ontology and epistemology.
Ontological questions refer to the structure and behavior of a system as
such, whereas epistemological questions refer to the knowledge of information
gathering and using systems, such as human beings.
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In philosophical discourse it is considered a serious fallacy to confuse these
two areas. For instance, Fetzer and Almeder (1993) emphasize that “an ontic
answer to an epistemic question (or vice versa) normally commits a category
mistake”. Nevertheless, such mistakes are frequently committed in many
fields of research when addressing subjects where the distinction between
ontological and epistemological arguments is important. Recently, the vast
literature on consciousness-related topics has provided many examples of this
kind of category confusion (cf., for instance, Searle’s criticism of Churchland
(Searle 1997, pp. 30/31) and of Dennett (Searle 1997, pp. 113/114)).

In physics, the rise of quantum theory with its interpretational problems
was one of the first major challenges to the ontic/epistemic distinction. The
discussions between Bohr and Einstein in the 1920s and 1930s is a famous
historical example. Einstein’s arguments were generally ontically motivated;
that is to say, he emphasized a viewpoint independent of observers or mea-
surements. By contrast, Bohr’s emphasis was generally epistemically moti-
vated, focusing on what we could know and infer from observed quantum phe-
nomena. Since Bohr and Einstein never made their basic viewpoints explicit,
it is not surprising that they talked past each other in a number of respects
(see Howard 1997). Examples of approaches trying to avoid the confusions
of the Bohr-Einstein discussions are Heisenberg’s distinction of actuality and
potentiality (Heisenberg 1958), Bohm’s ideas on explicate and implicate or-
ders (Bohm 1980), or d’Espagnat’s scheme of an empirical, weakly objective
reality and an objective (veiled) reality independent of observers and their
minds (d’Espagnat 1995).1

A first attempt to draw an explicit distinction between ontic and epis-
temic descriptions for quantum systems was introduced by Scheibe (1973)
who himself, however, put strong emphasis on the epistemic realm. Later,
Primas developed this distinction in the formal framework of algebraic quan-
tum theory (see Primas 1990). The basic structure of the ontic/epistemic
distinction, which will be made more precise below, can be understood ac-
cording to the following rough characterization (for more details, the reader
is referred to Primas 1990, 1994):

Ontic states describe all properties of a physical system exhaus-
tively. (“Exhaustive” in this context means that an ontic state
is “precisely the way it is”, without any reference to epistemic

1Further terms fitting into the context of these distinctions are latency (Margenau 1949),
propensity (Popper 1957), or disposition (Harré 1997). See also Jammer’s discussion of
these notions, including their criticism and additional references (Jammer 1974; pp. 448–
453, 504–507).
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knowledge or ignorance.) Ontic states are the referents of indi-
vidual descriptions, the properties of the system are treated as
intrinsic properties.2 Their temporal evolution (dynamics) is re-
versible and follows universal, deterministic laws. As a rule, ontic
states in this sense are empirically inaccessible. Epistemic states
describe our (usually non-exhaustive) knowledge of the proper-
ties of a physical system, i.e. based on a finite partition of the
relevant phase space. The referents of statistical descriptions are
epistemic states, the properties of the system are treated as con-
textual properties. Their temporal evolution (dynamics) typically
follows phenomenological, irreversible laws. Epistemic states are,
at least in principle, empirically accessible.

The combination of the ontic/epistemic distinction with the formalism
of algebraic quantum theory provides a framework that is both formally and
conceptually satisfying. Although the formalism of algebraic quantum theory
is often hard to handle for specific physical applications, it offers significant
clarifications concerning the basic structure and the philosophical implica-
tions of quantum theory. For instance, the modern achievements of algebraic
quantum theory make clear in what sense pioneer quantum mechanics (which
von Neumann (1932) implicitly formulated epistemically) as well as classi-
cal and statistical mechanics can be considered as limiting cases of a more
general theory. Compared to the framework of von Neumann’s monograph
(1932), important extensions are obtained by giving up the irreducibility of
the algebra of observables (not admitting observables which commute with
every observable in the same algebra) and the restriction to locally com-
pact phase spaces (admitting only finitely many degrees of freedom). As a
consequence, modern quantum physics is able to deal with open systems in
addition to isolated ones; it can involve infinitely many degrees of freedom
such as the modes of a radiation field; it can properly consider interactions
with the environment of a system; superselection rules, classical observables,
and phase transitions can be formulated which would be impossible in an
irreducible algebra of observables; there are in general infinitely many rep-
resentations inequivalent to the Fock representation; and non-automorphic,
irreversible dynamical evolutions can be successfully incorporated and even
derived.

2In a more technical terminology, one speaks of “observables” (mathematically repre-
sented by “operators”) rather than properties of a system. Prima facie, the term “observ-
able” has nothing to do with the actual observability of a corresponding property.
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In addition to this remarkable progress, the mathematical rigor of alge-
braic quantum theory in combination with the ontic/epistemic distinction
allows us to address quite a number of unresolved conceptual and interpreta-
tional problems of pioneer quantum mechanics from a new perspective. First,
the distinction between different concepts of states as well as observables
provides a much better understanding of many confusing issues in earlier
conceptions, including alleged paradoxes such as those of Einstein, Podolsky,
and Rosen (1935) or Schrödinger’s cat (Schrödinger 1935). Second, a clear-
cut characterization of these concepts is a necessary precondition to explore
new approaches, beyond von Neumann’s projection postulate, toward the
central problem that pervades all quantum theory from its very beginning:
the measurement problem. Third, a number of much-discussed interpreta-
tions of quantum theory and their variants can be appreciated more properly
if they are considered from the perspective of an algebraic formulation.

One of the most striking differences between the concepts of ontic and
epistemic states is their difference concerning operational access, i.e. observ-
ability and measurability. At first sight it might appear pointless to keep
a level of description which is not related to what can be operationalized
empirically. However, a most appealing feature at this ontic level is the
existence of first principles and universal laws that cannot be obtained at
the epistemic level. Furthermore, it is possible to rigorously deduce (e.g. to
“GNS-construct”; cf. Primas 1994, 1998) a proper epistemic description from
an ontic description if enough details about the empirically given situation
are known. These aspects show that the crucial point is not to decide whether
ontic or epistemic levels of discussions are right or wrong in a mutually ex-
clusive sense. There are always ontic and epistemic elements to be taken
into account for a proper description of a system. This requires the defi-
nition of ontic and epistemic terms to be relativized with respect to some
selected framework within a set of (hierarchical) descriptions (Atmanspacher
and Kronz 1998; see also Lombardi in this volume). The problem is then to
use the proper level of description for a given context, and to develop and
explore well-defined relations between different levels.

These relations are not universally prescribed; they depend on contexts
of various kinds. The concepts of reduction and emergence are of crucial
significance here. In contrast to the majority of publications dealing with
these topics, it is possible to precisely specify their meaning in mathematical
terms. Contexts, or contingent conditions, can be formally incorporated as
topologies in which particular asymptotic limits give rise to novel, emergent
properties unavailable without those contexts (see Primas 1998 for more
details). It should also be mentioned that the distinction between ontic
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and epistemic descriptions is neither identical with that of parts and wholes
nor with that of micro- and macrostates as used in statistical mechanics or
thermodynamics. The thermodynamic limit of an infinite number of degrees
of freedom provides only one example of a contextual topology, others are the
Born-Oppenheimer limit in molecular physics or the short-wavelength limit
in geometrical optics. It is an interesting question whether other kinds of
emergence, such as that of phenotypes from genotypes, of consciousness from
brain tissue, or of semantics from syntax, can be related to this discussion.

These examples indicate that the usefulness or even inevitability of the
ontic/epistemic distinction is not restricted to quantum systems. It plays
a significant role in the description of classical systems as well. There is
a special class of classical systems for which the distinction of ontic and
epistemic descriptions is necessary if category mistakes and corresponding
interpretational fallacies are to be avoided: systems exhibiting “deterministic
chaos”.

2 Ontic and Epistemic States
of Classical Systems

Let us consider the representation of a system in a phase space Ω. The ontic
state of such a system is represented by a point x ∈ Ω, so that the phase
space Ω is also a state space in this case.3 The intrinsic properties of the
system are represented by real-valued functions on Ω, such as the positions
and momenta of point particles. In the algebraic formulation the intrinsic
properties of the system are represented by elements of the commutative
C*-algebra C0(Ω) of all complex-valued continuous functions on the locally
compact phase space Ω. Since there is a one-to-one correspondence between
the points x ∈ Ω and the pure state functionals on C0(Ω) (i.e., the extremal
positive linear functionals on C0(Ω)), ontic states are represented by pure
state functionals. The ontic valuation of any observable B ∈ C0(Ω) is dis-
persion free, ρ(B2) = ρ(B)2. Classical point mechanics is an example. The
pointwise representation of an ontic state in Ω illustrates that the finiteness
of information, and therefore an information theoretical characterization, is
not effective for ontic descriptions.

3The concept of a phase space is here understood in terms of a general mathematical
structure, e.g. a manifold. Additional constraints, e.g. a symplectic structure of the man-
ifold, lead to more specific types of phase space. It is useful to distinguish the concept of
a phase space from that of a state space, since states are not necessarily represented by
elements of a phase space.
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For an epistemic description, such as in statistical mechanics, one defines
a Kolmogorov space (Ω,Σ, ν), with a countably additive probability measure
ν (a reference measure, typically the Lebesgue measure) on a σ-algebra Σ
of Borel subsets A. Since epistemic descriptions refer to empirical purposes,
Σ is required to be the Boolean algebra of experimentally decidable alter-
natives. Any measure µ which is absolutely continuous with reference to ν
characterizes an epistemic (statistical) state. Note that such an epistemic
state is an element of the Kolmogorov space (Ω,Σ, ν), not of the phase space
Ω. It refers to our knowledge as to whether an ontic (individual) state x is
more likely to be in some Borel subset A rather than in others. An ensemble
(à la Gibbs) of ontic states is an example of a clearly statistical concept of
an epistemic state. However, the corresponding probability distribution can
also be viewed in an individual, ontic interpretation (in terms of a distri-
bution “as a whole”), as in kinetic theory (à la Boltzmann) or in classical
continuum mechanics.

Equivalently, epistemic states can be represented by Radon–Nikodým
derivatives dµ/dν, called probability densities or distributions. They are
positive and normalized elements of the Banach space L1(Ω,Σ, ν). The dual
of this Banach space is the W*-algebra L∞(Ω,Σ, ν) of ν-essentially bounded
Borel-measurable functions on Ω, the algebra of bounded observables. Inso-
far as the probability measure µ representing an epistemic state has finite
support, it represents finite information about the ontic state. This finite-
ness can be due to the imprecision of measurements or due to the fact that
any decimal expansion of real numbers has to be truncated somewhere for
computational purposes. Such a representation of epistemic states (and their
associated properties) generally requires a finite partition of Ω.

The temporal evolution of an ontic state x ∈ Ω as a function of time
t ∈ R is a trajectory t 7→ x(t); the ontic state x(t) determines the intrinsic
properties that a system has at time t exhaustively. The temporal evolution
of an epistemic state µ corresponds to the evolution of a bundle of trajectories
x(t) in Ω. The concept of an individual trajectory of an individual, ontic state
is irrelevant within a purely epistemic description.

If the dynamics is reversible then µ(T−1(A)) = µ(T (A)) = µ(A) for all
A ∈ Σ, where T : Ω → Ω is an automorphism on the state space Ω. For
a one-parameter group of such a µ-preserving invertible transformation, the
evolution of a corresponding system is both forward and backward deter-
ministic, if the parameter is chosen to be a (discrete or continuous) time t.
In such a case, there is no preferred direction of time. Fundamental physi-
cal laws (e.g. in Newton’s mechanics, Maxwell’s electrodynamics, relativity
theory) are time-reversal symmetric in this sense. Phenomenological theo-
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ries such as thermodynamics operate with a distinguished direction of time.
The fundamental time-reversal symmetry is broken, thus leading to an ir-
reversible dynamics given by a one-parameter semigroup of non-invertible
transformations.

2.1 Stability

In the theory of dynamical systems, the map t 7→ Tt = T (x, t) is often called
a flow {Tt |t ∈ R} on the phase space Ω, where x is a phase point in Ω
representing the ontic state of a system. This flow is said to be generated by
a transformation F that can be discrete, e.g.

x(t + 1) = F (x(t)), (1)

or continuous in time t, e.g.

dx(t)
dt

= ẋ(t) = F (x(t)). (2)

Equation (2) represents a first-order, ordinary differential equation system
as a very simple example which, however, is sufficient to illustrate the ba-
sic notions. The trajectory {x(t)} characterizes the state of the system as
a function of time t; its components represent its continuous observables
(x1, ..., xd). F is a matrix containing the generally nonlinear coupling among
the observables, whose number defines the dimension d of the phase space
Ω.

To characterize the flow {Tt}, i.e. the temporal evolution of x(t) as the
solution of (2), one has to study how {Tt} behaves under the influence of small
perturbations δx. Such a characterization specifies the stability of the system
and can be obtained in terms of a linear stability analysis. Skipping over the
details, a linear stability analysis yields local (in Ω) rates of amplification or
damping of perturbations δx(t) with respect to a reference state or a reference
trajectory {x(t)}, respectively. From these local rates one can obtain a global
dynamical invariant of {Tt}, essentially as a temporal average of the local
rates. These global invariants are the so-called Lyapunov exponents:

λi = lim
t→∞

1
t

ln
∣∣∣∣ δxi(t)
δxi(0)

∣∣∣∣ (3)

The sum of all (d) Lyapunov exponents allows an elegant and fundamen-
tal classification of dynamical systems.
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•
∑

λi > 0 characterizes systems which are unstable in a global sense, for
instance random systems. Their phase volume spreads over the entire
phase space as t →∞.

•
∑

λi = 0 characterizes conservative (e.g. Hamiltonian) systems. Since
the sum of their Lyapunov exponents is non-negative, they are stable,
but not asymptotically stable. Their phase volume remains constant
in time (Liouville’s theorem). Conservative systems with at least on
positive Lyapunov exponent are so-called K-flows.

•
∑

λi < 0 characterizes dissipative systems. They have a shrinking
phase volume and are asymptotically stable. It is intuitively suggestive
(but not finally understood, see Ruelle 1981, Milnor 1985) that the
flow {Tt} of a dissipative system is asymptotically restricted to a finite
subspace of the entire phase space. This subspace is called an attractor.
If λi < 0 ∀i this attractor is a fixed point. If there are k vanishing
Lyapunov exponents and (d − k) negative ones, then the attractor is
a k-torus (limit cycle for k = 1). For systems with at least three
degrees of freedom, d ≥ 3, the condition of a negative sum of Lyapunov
exponents can be satisfied by a combination of positive and negative
ones. This situation defines a chaotic (strange) attractor in the sense
of deterministic chaos.

2.2 Dynamical Entropy

The Lyapunov exponents can be related to the concept of a dynamical en-
tropy, i.e., the entropy of a temporal evolution. The dynamical entropy
according to Kolmogorov (1958) and Sinai (1959), briefly KS-entropy, has
received particular attention among a number of alternative dynamical en-
tropies (Wehrl 1991). The main reason for this popularity is that KS-entropy
has turned out to be an extremely useful tool in the characterization of sys-
tems showing chaotic behavior in the sense of deterministic chaos. The origi-
nal proposals by Kolmogorov and Sinai did not explicitly mention this scope
of interest. Instead, they were concerned with the way in which an entropy
can be ascribed to the automorphism T : Ω → Ω. This can be done by
considering a partition P in Ω with disjoint measurable sets Ai (i = 1, ...,m)
and studying its temporal evolution TP, T 2P, .... If the entropy H(P ) of P
is given by

H(P ) = −
∑

µ(Ai) ln µ(Ai), (4)
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then the dynamical KS-entropy hT is defined as the supremum of H(P, T )
over all partitions P ,

hT = sup
P

H(P, T ), (5)

with
H(P, T ) = lim

n→∞

1
n

H(P ∨ TP ∨ ... ∨ Tn−1P ). (6)

Remarks: (1) The latter limit is well-defined because H is subaddi-
tive, i.e., H(P ∨ P ′) ≤ H(P ) + H(P ′) for two partitions P, P ′. (2)
The partition providing the supremum of H(P, T ) is the so-called gen-
erating partition or, more specifically, the so-called K-partition (Corn-
feld et al. 1982). The generating partition is constructively given by
the dynamics of a system. (3) The KS-entropy is a relevant concept
for commutative (Abelian) algebras of observables but cannot naively
be taken over to non-commuting observables in the sense of conven-
tional quantum theory. It can, however, acquire significant meaning
for operator algebras in Koopman representations of classical systems.
For non-commutative (non-Abelian) algebras of observables of conven-
tional quantum systems, alternative concepts (mathematically general-
izing the classical KS-entropy) have been introduced, e.g., by Connes,
Narnhofer, and Thirring (1987), see also Hudetz (1988).

Under particular conditions the sum of all positive Lyapunov exponents
can be identified as the KS-entropy hT :

hT =
∑

λ+
i =

{∑
λi if λi > 0

0 otherwise
(7)

More precisely, Ledrappier and Young (1985) have proven that
∑

λ+
i Di = hT

where Di is the partial information dimension 0 ≤ Di ≤ 1 if T is a C2-
diffeomorphism and µ an associated T -invariant ergodic measure. Moreover:
if T is hyperbolic and µ is absolutely continuous with respect to the Lebesgue
measure along the unstable manifolds of T , then µ is called a Sinai-Ruelle-
Bowen (SRB) measure and Di = 1 such that

∑
λ+

i = hT . This is the Pesin
identity (Pesin 1977). While the conditions for the result of Ledrappier and
Young are fairly general, the essential condition for Pesin’s identity, i.e., that
the natural measure is a SRB measure, is perhaps not always satisfied for
practically relevant systems (cf. Tasaki et al. (1993) for a proposed extension
of the SRB criterion). In any case we have the inequality

∑
λ+

i ≥ hT .
Both conservative K-flows and dissipative chaotic attractors provide what

has now become well-known as sensitive dependence of the evolution of a sys-
tem on small perturbations in the initial conditions. This dependence is due
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to an intrinsic instability that is formally reflected by the existence of pos-
itive Lyapunov exponents. The KS-entropy of a system is an operationally
accessible quantity (Grassberger and Procaccia 1983). A positive (finite)
KS-entropy is a necessary and sufficient condition for chaos in conservative
as well as in dissipative systems (with a finite number of degrees of freedom).
Chaos in this sense covers the entire spectrum between totally unpredictable
random processes, such as white noise (hT →∞), and regular (e.g. periodic,
etc.) processes with hT = 0. See Sect. 4 for a more detailed discussion of
this point.

Remark: The characterization of a dynamical system by its KS-entropy
is not necessarily complete. For instance, systems with the same KS-
entropy may reach equilibrium with different rates. Although their
spectral and statistical properties are indistinguishable as far as expec-
tation values (e.g. suitable limits) are concerned, they are not isomor-
phic concerning the way in which these expectation values (limits) are
approached. See Antoniou and Qiao (1996) for a specific demonstration
of this difference with respect to the spectral decomposition of the tent
map; and see Antoniou et al. (1999) for further subtleties. Another
formal way to deal with problems like this is known as “large devia-
tions statistics”, a relatively new field of mathematical statistics which
is applicable to the context of dynamical systems (Oono 1989).

From a historical point of view, it is interesting to note that chaotic be-
havior in the sense described above was for the first time explicitly mentioned
in a paper by Koopman and von Neumann (1932): “... the states of motion
corresponding to any set M in Ω become more and more spread out into an
amorphous everywhere dense chaos. Periodic orbits, and such like, appear
only as very special possibilities of negligible probability.” Earlier, less specific
indications of chaotic behavior are due to Maxwell and Poincaré (cf. Hunt
and Yorke 1993). They will be taken up in the philosophical discussion of
determinism, causation, and predictability in Sect. 3.

2.3 Information Flow

According to the generally accepted terminology, information theory deals
with the transmission and reception of knowledge so that information is a
purely epistemic concept. Insofar as information is only finitely accessi-
ble, it corresponds to limited, incomplete knowledge. Dynamical systems
can be interpreted as information-processing systems (Shaw 1981) with the
KS-entropy hT as the information flow rate (Goldstein 1981). This can be
demonstrated replacing the notion of a perturbation δx in Sect. 2.1 by the
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notion of a corresponding uncertainty (incomplete knowledge). In this way
the stability analysis of a system is changed into an informational analysis.
At the same time, the discussion is shifted from an ontic description (refer-
ence state as phase point) to an epistemic description (uncertainty as phase
volume). An approximation of the resulting flow of Shannon information I
is given by

I(t) = I(0)− hT t. (8)

It applies to conservative as well as dissipative systems. In information the-
oretical terms, the inverse of hT estimates the time interval τ for which the
behavior of the system can reasonably well be predicted from its determin-
istic equations.

Remarks: (1) Here and in the remainder of this article, the concept of
information is restricted to Shannon information, i.e., it is solely used
in a syntactic sense, without any reference to semantics or pragmat-
ics. (2) The partition due to uncertainties is in general different from
the partition P introduced in Section 2.2. For instance, the generat-
ing partition is generically given by the dynamics of a system, whereas
the concept of an uncertainty refers to an experimental resolution or
other external conditions. (3) The linearity of the information flow is
“spurious” in the sense that it is a mere consequence of the linearity of
the stability analysis on which its derivation is based. It is well-known
that any linear analysis is only locally valid, hence the KS-entropy hT ,
interpreted as an information flow rate, represents a (moving) average
of local information flow rates. (4) Strictly speaking, there is an ad-
ditional contribution of the partial dimensions in the proportionality
factor for t (Farmer 1982) (cf. the remark on Pesin’s identity in Section
2). See Caves (1994) for a more detailed discussion of information flow
in chaotic Hamiltonian systems.

The temporal decrease of I(t) for hT > 0 describes how fast an external
observer loses information about the actual state of a system with time. It
is tempting to interpret this as an increasing amount of information in the
system itself, generated by its intrinsic instability due to positive Lyapunov
exponents amplifying initial uncertainties exponentially (Atmanspacher and
Scheingraber 1987). Since such an internal view goes beyond the regime of
a purely epistemic scenario, this temptation must be resisted if one wishes
to stay within the scheme provided by a clean ontic/epistemic distinction.
The same argument holds if the notion of information is replaced by entropy
(Elskens and Prigogine 1986). Weizsäcker’s terminology uses potential infor-
mation (Weizsäcker 1985, Zucker 1974), indicating exactly where the problem
lies: the referent of this term becomes actual information if and only if it
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becomes epistemic. Atmanspacher (1989) discusses the interplay between
these concepts, including the transition from infinite to finite information
and some of its ramifications.

Another approach dealing with this problem area has been proposed by
Zurek (1989) (see also Caves 1993). He defines “physical entropy” as the
sum of missing information plus known randomness according to S = H +C,
where H is the conventional statistical entropy (outside view) and C is the
algorithmic randomness (à la Kolmogorov (1965) and Chaitin (1966), also
called algorithmic information content or algorithmic complexity) of a data
string produced by the system’s evolution (inside view). The problem with
the second term is that the corresponding states of the system must be
“known” to some “information gathering and using system” (IGUS). Insofar
as an IGUS is definitely epistemic if it is supposed to gather and use infor-
mation (finitely), it cannot be relevant at the ontic, internal level. However,
Zurek’s favorite IGUS, a universal Turing machine (UTM), has infinite ca-
pabilities of storing and processing information. This can justify an ontic
interpretation of C but cuts the connection to empirical access. A UTM
in this sense is nothing other than Laplace’s, Maxwell’s, or someone else’s
demon. In the framework of a strict distinction of ontic and epistemic levels
of description, Zurek’s approach thus appears conceptually problematic.

There is by definition no way of gathering (or using) information about
a reality referred to by an ontic description since it is exactly the act of
information gathering that leads to an epistemic concept of realism differing
from its ontic counterpart. Yet one may want to discuss how far insight
into an ontic reality might be inferrable in an indirect manner. Rössler’s
conception of “endophysics” (“the study of demons”; Rössler 1987) seems to
be inclined toward such a purpose. But eventually, endophysics according to
Rössler is even more ambitious than addressing an ontic reality in the sense
of quantum theory (for a corresponding discussion see Atmanspacher and
Dalenoort 1994). Hence the question remains open whether the framework of
an ontic/epistemic distinction provides a suitable embedding for approaches
like Rössler’s.

In another paper (Atmanspacher 1997) it has been argued in more detail
why concepts such as information and complexity are unsuitable for ontic
descriptions. This implies that approaches seeking to derive fundamental
natural laws from information theoretical arguments (e.g. Stonier 1990 or
Frieden 1998, but also Chalmers 1996 (pp. 276–319) in his double-aspect ap-
proach to treat the “hard problem” of consciousness) are ill-posed in principle
and represent another wide-spread example of a category mistake resulting
from a confusion of ontic and epistemic perspectives. Even the simplest,
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syntactical, information theoretical concepts always require a context and
an associated contextual topology to be specified with respect to which in-
formation can be defined. A basic example is a (finite) phase space partition
without which (finite) information about the state of a system cannot be
defined. According to different contexts, different partitions can or must be
used. For instance, the generating partition that provides the KS-entropy
of a system (cf. Sec. 2.2) is inhomogeneous for any nonlinear system and
depends on its particular dynamics.

Remark: Searle has paraphrased the same objection with his dictum
that syntax is not intrinsic to physics just as semantics is not intrinsic
to syntax (Searle 1997, pp. 17, 109). To be precise, this objection pre-
supposes a certain kind of (analytical) bottom-up argumentation in the
sense that information can be decomposed into its syntactic, semantic,
and pragmatic components. From a top-down point of view one could
argue that the phenomenological (“Lebenswelt”-) significance of infor-
mation derives from the irrelevance of such a decomposition. In such a
perspective, every element of syntax is inseparably linked to aspects of
meaning and use, and it does not make sense to consider each of them
separately. Admitting this as a possible conception, however, does not
tell us how it could possibly be related to the analytical perspective
dealing with fundamental natural laws.

The value of approaches using syntactic information lies somewhere else.
Instead of searching for the significance of these approaches in fundamental,
ontic descriptions, information can be extremely useful as an epistemic con-
cept mediating between different levels in a hierarchy of descriptions. Such
a usage highlights information as a paradigm of a conceptual tool for in-
tertheoretical purposes, i.e., for syntactic relations between different levels
of description (see, e.g., Atmanspacher et al. 1991). This, however, does not
allow us to dispense with the crucial requirement that each one of these levels
needs to be contextually defined rather than being universally prescribed.

3 Determinism, Causation, and Predictability

3.1 Laplace, Maxwell, Poincaré

In his famous quotation on determinism in his “Essai philosophique sur les
probabilités”, Laplace (1812) addressed a distinctively ontic type of deter-
minism:

“We ought to regard the present state of the universe as the effect of
its antecedent state and as the cause of the state that is to follow. An
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intelligence knowing all the forces acting in nature at a given instant,
as well as the momentary position of all things in the universe, would
be able to comprehend in one single formula the motions of the largest
bodies as well as the lightest atoms in the world, provided that its
intellect were sufficiently powerful to subject all data to analysis; to it
nothing would be uncertain, the future as well as the past would be
present to its eyes.”

The intelligence in question became known as Laplace’s demon; its capabil-
ities reach beyond the epistemic realm of empirical observation and knowl-
edge. Moreover, Laplace presumes a direction of time when talking about
cause and effect. Such a temporal order is absent in the last two lines of the
quotation which refer to a type of determinism more general than causation.

More than half a century later, in 1873, Maxwell delivered an address at
Cambridge University concerning the debate between determinism and free
will in which he said (Campbell and Garnett 1882):

“It is a metaphysical doctrine that from the same antecedents follow
the same consequences. No one can gainsay this. But it is not of much
use in a world like this, in which the same antecedents never again
concur, and nothing ever happens twice. ... The physical axiom which
has a somewhat similar aspect is ‘that from like antecedents follow like
consequences’. But here we have passed ... from absolute accuracy
to a more or less rough approximation. There are certain classes of
phenomena ... in which a small error in the data only introduces a small
error in the result. ... There are other classes of phenomena which are
more complicated, and in which cases of instability may occur ...”

Maxwell clearly distinguishes ontic and epistemic descriptions as based on
the notions of stability and uncertainty in this quote. His focus is on causa-
tion though – his argument is on antecedents and consequences in the sense
of causes and effects. If they are understood as ontic states at earlier and
later times, the statement “from like antecedents follow like consequences”
characterizes a strong version of causation which is not applicable to chaotic
systems. Weak causation, which is relevant for chaotic systems, does not
contradict the “metaphysical” (ontological) statement that “from the same
antecedents follow the same consequences”. In the framework of strong cau-
sation small changes in the intial conditions for a process can only result
in small changes after any amount of time. Weak causation includes the
possibility that small changes in the initial conditions can be amplified as
a function of time. Corresponding processes depend sensitively on initial
conditions such that “same consequences” can only be obtained by “same
antecedents”.
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Early in the last century, Maxwell’s formulation was refined by Poincaré
(1908):

“If we knew exactly the laws of nature and the situation of the universe
at the initial moment, we could predict exactly the situation of that
same universe at a succeeding moment. But, even if it were the case
that the natural laws had no longer any secret for us, we could still only
know the initial situation approximately. If that enabled us to predict
the succeeding situation with the same approximation, that is all we
require, and we should say that the phenomenon had been predicted,
that it is governed by laws. But it is not always so; it may happen that
small differences in the initial conditions produce very great ones in the
final phenomena. A small error in the former will produce an enormous
error in the latter. Prediction becomes impossible ...”

Here, the issue of predictability is addressed explicitly. Its obviously epis-
temic meaning at the end of the quote appears to be somewhat confused
with ontic arguments at its beginning. “If we knew exactly ...” alludes to
Laplace’s demon with its ontic realm of relevance, but it is immediately mixed
up with causation (“initial conditions”, “succeeding moment”) and epistemic
predictability (“we could predict”). Let us now look at these concepts and
their role in chaotic behavior in a more systematic way.

3.2 Ontic Determinism and Epistemic Chaos

The recent creation of the term “deterministic chaos” expresses the tension
between ontic (hidden) lawfulness and epistemic (apparent) irregularity in
chaotic systems. Our description of the underlying laws of nature, e.g. by
differential equations governing the dynamics of such systems, is no doubt
deterministic, but their observable behavior is everything but determinable
(in the sense of measurable, computable, or predictable) with arbitrary pre-
cision. Deterministic chaos is deterministic, yet not determinable. This
distinction between determinism and determinability again refers to the dis-
tinction between ontic and epistemic descriptions. While determinism relates
to inquiries into an independent (“when nobody looks”), ontic reality, deter-
minability expresses an approach referring to our epistemic knowledge about
that reality.

Although the original motivation for an ontic/epistemic distinction in
physics came from quantum theory, the preceding sections have demon-
strated that it is also important and useful in classical physics. Classical
point mechanics provides an illustrative example of a “degeneracy” which
confuses ontic and epistemic levels, whereas classical statistical mechanics
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is clearly epistemic. States in the sense of phase points x ∈ Ω and con-
tinuous trajectories {x(t)} refer to an ontic description that can formally
be expressed by an infinite refinement of Ω. Referring to empirically acces-
sible states would require one to use phase volumes associated with finite
knowledge. Corresponding concepts like probability measures µ, measurable
subsets A, or partitions P are relevant in epistemic descriptions. Insofar as
our knowledge about a state of a system and its properties is incomplete
in principle, epistemic states rather than ontic states have to be used for a
description of the empirically accessible world. In this spirit, the notion of
a perturbation δx together with an ontic reference state may be understood
to constitute a measurable subset A ⊂ Ω, i.e. a phase volume (δx)d. And, of
course, such a volume can then be reasonably endowed with an interpretation
in terms of a finite amount of information.

Remark: As Bishop (1999) has pointed out in detail, recent work of the
Brussels-Austin group of Prigogine and collaborators contains aspects
in which they deal with epistemic terms in an ontic manner. This is
most conspicuous in their treatment of distributions rather than points
as their fundamental representation of the state of a system. Although
this can easily lead to ontic/epistemic confusions, such a conception is
not a priori wrong. It can acquire consistent meaning if distributions
are considered as inseparable wholes, formalized by ontic set functions
rather than epistemic probability distributions over ontic point func-
tions (cf. relative onticity, Atmanspacher and Kronz 1998, Lombardi in
this volume). Prigogine’s apparently contradictory ideas of irreversibil-
ity as an ontic property and its epistemic emergence from reversibility
(Petrosky and Prigogine 1997) may be reconcilable on such a basis.

The temporal evolution of an ontic state remains empirically unrecogniz-
able as long as this ontic state belongs to the same epistemic state, i.e., as
long as it stays in one and the same phase cell of a chosen or otherwise given
partition. Refinements of partitions are possible, but they can never be infi-
nite for all empirical purposes. If neighboring phase points keep their initial
distance from each other constant during the evolution of the system, they
will (as a rule) not change their status of indistinguishability with respect to
a given partition. However, if this distance increases as a function of time,
this is no longer so. Initially indistinguishable phase points may become
distinguishable after a certain amount of time τ , since they may move into
different phase cells. This is precisely the case for chaotic systems, for which
τ can be estimated by h−1

T . For t < τ , one can speak of a specific type of
temporal nonlocality (Misra and Prigogine 1983, Atmanspacher and Amann
1998).
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This clearly constitutes a measurement problem, though conceptually
different from that of quantum theory (Crutchfield 1994, Atmanspacher et
al. 1995). As we know today, classical point mechanics gets along with its on-
tic/epistemic degeneracy only if chaotic processes are disregarded. Misusing
a notion coined by Whittaker (1943), one might paraphrase the determinis-
tic, yet non-determinable behavior of such systems as “cryptodeterminism”.
Using the terminology of causation, chaotic systems are weakly causative,
whereas non-chaotic systems with hT = 0 are strongly causative.

The basic ontic determinism of any deterministic system (including de-
terministic chaos) is referred to by a time-reversal symmetric (reversible)
kinematical description of the evolution of its ontic state. If the time-reversal
symmetry is broken, two types of evolution with temporal directions describ-
able by two semigroups, are obtained. In general, one of them corresponds
to the kind of forward causation which we observe and characterize with the
statement “causes precede effects”. The other one, corresponding to back-
ward causation, is usually disregarded in science. It expresses the strange
feature of effects temporally preceding causes as a form of causa finalis as
opposed to causa efficiens. It is important to realize, however, that there are
no a priori reasons to select one of the two temporal directions at the expense
of the other. Such a selection has to be based on additional arguments; see,
e.g., Primas (1992).

Remark: Causa efficiens and causa finalis are only two among four
causes as introduced by Aristotle. They can be used in correspondence
with the two temporal directions obtained by breaking the time-reversal
symmetry of a unitary group evolution. In this usage they refer to the
same level of description. It may be speculated that the remaining
two causes, causa formalis and causa materialis, can be interpreted
according to interlevel relationships in the sense of “downward” and
“upward” causation. In any case, such an interlevel causation must not
be confused with “intralevel” causation as discussed here.

The introduction of a temporal direction is a decisive step, required to
proceed from determinism in a most general sense to forward and/or back-
ward causation. In the case of chaotic systems, the selection of forward
causation is realized by focusing on positive Lyapunov exponents and, corre-
spondingly, positive KS-entropy as in Sections 2.1 and 2.2. Weak causation
(forward or backward) is compatible with Maxwell’s “metaphysical” (on-
tological) statement that same causes are needed to provide same effects.
Its variant, that like causes lead to like effects, reflects strong causation
and stands in question when epistemic terms like predictability and retro-
dictability as specific types of determinability (in contrast to determinism)
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are addressed. Strong causation is incompatible with the behavior of chaotic
systems where predictions with arbitrary accuracy are impossible. However,
this does not imply anything against determinism in its basic sense (see
Boyd 1972, Earman 1986, Stone 1989). An incorrect prediction does not
falsify determinism just as a correct prediction does not verify determinism.

4 Determinism, Randomness,
and Stochasticity

The concept of determinism is insufficiently represented if it is compared
only with causality and predictability. Two other important areas with their
own traditions are the determinism–freewill and determinism–randomness
controversies. While the issue of free will and freedom in general definitely
exceeds the scope of this contribution (see Honderich 1988, Kane 1996; see
also Guignon, Honderich, Kane, Richardson and Bishop in this volume) some
fragmentary remarks concerning the relationships between determinism, ran-
domness, and stochasticity are of interest.

From the viewpoint of the theory of nonlinear dynamical systems as dis-
cussed in Sec. 2.1, randomness is often considered as the behavior of a system
with hT → ∞, i.e. τ → 0. The classification sketched in Sec. 2.1 provides
the tools to reconsider the traditional dichotomy of perfectly regular and
perfectly “random” behavior (hT = 0 and hT →∞, respectively) as extreme
cases of a continuum of chaotic behavior (0 ≤ hT < ∞). This reflects the
idea of finite predictability horizons whose limiting values are τ → ∞ in
perfectly regular processes and τ → 0 for perfectly “random” processes.

Random behavior is a key topic in the theory of stochastic processes,
where the behavior of a system is described in terms of so-called random
variables ξ(x), i.e., real-valued Borel functions defined on Ω. In the frame-
work of Kolmogorov’s probability theory a statistical observable defines an
equivalence class [ξ(x)] of random variables on a Kolmogorov space (Ω,Σ, ν).
A stochastic process, parametrized by time t ∈ R, is then represented by a
family of equivalence classes {[ξ(t|x)]}. The description of a system in terms
of an individual trajectory corresponds to a point dynamics of an ontic state,
whereas a description in terms of an equivalence class of trajectories and an
associated probability measure corresponds to an ensemble dynamics of an
epistemic state. For a compact overview containing more details, see Primas
(1999).

In the theory of stochastic processes, the extreme cases mentioned above
correspond to special types of transition matrices. For instance, singular
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stochastic processes are completely deterministic and allow a perfect predic-
tion of the future from the past. The general case of limited predictabil-
ity is covered by the notion of a regular stochastic process. This analogy
notwithstanding, comprehensive accounts or textbooks dealing with explicit
relationships between the theories of nonlinear systems and stochastic pro-
cesses in general have only become available recently, see the books by Lasota
and Mackey (1995) and Arnold (1998). The difference between deterministic
and stochastic approaches is made especially clear in Arnold’s discussion of
conceptual differences between the “two cultures” (e.g. pp. 68ff).

A major point of discrepancy in this respect is that (in most standard
treatises) stochastic processes are intrinsically understood as time-directed
(semigroup evolution). By contrast, the ergodic theory of dynamical systems
considers a time-reversal symmetric (group) dynamics, offering the possibil-
ity of symmetry breakings that lead to forward as well as backward deter-
ministic processes. In earlier work, Arnold and Kliemann (1983) introduced
the concept of Lyapunov exponents for linear stochastic systems (of arbitrary
dimension) rather than low-dimensional chaos in nonlinear deterministic sys-
tems. More recently, the basis of these approaches, Oseledec’s multiplicative
ergodic theorem, has been generalized from formulations in Euclidean space
to manifolds (cf. Arnold 1998).

The dichotomy of ontic and epistemic descriptions is also prominent in
the theory of stochastic differential equations. For instance, Langevin type
equations generally treat stochastic contributions in addition to a determin-
istic flow in terms of fluctuations around the trajectory of a point x in phase
space. Such a picture clearly reflects an ontic approach. On the other hand,
the evolution of epistemic states µ, i.e., densities, is typically described by
Fokker-Planck type equations with drift terms and diffusion terms accounting
for deterministic and non-deterministic (i.e., random or stochastic) contribu-
tions to the motion of µ in phase space. Although both types of formulations
can be shown to be “equivalent” in a certain sense (see, e.g., Haken 1983 for
an elementary discussion), this must not be misunderstood as a conceptual
equivalence. Knowledge which would be available in an ontic description is
missing in an epistemic description.

It is not surprising that deterministic processes such as fixed points or
periodic cycles can be considered as special cases of more general formu-
lations in terms of stochastic processes. What comes somewhat as a sur-
prise is the converse, namely that stochastic processes can be understood in
terms of deterministic processes. This has been accomplished by means of a
mathematical theory of so-called natural extensions or dilations of stochastic
processes (see Gustafson and Misra in this volume).
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Remark: Gustafson (1997) discusses three types of corresponding di-
lation theories. Consider a flow Tt on subsets of a phase space Ω,
and consider the space (Ω,Σ, ν) of probability densities µ defined over
Ω. Then dilations according to Halmos, Sz. Nagy, Foias, Naimark and
others dilate the densities µ, dilations according to Kolmogorov and
Rokhlin dilate the flow Tt, and dilations according to Akcoglu, Suche-
ston and others dilate the reference measure ν. For details on literature
see also Gustafson and Rao (1997).

Their common feature is the extension of a (non-invertible, irreversible)
Markov semigroup evolution to a (reversible, invertible) unitary group evo-
lution. Applying the dilation theory of exact systems to K-flows (Rokhlin
1961, cf. Lasota and Mackey 1995, e.g. Sec. 4.5), Antoniou and Gustafson
(1997) have recently achieved important progress with the proof of a theo-
rem on the positivity-preservation of densities in unitary dilations (see also
Gustafson 1997, pp. 61–68). Roughly speaking, the significance of this theo-
rem is that stochastic processes can generally be embedded deterministically.
Its meaning in particular physical contexts remains to be specified.

5 Summary

The distinction between ontic and epistemic descriptions of physical systems
has been primarily discussed for quantum systems so far. In this contribu-
tion, this distinction is demonstrated to be equally important for a special
class of classical systems, namely those denoted as K-flows or deterministic
chaos.

It turns out that stability aspects generically relate to ontic descriptions,
whereas information aspects relate to epistemic descriptions. The dynamical
entropy according to Kolmogorov and Sinai can be considered as a concept
mediating between the two kinds of description. A number of information
theoretical claims in the contemporary literature about chaos are shown to
be misleading due to their confusion of ontic and epistemic levels.

The concepts of determinism, causation, and predictability are distin-
guished and related to each other by their ontic and epistemic relevance,
respectively. Determinism in the basic sense addressed here is the most on-
tic of the three terms. It requires neither a direction of time nor makes
use of any epistemic state concept. Causation (forward or backward) needs
a direction of time. In its weak and strong versions, it can be related to
epistemic and ontic concepts, respectively. Predictability based on the past
(e.g. memory) and retrodictability based on the future (e.g. anticipation)
are specific types of determinability as opposed to determinism, referring to
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epistemic states only and presupposing the breaking of a basic deterministic
time-reversal symmetry.

Finally, it is well-known (and trivial) that deterministic systems can be
embedded in the framework of stochastic systems. Less well known is the
fact that the converse is also true: using the theory of natural extensions,
stochastic processes can be embedded deterministically.
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